Using DNA to Generate 3D Organic Art Forms
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Abstract A novel biological software approach to define and evolve 8hc
puter art forms is described based on a re-implementatitimedfor mGrow sys-
tem produced by Latham and Todd at IBM in the early 1990'ss higinal work
is extended by using DNA sequences as the input to generatpleo organic-
like forms. The translation of the DNA data to 3D graphic foisnperformed
by two contrasting processes, one intuitive and one infdrime the biochem-
istry. The former involves the development of novel, butdenlook-up tables
to generate a code list of functions such as the twistingdingn stacking, and
scaling and their associated parametric values such as andlscale. The lat-
ter involvesan analysis of the biochemical properties efgitoteins encoded by
genes in DNA, which are used to control the parameters of a fieemGrow
structure. The resulting 3D data sets are then rendered usimentional tech-
nigues to create visually appealing art forms. The systepsridNA data into an
alternative multi-dimensional space with strong graphsual features such as
intricate branching structures and complex folding. Thieptial use in scientific
visualisation is illustrated by two examples. Forms repnéisig the sickle cell
anaemia mutation demonstrate how a point mutation can hdvanaatic effect.
An animation illustrating the divergent evolution of twoopgins with a common
ancestor provides a compelling view of an evolutionary pssdost in millions
of years of natural history.

1 Introduction

We present a novel biological approach to define and evolvar8iibrms. The work
combines a re-implementation of thermGrow system of Todd and Latham [1] with an
external source to define the shapes: DNA sequeroesiGrow is a virtual machine
producing 3D computer art forms or designs. It embodies #réqular organic aes-
thetics favored by Latham together with a shape grammar wigaiémitives (horn-like
structures), transforms and assembly rules, and a numbperafeters encoding color,
scale, texture. We have re-visited thermGrow system of Latham and Todd adapt-
ing it to a modern implementation taking advantage of steshdaaphics libraries and
portable coding, and putting the emphasis on bringing tys¢esn closer to the realm
of biology.

Two methods for using real DNA data, in the form of nucleots@guences, were
devised. In the first, sequences are directly transformed\geries of empirically de-
signed tables to become readableHoymGrow. These tables process nucleotides as



codon triplets of data as would ribosomes in a live cell. blogi of “start,” “stop,” and
“junk” DNA code are also embedded in our system. We exploeeaipplication of our
novel method to generate 3D organic art forms in the visagdia of particular genetic
defects, and present as a case study the well-known sicklena@mia mutation. The
second method for interpreting DNA sequences is to lookeabtbchemical properties
of the amino acids which are encoded by the codons in a gempl&icounts of the
amino acids with certain properties, or of a certain type,tarned into parameters for
a fixedFormGrow structure. We demonstrate the use of such an interpretaitbran
animation illustrating the evolution of a pair of relateafmins over billions of years.
The precise sequence and structure of the ancestral paseimknown, but sophisti-
cated tools and an artistic intepretation of the data givglinapse of a process which
is lost in eons of evolutionary history.

2 Background

In the 1980's. while at the Royal College of Art in London, hain devised a rule-
based hand-drawn evolution system calfedmSynth [2]. He then joined forces with
Stephen Todd at IBM to develop tlrmGrow and Mutator systems from 1987 to
1993[3,4,1,5,6]. Our work started from an open-ended aire\sit this project which
had been untouched for about twelve years.

FormGrow is a kind of building blocks kit for creating organic-styl® 2omputer
generated forms. It uses a hierarchical system, buildingompplex forms from primi-
tive shapes. The centriabrmGrow construct is a horn which consistsiofibs: repeated
primitive shapes. Variants of the basic horn are made byyappklementary trans-
forms: stack, bend, twist, and grodutator allows forms to be grown using life-like
techniques such as cross-fertilisation (marriage) andgtiout A form — as obtained
via theFormGrow system — is expressed as a sequential set of instructionsh wbn-
stitute its encodingMutator readsFormGrow instructions to be combined (if coming
from various parents) or modified (simulating mutations)the original work, the sur-
vival of a form was governed by human selection — typicallybextied by the artist
Latham seen as a kind of gardener of art-forms — or by clossioesome pre-defined
measure. Latham and Todd’s work during the period of 198 ¢e#&ided in particular
with the works of Sims on 2D and 3D forms [7,8], of Prusinkiezvand Lindenmayer
on plants [9], and of Leyton on process grammars [10,11fiBision of the differences
and similarities of such systems are coveregl, in [6,12].

A mathematical and computational formalism which unitessthshape generative
systems is that ashape grammarswhereby objects of various complexities can be gen-
erated by an iteration of a finite number of simple outlin@$farmation instructions,
such ad~ormGrow's bends, twists and stacks. Various shape grammars havedeee
veloped in the literature. For example, the generation bfsimilar fractal objects is
possible with very simple grammars [13, §8.1]. Selectidegsuwhich forbid the ad-
dition of a sub-unit under certain conditions, have beem liseUlam to generate less
regular patterns [13, 88.2]. Trees and river systems, @igjgessellations and space fill-
ing organisations are other examples of domain of apptinatof shape grammars as
object generators [13].



An important example of early work is to be foundlirsystems, also called Lin-
denmayer systems parallel string-rewrite systems, which are made from productions
rules used to define a tracing of piecewise linear segmerisjoints parameterised
by rotation angles [14,9]. These rules also are a compactevagratively repeat con-
structive sequences in the description of fractals, ofs@aduo model groups of plants,
flowers, leaves, and so on [15].

One can generalise shape grammars within the context eflaeutomata where
some randomisation is introduced in the manifestation efrthes leading talynamic
shapes; for example see the works of Wolfranal. [16] and more recent studies in
biological pattern genesis [17]. The combination of dynahL-systems with cellu-
lar automata has been considered, in particular in the wafrden McCormack with
application to art form genesis [18].

Another possible generalisation is in the context of gengtogramming where
mutations and the natural mixing of a pool of genes (poss#yyesenting shape com-
ponents or features) is used to obtain evoluiatural or organic shapes; for example
see the early works of Dawkins on biomorphs [19], and, agdihatham and Todd on
genetic art [1], and more recent works in art, design [6] aiotbgical sciences [20].

Our motivation for re-visiting Latham and Todd'’s work is tligis a powerful sys-
tem which offers the possibility of generating organicelghapes and which from its
origins was meant as a metaphor to nature’s way of evolvinggoln re-visiting this
work, on the one hand we bring up-to-date the technologyldped in [1] in the con-
text of recent advances in graphics and computational gegraed on the other hand
we bring it much closer to biology via the recent advancesanadinderstanding the
working of nature in the fields of genomics and proteomios ftitus of this paper.

3 Useof DNA in FormGrow

DNA can be thought of as a shape-specification languageimgsia the cells of ev-
ery living organism, encoding proteins which constitute ttody’s key builders and
building blocks. The DNA molecule is essentially a very lstgng of much smaller
molecules, the nucleotides, which come in four varietiesGAT, G).

How does this apparently simple string of nucleotides ea¢bd complex form of a
protein? A protein is also a string of simpler molecules:aheno acids. As there are 20
types of amino acids and only 4 types of nucleotides, the DidAdlation mechanism
looks at nucleotides in groups of three, triplets calledd@mos;” every codon translates
to a single amino acid [20]. Working down the chain of DNA geates the correspond-
ing chain of amino acids, yielding a protein. The codon-angicid equivalences can be
represented in a translation table (Thl.1).

Following this model, we created an analogous translatystesn to convert DNA
sequences intBormGrow code. At a coarse levaiormGrow code can be viewed as a
series of function calls, with each function requiring a 8mamber of arguments (this
number varies from 0 to 3 depending on the particular fungtidhus, we created 2
translation tables: the “transform table,” which transtafrom codons to transforma-
tional functions (Thl.2); and the “number table” (Tbl.3)hish translates from codons
to numerical arguments (integers in the range 0 to 63). Goterinput sequence, we
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E.g. TCG => Stack
Table 1. Translating Codons to Amino Acids.
Table 2. Codons td=ormGrow transforms.

Second letter of codon

A C G T

“A_AA =0 -ACA =4 | ACG = s. | ACT = 12. 1. Get nucleotide sequence caggcctcatcgacctct...
AAC=1 |..
A AAG=2 2. Group into 3-letter codons cag gcc teateg acc tet
g AAT =3
-g [CAA = 16] CCA = 20/ CGA = 24| CTA = 28 | 3. Translate codon into a transform ~ Add Horn( , )
= Cc |- 4. Translate the next codons into
° numerical arguments, until enough Add Hom(37,52)
I3} inputs are obtained for the transform
= AA =32 GCA =36 GGA =40 GTA =44
s G’ 5. Repeat steps 3 and 4 to translate Add Horn(30,52) Stack (5) Twist (14) ...
= the entire nucleotide sequence
1=
B |TAA =48 | TCA = 52 | TGA = 56| TTA = 60| 6. Translate to JavaFormGrow code Horn hi = new Horn(30,52);
. = h1.stack(stackval(5));
T TCC =531.. TTC =61 hi.twist(twistval(14));
I'CG =54 TTG =62 .
! TEr =5 | TIT=8 Table 4. Translating a Codon SequenceRmr-
l mGrow code.

E.g. TCG => 54

Table 3. Translating Codons to numbers.

Mouse Insulin Mouse Haemoglobin

Figure2. Images generated from sections of the

Figurel. Images generated from real DNA S ouse keratin DNA

guences.



translate the first codon into a function using the transftadohe, and then generate nu-
merical arguments for that function by translating thedaihg codons into numbers,
using the number table. Once we have sufficient argumentsetwe to the transform
table to generate our next function, and so the cycle coeasiifibl.4). Finally we ren-

der the generatellormGrow code to produce a 3D shape. Figures 1 and 2 show some
images generated from genuine DNA sequences.

Start

agc cct cca gga cag gct gea tca gaa gag gec atc aag cag atc act gtc ctt ctg cca...
Spisppiee =

v o+ ¥
grow(23) stop bend(18) stack(36) stack(32) stack(37) grow(2) Add horn(13,7) bend (31) bend(20)...

... tgg ccc tgt gga tgc gece tee tge coc tge tgg cge tge .. cag cct ttg tga acc ... ccc

... twist(21) twist(40) twist(37) stack(57) stop twist(58) grow(57) ... Add horn (23,62) twist(5)... stop ...

Junk Code FormGrow Code

Whole Sequence:

Bands of FormGrow
code shown in pink:

Figure3. Translating an example DNA sequence (Human Insulin).

It is interesting to note some similarities between natutelnslation method and
ours, these being features which we needed in our systenealiskd that the biological
precedents were well worth adopting. In the original tratish table there is a “start”
codon (AUG) which signals that a new protein is being speatiflekewise, in our
transformtable, the “add horn” transform flags the begigwiia new shape. The “stop”
codon is also mirrored in our system. This instructs tertiameof the current protein or
shape. A side effect of adopting the “start” and “stop” metsm is that we end up with
large sections of “junk codei’e., code which generates no proteins or shapes because
it lies in a non-coding section of the sequence (Fig.3). Bgngfing the layout of the
transform table we could affect the proportion of junk codeduced. We experimented
with producing a few different iterations of the transfoiable in order to get a balance
of functions that would produce a visually interesting eayiof shapes.

3.1 Casestudy: Sickle Cell Anaemia

Using this novel method of converting DNA into 3D shapes, vendered if we could
compare different DNA sequences. We selected as our caletbrigene for sickle cell
anaemia. This inherited disease affects millions of peamddwide. It damages the
red blood cells which deliver oxygen to vital organs, raésglin anaemia and further
complications. It is particularly common in malarial regsy because it offers some
protection against malaria. All this is caused by one fagéige. The problem appears as
a single point mutation in the beta haemoglobin gene: asighucleotide is changed



to a “T” (Fig.4). The reason that this single nucleotide sitioson is so influential is

because “GTG” encodes a different amino acid to “GAG.” Anid ttmino acid switch

changes the physical behaviour of haemoglobin in the badgur initial transform

table, there is no difference between “GAG” and “GTG,” sorbwdrmal and sickle cell
forms of the DNA sequence generated identical shapes. ktisimusual for a single
mutation to go unregistered. Both the amino acid table aadréimsform table exhibit
some redundancy — in fact, there is an evolutionary advaniaghis redundancy,
as it makes DNA more resistant to minor changes. Howevernr#resform table only

produces 7 different output functions (unlike the aminadaable which has 21), so
more repetition is inevitable. Rather than adjusting théetéurther by hand, we applied
a procedure to randomise it.

Human Haemoglobin Beta DNA Sequence: Mutant (Sickle Cell)

att tgc ttc tga cac aac tgt gtt cac tag caa cct caa aca gac acc atg gtg cat ctg
act cct gag gag aag et gec gtt act gee ctg tgg gge aag gtg aac gtg gat gaa gtt
agt gat gag goe ctg ggc agg ctg ctg gtg gte tac cct tog acc cag agg tte ttt gag
tee Ut ggg gat ctg tee act cct gat get git atg gge aac cct aag gtg aag gcet cat
‘ggc aag aaa gig cte ggt gee it agt gat gge ctg gt cac ctg gac aac ctc aag gge
acc ttt gec aca ctg agt gag ctg cac tgt gac aag ctg cac gtg gat cct gag aac ttc
agg cte ctg ggc aac gtg ctg gte tgt gtg ctg gec cat cac ttt gge aaa gaa tte acc
©ca cca gtg cag get gec tat cag aaa grg gtg get gat gtg get aat gec ctg gec cac
aag tat cac taa get cgce tit ctt get gte caa ttt cta tta aag gtt cct ttg ttc cct aag
tce aac tac taa act ggg gga tat tat gaa ggg cct toa gea tot gga the tgo cta ata
aaa aac att tat tht cat tge

Normal: ... act cct gag gag aag ...

rotated 180°

Mutant (Sickle Cell Anaemia): ... act cct gtg gag aag ...

Figure5. Forms generated from Normal and
Figure4. Sickle Cell Anaemia Mutation.  Sjckle Cell Beta Haemoglobin.

After a small number of randomisation runs, a table was predwvhich translated
“GTG” and “GAG” differently. This new table generated theages shown in Fig.5.
The two forms are easily distinguished, though many sintidgr can be seen in their
component parts. Effectively we had produced an alteraatigy of visualising this
genetic mutation. It is an artistic impression of how a peinttation can have such
a dramatic effect on phenotype. Ideally we would like to oyige the table such that
visualisation reflects the sequence in some expected absenmnner for a large set of
proteins and mutations. This optimisation may take plagggueny standard algorithm,
for example an evolutionary method might be appropriatkingestepwise changes in
the table and asking a human (artist or biologist) if the ltesy visualisations are an
improvement on those produced by the parent transform.table

4 Useof amino acid biochemistry in FormGrow

The approach of directly using DNA sequences (interpresembdons) to generaker-

mGrow shapes ignores the biochemical characteristics of the matids which the
codons represent. Amino acids are the building blocks ofeime, which are the ba-
sic product of the genes encoded in DNA. A protein, in the fofra chains of amino



acids, folds into a specific shape, governed by the propgesfithe amino acids. The
relationship between the amino acid sequence of a proteinttea way the protein
folds is complex and is probably the most fundamental uregbjwoblem in biology.
Sometimes a point mutation, such as that in sickle cell armdras a fundamental and
devestating effect on the protein structure. But sometiinkas no effect, or a very
small effect. It is often impossible to predict which will py@en, and therefore adjust
the FormGrow output to reflect the importance of a mutation. But we can baythe
general nature of the fold depends upon the general maké-the amino acid chain.
Therefore if we summarise the amino acids content of a pratéd a set of numbers,
this provides a reasonable overview of the nature of theeproand how it is related to
other proteins. The 20 amino acids used in proteins can hggrtbmany ways accord-
ing to their biochemical characteristics. These groupamgsillustrated in Fig.6 (after
[21]). This approach leads to a two-step process for crg&mmGrow structures from
genes. First, the DNA sequence for the gene is convertedaifstogram denoting
the relative frequencies of each amino acid type and grgupife summarise the pro-
tein by counting how many of its amino acids fall into eachugrand also count the
amino acids of each type. This produces a histogram “profifahe protein’s amino
acid content. Secondly, these values are used as input fixedsFormGrow structure.
The process is illustrated in Fig.7.

Small DNA Sequence: gca tca gaa gag gcc atc aag cag atc act gtc ctt ctg tta ...
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structure

The advantages of this approach are twofold. Firstly, thetmaliable significant
information from the protein is captured in the histogramalihcaptures features of
the entire sequence. Any further interpretation of the saqa would rely on predictive
techniques which carry some uncertainty. This techniqueésl in bioinformatics and
is related to the “spectral decomposition” approach [2dk &like a Fourier transform
in that the amino acid frequencies are similar to first oréems of a Fourier trans-
form, the dipeptide frequencies are akin to second ordergeetc. Furthermore, we do
not need to worry about frame-shifts of the sequence usiisgethnique, which was
one problem with the original simpler codon model. Seconajng a fixed structure
means two shapes can be directly compared visually, andeamlphed in-between



to create a smooth animation. Therefore, the differencasimo acid composition of
two proteins can be shown in a compelling new way.

4.1 Casestudy: Evolution of related proteins

Delta crystallin Argininosuccinate lyase

' 4Ga
Bacteria Eukaryotes
' 1Ga

V4 Fungi J Animalia 3

p ' £

250Ma A 200Ma

Aves
65Ma '4"% Mammalia
K
Primates (25Ma) N Primates (25Ma)
P

N A A R Yo, B0, Sa, %, T % %, o %o T, Y,

Figure8. Divergent evolution of two proteins. This is not a conventibevolutioary tree. It shows
how ancescon thinks the proteins are related, based upon the sequenke pfdteins in modern
organisms. This does not necessarily correspond to thewalationary tree, since the signal of
evolution in protein sequence is sometimes lost in the &fai$ mutations over billions of years.
The arrows show the route of the History of the Species filmsnalising the devolution of one
protein then the evolution of another.

Proteins evolve within organisms, with random mutation®MA either causing
the death of the organism, or increasing its chances ofvalnar (usually) having
no particular effect. A protein with one function can evolaéo one with a different
function through accumulation of mutations. Sometimes ala/gene is duplicated,
meaning that one copy can continue to perform the originattion, whilst the other
can evolve to do something else. We looked at one such case iaseaesting test
of our histogram-based translation. Argininosuccinateséyis a protein involved in
producing argnine, which is one of the twenty amino acidsnfrshich proteins are
made. In producing arginine, it consumes nitrogen, a prodiumany activities in the
cell which can be toxic to an organism if it turns into ammofiikis protein exists in
most organisms, from single-celled bacteria to humans #met apes. Approximately
450 million years ago, this protein was duplicated in a commuacestor of all animals,
possibly some mobile multi-cellular organism. The dupkcaccumulated mutations
which eventually turned the protein into a structure, Defestallin, which, when fitted
together in a specific pattern with many other proteins, ®part of the lens of the eye.
The original protein has become importantin removing gigmin the liver. The outline
of this evolutionary history is given in Fig.8. We wanted tisualise this history using
FormGrow. We chose to trace the development of the protein in the eyakvibards in
evolutionary history, to the common ancestor from whichvitleed. From there, we



wanted to trace the evolution of this into the protein useddémoving nitrogen in the
liver. The path through evolution we took is shown by the ws Fig.8.

The ancestral sequence are unknown — we only have the ps#qirences from
modern organisms. However, the ancestral sequences cagdiestructed, with some
uncertainty, from the sequences in modern day organisnrseXample, the protein
sequence of 25 million years ago can be reconstructed byioamglthe sequence from
humans with the sequence from the crab-eating macaque.eBh# s the sequence
as it may have existed in a common ancestor of the primatess&fuence from 65
million years ago can be reconstructed from that sequenainpining it with the
sequence from the pig. We usadcescon [23] to construct the ancestral sequences.
Initial sequences came from a number of sources, includfagmH24], and UniProt
[25].

We can then morph through forms created for all the ancese@liences from
human eye, back to the earliest ancestral sequence, andattreards to the human
liver. Stills from the resulting film are shown in Fig.9. Thérfiis available to view
at [http://hos.mrg-gold.com] and covers up to 50 millioraggeper second. The sound-
scape for the film was generated from the forms themselvesefiire both the audio
and visual elements of the film are inspired by biology.

Figure9. Stills from the animation “History of the Species.”

5 Discussion/Conclusion

At the core of this paper is a simple idea of feeding DNA datpus@ces into a rich 3D
form generator calleBormGrow, to generate organic-looking 3D growth structure, cre-
ating an equivalence of the DNA mapped into an alternativétirdimensional space.
How useful this mapped equivalence may be will become ctezsave work closer
with biologists and engage in further cross-fertilizat@frideas. Could this methodol-
ogy have more direct and short-term scientific applicatamsvell? While our shapes
bear no resemblance to the proteins that the genes encegearth still being driven
by the same initial DNA sequences. So it is possible that wedcose our system as
a visualisation tool. Conceivably, our tool could enablerago identify whether two
given sequences are similar or identical. The advantadesfdol being that it is faster
and easier for the human eye to compare shapes than repestiiivg sequences. The
primary method used by researchers in bioinformatics isa& bt a multiple sequence
alignmentj.e., all the sequences are simply lined up one beneath the atberding to



an empirical scoring function. This alignment is often ®dninto a statistical profile or
hidden Markov model which are useful for sequence matchmagséructure prediction,
but there is no attempt at visualisation.

Additionally, our system is deterministic. Thus, given gwence and transform, the
same shape will result every time. But, in the case of diracidformation of a DNA se-
guences using a table, redundancy means that some smajjeshiaray go undetected.
To rectify this we could produce more transform variants eogy the layout of the
amino acid table, so that the redundancy locations are the.$&@rmGrow produces
shapes which are nothing like the proteins which are agtwsdtoded by genes. Pro-
teins inhabit a completely different “shape space” to théticrllular organisms which
FormGrow is inspired by. Could shapes inspired by proteins rathear tratire organ-
isms be as rich a tool for artistry and visualisatiorFasmGrow? We intend to answer
this question in future work.
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