
Software Complexity: Towards a
Distributed Governance of a

Production System

Evgeny Vasiliev

Thesis for the degree of Doctor of Philosophy submitted to the Department of Media,
Communications and Cultural Studies, Goldsmiths, University of London

June 2023

2

Declaration
I declare the following thesis to be my own work. Where the works of others are used, they are cited

and referenced in the bibliography. Any assistance from others is listed in the acknowledgements.

Candidate Name: Evgeny Vasiliev

Student Number: 33514675

Date: 30/06/23

Candidate Signature:

3

Acknowledgements
I could not have done this work without the tireless care and support of many individuals, both in and

out of my research pursuits. Most importantly, my two supervisors Marina Vishmidt and Graham

Harwood, as well as Matthew Fuller, who would always be there with invaluable advice throughout the

key milestones of the project. I admire their commitment, trust in what am I trying to do and the in-

spiration they continued to provide throughout the years. Also, my appreciation goes to many other

members of the Cultural Studies and Sociology departments at Goldsmiths for their feedback and sup-

port during my time there, particularly Brian Allende, Sean Cubitt, Luciana Parisi, Shela Sheikh and

Gareth Stanton. In terms of fieldwork, I’m indebted to Juan Settecase for his enthusiasm for DevOps

and patience when explaining it to me. To Joy Mariama Smith, for the inspiring discussions around the

possibilities of queer performativity. To Alejandro Cerón, for providing an opportunity for a research

period in the Netherlands, as well as stimulating theory discussions over breakfasts. To Maria Beatrice

Giovanardi, for the emotional support throughout the intense writing time in Indonesia.

To my work colleagues at the two organisations that I was lucky enough to work with throughout my

research, who at various times took part in the lively and fruitful discussions about the various aspects

of my professional and theoretical engagements with software production. Wherever you are, I send

you my warm greetings, and looking forward to working with all of you again.

To all the other friends and colleagues for being my interlocutors and for providing direct and indirect

support, including Daniil Alexandrov, Jennifer Chater, Dimitra Gkitsa, Mo Jaeckel, Aaron Juneau,

Matthias Kispert, Conrad Moriarty-Cole, Henrike Neuhaus, Lennaart Van Oldenborgh, James Phil-

lips, Panagiota Polychroni, Renan Porto and Hayato Takahashi.

Through my thesis, this extraordinary group of individuals comes together as a team that makes this

particular way of thinking about software possible. I submit this PhD with the utmost interest in where

this trajectory is going to take us next.

4

Abstract

This PhD is interested in the complexity which arises in software production due to the divergencies of

the organisational and market forces and aims to find out what are the existing or potential new ways

of mitigating the complexity effects. Viewing the distributed kind of governance characteristic for most

complex systems together with the value produced, I discover that the complexity is often caused by

software capitalism – a valorisation regime which perceives every firm primarily as a technology firm and

creates profits by keeping its software in a state of perpetual disrepair. The software in such a regime

acts as an interface between the domain of market exchange and the sphere of organisational culture,

with the market tending to increase complexity so that the production intensifies, and the organisation

resisting this tendency to be able to optimise the audit of the production performance. I approach the

study from the standpoint of development operations (DevOps) to reveal the mobilisation of the soft-

ware system’s epistemology as a productive assemblage for planning and control, which becomes a key

dynamic in the situation of uncertainty that complexity presents.

Coming from the experience of empirical work as a digital product lead, I try to view DevOps with

diffractive and compositional optics, by explaining a software production system through the notions

of the problem space and the epistemic infrastructure. This makes it possible to clarify the performat-

ive role of a software system in the capitalist mode of production as simultaneously a service and a

product. While the software system is at any moment too complex to be fully repaired, its dysfunctional

condition is further aggravated by the phenomenon of the falling cost of computation. Acknowledging

this trend, I argue that mitigation methods should be investigated in a diffractive way, effectively at-

tempting a queer methodology for DevOps, to open a conversation about a more-than-human repres-

entation of the space of production that sees the negotiation of shared meanings topologically and im-

manently, rather than based on the dominant hierarchies, pre-existing assumptions or external evalu-

ation.

Table of contents

Acknowledgements 3
Abstract 4
List of figures 6

General introduction 7

Which complexity? 8

Introducing empirical work 16

Term definitions 17

Summary 28
Chapter 1. The software production system 30

Traction in technological systems 31

Incremental delivery in software production systems 42

Principles of software capitalism 52
Chapter 2. The compositional method 69

Composing problems 70

Studying the uncertain domain 81

Composition with case studies 90
Chapter 3. The epistemic infrastructure as code 103

Deployment pipeline as the topological machine 103

The team topology principle 115

Circulation of knowledge within the production system 123
Chapter 4. Audit and the problem space of production 135

Interlude. Field application 136

Distributed collectivities 139

The continuity of dysfunction 148

The support ticket as a tool for the distributed practice of audit 158
Chapter 5. The governance and the falling cost of computation 165

Computation in production 166

Data, information and assimilation of knowledge 171

Complexity and distributed governance 185

General conclusion 195
Appendix 206
Bibliography 222

5

List of Figures

Figure 1. Traction balance and the problem space. 37

Figure 2. The production pipeline. 49

Figure 3. Production phases and releases. 50

Figure 4. Production design lifecycle. 72

Figure 5. Component relations in the problem space of production. 77

Figure 6. E.J. Marey, A photo of a flying pelican, circa 1882. 79

Figure 7. The abductive problem negotiation event. 89

Figure 8. The funnel of complexity in case study research. 93

Figure 9. The project Gantt. 99

Figure 10. The layered delivery of the software system during deployment. 110

Figure 11. The layered software product construction. 112

Figure 12. Comparison of functional and stream-aligned paradigms. 117

Figure 13. Production design lifecycle. 124

Figure 14. The problem space of production and the community of practice. 143

Figure 15. The story map. 157

Figure 16. Traction balance using distributed administration. 169

Figure 17. Integration as the process of assimilation of knowledge inventory by the agent. 172

Figure 18. The fractality of relations across the different organisational levels. 180

Figure 19. Production phases and releases. 207

Figure 20. The production pipeline. 207

Figure 21. Data collection flow. 213

Figure 22. A proposed roadmap for Elastic Search Phase 1. 214

Figure 23. Digital archive product map. 216

Figure 24. The archive project roadmap in the proposal phase. 217

Figure 25. The first reconstruction of the server incident. 220

Figure 26. JX physical server migration. 221

6

7

General introduction

The present study turns to the theme of technical complexity in software systems because it wants to

find out why such complexity is usually mitigated by expanding production, which tends to make the

system more complex, instead of troubleshooting existing technologies and improving maintenance,

testing and support routines. In other words, why is there a tendency to make the work of production

teams harder, rather than easier? The project is undertaken with the hope that the findings will give

other researchers and practitioners an idea of what kinds of tools and methods can be used to minim-

ise or avoid the detrimental impact of complexity effects. The project’s central claim is that technical

complexity emerges as a conflictual force between the spheres of market and organisation, appearing

as a benefit for the former, and specifically for the circulation of capital, but is harmful to the latter,

specifically to the organisation’s operations. Over the years of my professional involvement with digital

production, I couldn’t help but notice that the software and operations technologies that are available

to present-day organisations are often underutilised or ignored, and my concerns were growing with

regards to what kinds of risks this may create for long-term software system maintenance. Rather than

being designed according to the demands of actual production teams and the larger goals that brought

them about in the first place, the software systems, I suspect, more often than not are amended to con-

form to the constraints of what would seem an unnecessary bureaucracy. On a larger scale, my argu-

ment became that any technical complexity that may exist in society’s software systems, for whatever

reason, appears as a barrier to the optimal functioning of society’s vital infrastructures, and has to be

lessened, alleviated or otherwise diminished in its effects.

At the same time, continuing with my research, I came to acknowledge that even though the tensions

within the space of production intensify the system’s complexity, the complete eradication of complex-

ity is not a goal in itself, since some of the complexity present in the system is an essential as a part of

its specification, and after some point decreasing the complexity is not possible without restricting the

system’s functionality. Furthermore, some of the complexity avoidance can be dealt with at a policy

level by shifting the mode of governance from centralised to distributed or achieving a balance

between the two. As I compare the industrial mass manufacturing model to software production

throughout the thesis, I discover that in a factory context of a relative scarcity of means, the gov-

ernance achieves the best results by evolving in a centralised way. In high-complexity types of produc-

tion, such as that of software, fast speed in conjunction with centrally oriented governance makes it

8

harder to meet the escalating uncertain conditions and creates delays which may, to varying degrees,

impede the required system adjustments. This, in turn, risks placing production teams under additional

stress. Distributed governance, on the contrary, is better suited for absorbing the complexity fluctu-

ations in that it allows the software system to evolve through its local relationships, by connecting their

constitutive elements, using the specifications as a guide, and yet constantly renegotiating them because

of the changing context. Yet, as I find towards the end of my inquiry, the distributed model cannot

fully address my concerns in that it does not reduce the complexity, but on the contrary, makes it pos-

sible to create more of it for further capital circulation.

Which complexity?
To create the context for the five chapters of my thesis, this General Introduction is split into three sec-

tions. The first section outlines the main parts of the argument. This includes explaining the specific

meaning of high and low-complexity production my research investigates, the value and control axes it

uses for navigation and the meaning of valorisation it identifies in the software complexity context.

The section concludes by explaining why the research primarily engages with development operations

(DevOps) and takes note of Agile and waterfall as the two key production paradigms that the project as

a whole relies on. The second section briefly introduces my empirical research. The third section lists

the main thesis definitions using a lexicon style, with a plan to provide more detailed commentary in

the later chapters. Lastly, the Introduction provides chapter overviews and ends with an overall sum-

mary of the argument.

High and low complexity production

While much of the research around the present conjuncture of labour and management in production

comes under such banners as digital labour or full automation, it is necessary to begin by explaining why

the motivation in my project is different and in which way I intend to combine their findings with those

of management studies. The goal of digital labour research is generally understood as developing a

critique of the rationale for labour underpinned by the value relation. This paradigm had initially

been posed by classical political economy and formalised by Karl Marx and was later enacted in the

industrial research of such schools of thought as Frederick Winslow Taylor’s scientific management

and human relations movement pioneered by Elton Mayo. More recently, the critique has informed

the programme of critical management studies and is indispensable for critical analysis of many facets

of the contemporary manifestation of capitalism, including but not limited to Silicon Valley ideology,

mineral extraction, or the overexploitation of workers stripped of their basic rights on many digital

platforms. The research trajectories in this camp often assume that the value relation is the key under-

lying problem of current social formation, and often employ critical analysis with the aim of proposing

9

an exit strategy from such relation. Yet, due to the broad meaning of the term digital labour and its pre-

dominant involvement with value relation, in my research, I’m leaning more towards the term software

production, which also enables me to orient the discussion towards DevOps and complexity challenges.

Furthermore, using software production as the main reference makes it possible to differentiate the

roles of the participants of the two general varieties of production this thesis works with: software pro-

duction, and the mass manufacturing of physical objects. I see the latter as a low-complexity produc-

tion due to the finite nature of the constituent parts of inventory and machinery on the factory floor.

The former, due to the computational nature of the parts and tools, on the contrary, has the potential

for a largely unrestrained entanglement of interrelations and layering of software abstractions. This

precludes any parsimonious explanation of the system and creates high-complexity production situ-

ations. Leaving the rich discussion of material and immaterial production out of the scope of the

present thesis, there is an additional important upshot to this complexity dynamic, which can be identi-

fied as the correlation between the empirical – or in fact, ontological – and the epistemic facets of the

social classes in the way they are enacted in the production process. Empirically, there is a split between

the working class and the capitalists, where the workers embody the productive function and stand in

antagonistic relation to those who own the business and act as the force that alienates the workers from

the products of their labour. In terms of epistemology, software is ambiguously present as a service or

a product at the same time. Where it appears as a service, such as in maintenance, support or integra-

tion efforts, there is no easier way to alienate the workers from the labour outcomes than in any other

service work, since the product of the service, to use Marx’s theorisation, cannot be separated from the

act of producing.1 For business owners, however, software products are present as commodities avail-

able for exchange in the market, for example, in the form of specific product releases. Such correlation

between the roles and manifestations of software means that even though the software is available as a

product to users and business owners, it is still conditioned at every step on the service work done by

the production team.

The value-control axes

This is where the present study sees the importance of connecting the digital labour critique with com-

plexity management studies – the area of management research which engages with complexity sci-

ences. In essence, the association of the empirical split with high-complexity production implies that

anyone approaching software complexity in terms of the value present in its end products, and devel-

oping a critical inquiry by such means as industrial manufacturing operations research, will only have

	1	 Marx, 1990: 1048.

10

access to a specific interpretation of the problem, for example, that capital can see software complexity

as the pathway for improving capital circulation, through such means as expanding production, with

such consequences as platformisation or casualisation of labour. What is equally important to under-

stand, however, is that the software system evolves in the context of organisational dynamics, where the

activities are not determined by the value in the economic sense, but rather by the shared needs, that

is, they are present as the labour not directly mediated by the market. For example, such is the proposi-

tion for symmetrical treatment of firms and markets by the 20th-century British economist Ronald

Coase. According to this interpretation, where the cost of price regulation is too high, the processes get

internalised, thereby creating the space for developing the organisational theory.

In this context, the split happens organically, since the discussion of market relations is irrelevant with-

in the organisation domain, yet the difficulty lies in the fact that neither one can be completely separ-

ated from the other. For example, as Chapter 3 explains, even where the circulation of value within the

organisation may not be made explicit, the circulation of knowledge, which is often treated similarly in

stakeholder relations, is clearly expressed in production at all times. In the context of the overarching

market realm, the organisation domain exists as the intrinsic cultural sphere of interpersonal relation-

ships based on tacit knowledge and practices. The value exchange here is voided to make the job easier

for the accounting department, which, along with sales, takes care of maintaining the boundary

between the events of production from the extrinsic demands of the market. Due to my interest in op-

erations, however, the aim is not to try and pack the issues of value uniquely into the purview of the

market and the issues of control into one of organisation, but to imagine value and control as two axes

co-existing on the plane of the capitalist mode of production. The duty of operations in this case

would largely be to balance the issues of capital circulation with the issues of control over such circula-

tion.

Bringing value and control in as two axes could make it possible to reach beyond the critical paradigm

described above. The complex software system would no longer uniquely belong to the facet of value

relation, and thus there would be no pressure of finding the exit from capitalism or any other regime

oriented towards value extraction. It becomes possible to focus on gaining a better understanding of

what exactly is wrong with the existing methods of creating and maintaining software systems, and

what is the specific way in which the sphere of value comes to interact with forces of administration in

a production context radical in its variability and uncertainty. In other words, the iterative application

of digital labour critique and management studies enables the comparison of the complexity impacts

across both the spheres of circulation, of capital in the market, and of knowledge within organisation-

al culture. In terms of research goals, creating a value-control frame makes it unnecessary to think

about overcoming any regime organised by neither value nor control relations, and instead makes it

11

possible to portray a historically specific entanglement of the market and the organisation that leads to

complexity spikes and ultimately to software crises.

Simultaneously, the value-control axes allow identifying the changing role of the organisational culture

across the high and low-complexity production contexts. The former enjoys an added benefit of co-

operation which, as Marx observes, emerges when the individuals partake in a collective endeavour,

during which they activate their species’ capacity to be able to effectively work in a planned way with

others.2 The same cooperative benefit is unusual for software production, where bringing new engin-

eers to software projects does not add to the speed of delivery, but, on the contrary, is present as a bur-

den to the already existing team in the initial stage due to the difficulty of gaining shared understand-

ing in a highly complex environment. However, as Chapter 5 explains further, the longer team mem-

bers collaborate within specific production conditions, either around a software system or within the

organisation, the more accustomed they become to each other’s working styles, creating momentum

through making use of the tacit knowledge which accumulates within their practices. The layer of pro-

duction culture that emerges from the entanglement of the tacit knowledges and local practices per-

mits the stakeholders, as a unified interest group, to navigate the uncertain and inconsistent situation

created by the local activities of individual agents. It acts as a vital organisational adhesive, providing

the means of articulating problems in teamwork, and requires the agents to engage with unproductive

labour – the activity that does not carry the surplus value or product for market exchange as its imme-

diate outcome. The kind of labour that is concerned uniquely with the culture of production within an

organisation often proves to be so important as to necessitate introducing various sorts of production

management staff, such as delivery managers, information architects or business analysts, who dedicate

their efforts specifically to meaning-making.

Towards valorisation in software capitalism

Having established the coordinates of value and control to orient itself within the research terrain, the

argument inquires into the problematics of valorisation, or specifically the strategies that the software

capitalist mode of production employs to be able to continue reproducing itself. Having seen that the

market domain deals with a notion of value which is different from the one of the organisation and ap-

proaches the technical system in terms of its exchange value capacity, it may be possible to suggest that

there is a way for capital to convert the hindrance of technical complexity to the means of generating

profits. The conversion here should be achievable in the fashion theorised in Marx, through reducing

the value of necessary labour time: ‘everything that shortens the necessary labour-time required for the

	2	 Marx, 1990: 447.

12

reproduction of labour-power, extends the domain of surplus labour.’3 In the case of software produc-

tion that deals with information as goods which do not perish or reduce when consumed is best

achieved through expanding production, since such expansion, as the thesis later notices in terms of

the notions of fractality of production system design and the falling cost of computation can be done

without significantly increasing the necessary labour time. Notably, it is also possible at a low cost, since

some of the real-world constraints are no longer present in digital production as compared to the man-

ufacturing of physical objects.

For example, there is often no clear-cut divide between production and distribution. The study of lo-

gistics, such as the one offered by the sociologists Sandro Mezzadra and Brett Neilson, clarifies the in-

volvement of Marxian politics of distribution in present-day supply chains. To Marx, who never used

the term logistics, transportation appears as the extension of production into the circulation – ‘continu-

ation of a production process within the circulation process and for the circulation process’4 As Mezza-

dra and Neilson observe, transportation is not a mere means of reducing the costs of commodities that

have the surplus value fixed at the moment of their production. Instead, the surplus value changes de-

pending on the mode of logistical coordination. Logistics are the means of regulating the turnover

time, typically to make the acquisition and move the inventory in the fastest possible way, which in-

creases the gains by shortening the transition time during which the capital cannot convert the surplus

value into profit.5 Transportation in DevOps usually appears in the form of a dashboard or another in-

terface solution that makes it possible for the operations to manipulate their logistical resources on the

cloud computing platform, such as Amazon Web Services (AWS), which I have encountered in this ca-

pacity as part of my fieldwork. The resources offered by cloud operations consist of radically different

technologies and paradigms and come in such forms as databases, virtual servers or message brokers,

which often require a variety of professionals knowledgeable in their specific areas. In the final in-

stance, the platform interface serves as a means for interoperability between the organisation’s techno-

logy and the market, where the technology is delivered through symbolic manipulation. In this sense,

DevOps takes production and distribution together without having to resolve the ambivalence of rela-

tions between the two. This, however, is precisely why my thesis is interested in DevOps, rather than

any other area of software production uniquely belonging to either its production or distribution as-

pects.

	3	 Marx, 1990: 470.

	4	 Marx, 1992: 229.

	5	 Mezzadra and Neilson, 2019: 150.

13

DevOps and knowledge work

To explain what my research means by DevOps, it is important to sketch the general context that I as-

sume here, frequently referred to as knowledge society. A knowledge society can be defined as a society

where the factors of value and wealth creation prevalent in the era of the industrial mode of produc-

tion – capital, labour and natural resources – have another major addition in the form of knowledge.

In the dominant economic definition provided by management theorist Peter Drucker, knowledge society

refers to a society where it is no longer capital nor natural resources, but knowledge which is present as

the most important wealth-creating factor.6 Furthermore, according to the observation of the historian

James R. Beniger, there is a long-term trend of the increasing share of the knowledge constituent in

the overall labour force composition in the Western economy. While in the hundred years leading up to

the end of World War 2 employment in industrial manufacturing dominated the market, it was on the

steady decline after that point in favour of information-based work. 7 The present thesis, dealing with

more recent interpretations of the knowledge-based business models from mid- 2010s onwards, sees

the information technology (IT) sector knowledge as coincident with business value to such an extent

that it becomes possible to write down the business strategy in the form of computer code. This makes

the model different from industrial mass manufacturing of the pre-software age, where the implement-

ation of the work process on the shop floor had been removed from sales, marketing and distribution.

In this context, DevOps is a relatively new methodology concerned with the production of the means of

production and is located at the intersection of development and information technology (IT) opera-

tions. Such a location implies that DevOps deals closely with how knowledge is created and circulated

throughout software systems, in which sense it is a methodology tightly interweaved in the knowledge

society fabric. DevOps emerged as a result of the frustrations that had accumulated in the first decade

of the 2000s when the increasing speed of delivery of production teams was systematically held back

by the business operations, who often worked separately from development and therefore could not fol-

low their continuously changing requirements closely enough. The organisers of the first DevOps con-

ference held in 2009 argued that it is possible to converge the two disciplines of development and oper-

ations to be able to deploy and integrate new software releases in a seamless fashion, which would help

alleviate some of the software production complexity. For the present research, the three aspects of De-

vOps are particularly important.

	6	 Drucker, 1993: 7.

	7	 Beniger, 1986: 23–24.

14

First, since software systems tend to expand, organisations are faced with the necessity and, simultan-

eously, the difficulty in onboarding new team members. In knowledge work, the specific character of

entanglement of each job role may be different even if the set of skills required to do it is the same,

due to the complex nature of products. In addition, there is a difficulty in onboarding new team mem-

bers and developing the web of implicit or tacit knowledges, as we saw above, which creates additional

pressure on the firm’s communication capacity to keep pace with the growing population of its engin-

eering teams. In his foundational work on software production management, Frederick Brooks had sig-

nalled an early warning that even a linear increase in staff creates an exponential increase in commu-

nication pressures related to training, onboarding and socialisation into the organisational culture.8

Furthermore, it is not only the coordination of work which is communicative but the professional prac-

tice itself. While tacit knowledge cannot be easily communicated across the whole production space,

DevOps aims at solving this problem by expanding communication bandwidth between development

and operations and making the knowledge explicit.

Second, DevOps plays a significant role in mitigating the effects of backward incompatibility, or re-

gression analysis, across the software system as a functioning entity. This effect is also present in tradi-

tional technological systems as reverse salients or older components can render innovation useless, but

in software negative consequences may have an immediate impact across the whole system, depending

on the nature of legacy code. Needless to say, the situation is rich with organisational particularities as

to why specific old and new components are used and sees DevOps working with the organisation’s

policies, contractual agreements and personal idiosyncrasies that the technological system comes with.

The third facet is organisation design – while DevOps may be involved with this activity in a greater or

lesser capacity, the common understanding of the production goal implies that all of the parts in the

production space are functioning to make it easier for the teams to meet the software system’s require-

ments. One of the ways to do this is through systematic efforts at negotiating the design of the organ-

isation towards the intended design of the system it works with. Such organisational flexibility becomes

possible in the context of the Agile method of production, which takes precedence over the waterfall

style when it comes to performing day-to-day software development.

Waterfall workflow in software production

While the Agile methodology will be more fully addressed in connection to the incremental delivery

discussion in Chapter 1, at this moment it is necessary to note the distinctive features of the waterfall

style of production, prevalent at the peak of the industrial era, that changed the specificity of its ap-

	8	 Brooks, 1995: 18.

15

plication in complex production scenarios. As management theorists Arash Azadegan and Kevin

Dooley explain, the waterfall is a project management paradigm that assumes that any production ef-

fort has to be executed only after it is clear what work needs to be done, and how and by which staff.

For example, each design effort needs to start by identifying the requirements, linking them to the

design activities, and finally, carrying out design and integration work. The paradigm came to be

known as waterfall because the approach is strictly linear, making it easy to swim downstream, but

harder to go upstream if any of the earlier activities have to be redone.9 Such inflexibility makes the

approach less fit for situations where customer requirements are likely to change, or for risky innova-

tion cases, where the viability of the whole endeavour can only be confirmed after substantial design

work has been done upfront. Vice versa, the waterfall is highly effective in the assembly line style of

mass manufacturing, where it enables accommodating technical complexity by organising a finite

number of operations around a finite number of components to produce large quantities of concrete

immutable artefacts. In other words, since waterfall achieves its effectiveness due to the ability to ac-

count for all the possibilities and complexities it may contain, it does not apply in the same way in the

production of software systems, since there is no certainty around the system’s complexity. Four key

reasons cause such uncertainty, which I should now briefly address.

First, unlike in industrial manufacturing, the components are often themselves software systems and

can change during production – for example, security or database protocols developed by third parties

or in open-source communities. Second, the software system tends toward a structure that doesn’t have

any repeatable components – a principle standing in diametric opposition to industrial mass produc-

tion, where the repeatable contents, such as car parts, are the key to the functioning of the assembly

line. As Frederick Brooks points out, in software systems ‘no two parts are alike’ because, according to

the best engineering practice, every repeatable part should be replaced by a subroutine or a single

component that can be called multiple times.10 This means that any effort of scaling the system is not a

simple operation of repeating the same elements on a larger scale, but a qualitative change of the sys-

tem. Moreover, elements interact irregularly and have numerous states, or unique sets of attributes,

which change over time. This creates an additional difficulty in reproducing the conditions for testing.

Third, software engineers, unlike factory workers, perform operations such as finding creative solutions

to problems and evaluation of existing code – not to mention the matters of many other IT occupa-

tions, such as project managers and business analysts, who deal exclusively with the creation of organ-

isational culture and with the negotiations in the problem space of production. All of these types of

	9	 Azadegan and Dooley in Allen et al., 2011: 427.

	10	 Brooks, 1995: 182.

16

work are hard to break into sequences of established operations to create an assembly-line style pro-

duction. Fourth is the so-called Moore’s Law, a claim that the capabilities of hardware tend to expo-

nentially increase in capacity over time. A co-founder of Intel, one of Silicon Valley’s leading semicon-

ductor manufacturers, Gordon Moore, proposed this principle back in 1965, which since then has

proven to be one of the more persistent industry trends. The increase in hardware capacity creates un-

certainty around the costs of production, and indeed, the costs of computation itself. The con-

sequences of the falling costs of computation will be addressed more fully in Chapter 5, while Chapter

3 explains, via the operations research of production analysts Stefan Thomke and Donald Reinertsen,

what the risks are of carrying over the assumptions of mass manufacturing to the production of soft-

ware artefacts.11

The above reasons introduce a new sense of a disruption-based production which necessitates the use

of more flexible just-in-time, continuous, or other Agile techniques, that make it possible to renegotiate

when and what exactly is being delivered. This, however, does not mean abandoning the waterfall style

of planning entirely, since the waterfall continues to prove more reliable than Agile when balancing

multiple stakes across different departments. For example, in my empirical research, the waterfall style

was necessary when formulating the general production stages, as shown in Fig. 2, coming from deliv-

ery through design to testing and development. The waterfall is also applicable to larger strategic initi-

atives, such as programme and portfolio management, where the roadmap sequencing of processes is

important, as it acts to simplify the coordination of the company-wide production efforts.

Introducing empirical work
The case studies are based on my previous employment at a company referred to throughout as JX,

where my product management experience largely comes from. JX is an online media outlet publish-

ing daily briefings on a variety of cultural topics, focusing on young creatives. Throughout the years,

my duties at JX have shifted from designing the product in terms of its visual aesthetics to designing

the team relations in my capacity as a digital product lead. This was due to my growing practical ex-

perience, the progress of my PhD research and the deepening familiarity with the organisation’s insti-

tutional ecology. Having supported the organisation during its transformation to a fully online publish-

ing model in 2018 and throughout the switch to remote operation during the COVID-19 pandemic in

2020, I was simultaneously involved with many different aspects of the organisation’s software – a con-

tent management system (CMS) that the organisation had been running on.

	11	 Thomke and Reinertsen, 2012.

17

While the digital publishing platform was something that developers and editorial staff were dealing

with the most, my managerial activity was mostly connected to Atlassian Jira, a support ticket software,

which came to the forefront of my interest because of its specific approach to knowledge. While also

focused on writing, Jira appears different from traditional word processors because it is not a linear

writing tool. Each issue or ticket created in it becomes a knowledge node of its own, allowing it to col-

lect the information collaboratively by teams and later search and sort through it. In other words, Jira

acts as the epistemological tool for organising the knowledge captured by the collective use of its tick-

ets. Second, concurrently with the interests of my dissertation writing, my professional duties have shif-

ted towards DevOps, in such aspects as infrastructure and security issues which the organisation was

dealing with. While at first the work seemed exceedingly technical, upon further investigation it ap-

peared rather as a concise representation of business operations, written down in the lines of code.

Beyond informing my research writing, the more hands-on involvement with the software system made

me think more generally about the formalisation of the technology-positive discourse across the organ-

isation as a whole. This had organically led me to think topologically, both about production workflow

via the stream-aligned DevOps paradigm, and about organisational culture, in terms of its engage-

ment with the software and the communities of practice. Throughout the casework, the application of

the topological method made it easier to emphasise the continuities between the organisation’s differ-

ent departments, which helped production, editorial and executive teams to discover that many things

that previously seemed radically different have much in common.

Term definitions
Before starting the discussion of the thesis’s main argument, it is worth clarifying some of its core no-

tions, since they are frequently used in various sources and their meaning may vary. The section

provides a quick guide and plays the role of a lexicon, sketching out the contours of the terms without

going into much detail, which is provided later in the thesis.

System

The thesis generally adopts the widespread systems approach to production and defines the system as a

whole that functions by the interaction of its parts. The two types of systems are distinguished as cent-

ralised and distributed. The former type is hierarchical, less flexible, yet capable of developing great

production speed when no change to the process is necessary. The latter type is complex and agent-

based. The systems of this type avoid confrontation with the complexity of the software, yet may

present a difficulty for centralised control and are often governed to some degree in a distributed way.

Moreover, software as a general term is distinguished, for present analysis, from software system. The

former is usually used to refer to computation-based tools, applications and services in the general

18

sense. The notion of software as a system, however, aligns here with the Science and Technology Stud-

ies (STS) research programme in its focus on the specific relations that any technological system has

with the society it exists in, shaping it and being shaped by it in return. The research frequently refers

to the system under consideration as a software production system, which implies that it is not a user-

facing piece of software that the research is interested in, but in the software system that is used by the

production team – therefore the focus of research is shifted towards IT operations and how the process

of production itself is made possible with software. Another important feature of systems presentation

of technology is making it available for audit, defined as a control practice of reviewing and planning

the production activities orthogonally to the system’s complexity. Systems of traditional industrial man-

ufacturing are seen as centralised, while software production systems are seen as too complex for cent-

ralisation and tend to be governed in a distributed way.

Traction. Some of the attributes of the system that this research works with are control, momentum

and traction. Traction, for the present study, is used as a heuristic that estimates the effectiveness of a

system’s operation, and is expressed as a relation of change to control. As discussed in Chapter 1, com-

plexity increase within a system is constant and necessary, therefore in traction, the rate of change in-

structs how fast such increase happens, while the notion of control, following the definition of the his-

torian James Ralph Beniger, stands for the progression towards a goal within a system, conditioned by

its communication means.12 The loss of traction means that a given administrative mechanism is over-

whelmed by the escalating changes and results in systemic crises. I see such crises as characteristic of

the present software capitalist formation and refer to them throughout the thesis as software crises.

Momentum. Related to traction is the notion of momentum, introduced by the historian and sociol-

ogist Thomas P. Hughes as a tendency of a system to continue its development along the previously

defined trajectory,13 and adopted in the present research as a relation of the rate of change to the sys-

tem’s operational maturity. The fact that some systems acquire great momentum is not so much linked

to their size but rather depends on the density of the local knowledges contained in the community of

practice pertaining to the system, and the coincidence of the organisation’s design to the design of the

system. While momentum can be used to estimate the effectiveness of operations in the same way as

traction, the latter term makes it possible to account more prominently for the involvement of the ad-

ministrative mechanisms within production.

	12	 Beniger, 1986: 8.

	13	 Hughes in Bijker, Hughes and Pinch, 2012: 70.

19

Reverse salient. Also adopted from Hughes is the notion of reverse salient, which denotes a system’s

component which has fallen behind and out of phase of the overall operation. Reverse salients can oc-

cur in the system’s technology, as well as in its social relations, and are important for balancing the sys-

tem’s traction. In terms of technology, reverse salients are present at every system update and are usu-

ally addressed by such procedures as regression testing, which verifies that the new source code does

not conflict with the functioning of the existing application. In terms of the organisation’s structure,

the reverse salients may occur where the changes are dictated by innovation external to the system and

cannot be supported by the organisational ecology. This is the case where the system’s traction is stifled

by its momentum and can be a cause of software crises.

Conceptual integrity. The notion of conceptual integrity is borrowed from Brooks, who interprets

the software system as something that needs to be designed by one mind.14 The notion is important for

understanding the functioning of centralised systems, and therefore I refer to it throughout my thesis

as a focal point which makes it possible to compare the various aspects of centrally-managed systems

with the ones of distributed type.

Complexity

The phenomenon of complexity in software systems is defined rather narrowly for this research as the

epistemic opacity in the relations between the components of a software system. Such definition fo-

cuses the thesis on the specific problem within operations research, rather than having it measure up to

the broader discipline of complexity theory or its applications in computer science or management –

which nevertheless are the two disciplines which, to a large extent, define the matters of the present re-

search. The present specialised kind of complexity is close to the account of the sociologists of techno-

logy, Annemarie Mol and John Law, and necessarily deals with the things that relate but don’t add up,

with the events that occur but not as causes or effects of one another, and with the phenomena that

share the same space but are difficult to map into one set of coordinates.15

Complex system. The notion of a complex system in my research relies on the definition of the man-

agement scholars Steve Maguire, Peter Allen and Bill McKelvey, to see it as a whole which is made of

parts or agents, where such agents are conditioned by different forces that relate their behaviour in a

specific moment of time contingently to the states of other agents, resulting in complexity as a phe-

nomenon which presents patterns which are neither fully predictable nor fully random but rather can-

	14	 Brooks, 1995: 255.

	15	 Law and Mol in Law and Mol, 2002: 1.

20

not be explained in a parsimonious way.16 Complex systems, in the view of Steve Maguire, usually

have large numbers of dynamic components that interact in a non-linear and short-range fashion,

have feedback loops because of such interactions, and are ignorant of each other’s actions. Complex

systems have histories and tend not to be balanced.17 What is at stake here are the causes and relations

between the parts: where the states of the parts in technological systems are stable and independent,

devoid of causal relationships, the systems are seen as simple, and where the parts are interrelated, the

systems are seen as complex. Previous studies of this kind of complexity largely relate to self-organisation.

The latter term, in the explanation of the complexity scientist Melanie Mitchell, refers to the ability of

large numbers of a system’s simpler components to organise themselves without any central control,

and being able, through such self-organisation, to use information, to learn and evolve.18 In complexity

management studies, complex systems can be present on different levels, depending on the matters of

analysis: single organisations and business units, segments of value chains and decisions, or larger entit-

ies, such as industry sectors and whole economies.

High-complexity production. The thesis begins defining the process of production via Azadegan

and Dooley, who see it as the creation of goods and services, or, more specifically, a set of interrelated

operations aimed at transforming resources into outputs.19 Surpassing such definition, however, I am

interested in studying production beyond its outcomes and use the example of a software production

system as a means of high-complexity production encompassing the organisational context and the re-

lations between agents of various kinds. This enables me to fully grasp the outcomes together with the

production of the means of production. Due to the focus on operations, the production of software

here only concerns software systems that display the kind of complexity discussed above. Thus, the re-

search is not concerned with auxiliary tools and services which are sometimes referred to as middleware:

messaging systems or the application, database and web servers. Such services are tightly standardised

and usually considered a part of a wider ecology of deployment, where they function as connective tis-

sue between the operating system layer and the application layer. The focus here is instead on the high-

er-level entities, where it is not easy to follow the pre-selected templates. Moreover, the actual results of

production are of lesser importance for the objectives of this research. Rather, the priority is to think

about the production process in its connection to the problem space and its epistemology – how the

knowledge is collected, organised and put to use throughout the process. Generalised in these terms,

the research does not intend to uniquely apply to the production of software, but to production in gen-

	16	 Maguire, Allen and McKelvey in Allen et al., 2011: 2.

	17	 Maguire in Allen et al., 2011: 82.

	18	 Mitchell, 2009: 4.

	19	 Azadegan and Dooley in Allen et al., 2011: 418.

21

eral. This is possible not least because software at present constitutes, through the ubiquitous presence

of computation in all of its subroutines, an indispensable part of any production process, including in-

dustrial mass manufacturing.

Complexity and open source. In the context of such an interpretation of high-complexity produc-

tion, it should be mentioned why the present research is not directly dealing with any of the produc-

tion-related debates involving open-source communities. The general reason is that the state of open

source infrastructures and ethics is a rather particular case in terms of the market-organisation divide.

The situation here is reversed: the market domain here is failing to valorise, while the organisation do-

main is suffering from the lack of operations staff. This peculiar problematic is discussed in more detail

by the open source pioneer Eric Raymond and more recently in the industry reports such as the one

created by the researcher and writer Nadia Eghbal for the Ford Foundation.20 To Eghbal, the open

source has no shortage of programmers willing to write new code, even though the labour is unpaid.

Volunteer engagements are largely caused by the desire to strengthen one’s position in job interviews

and other reputation-related reasons, while a growing share of open-source contributions come from

the industry giants like IBM, Microsoft or Intel.21 Moreover, where the sponsorship is present, there ex-

ists a controversy about whether specific work is carried out because it is required or rather because of

the available funding. Due to the same voluntary nature of this sector, however, the funding alone does

not help tackle the main problem of open source, which is formulated as the lack of stewardship. This

lack is largely manifest in the projects being under-resourced on many fronts not directly related to cre-

ating new source code, such as strategy, planning, code reviews and testing, technical documentation,

as well as community advocacy and evangelism.22 The problem of tackling software complexity in the

sense of the present thesis is as relevant for large software systems produced by open-source communit-

ies as it is for large software systems produced by any other means. The present study, however, is

mainly interested in the topological solutions to complexity, such as intentional organisation design,

which means that the lack of stewardship and other problems that arise before the organisation design

stage can be initiated lie outside of the scope of this research.

	20	 Eghbal, 2016.

	21	 An analysis of 2017 GitHub data conducted by business analyst Frank Nagle finds that some of the most active

free and open-source software (FOSS) developers contributed to projects under their Microsoft, Google, IBM,

or Intel employee email addresses (Nagle et al., 2022: 58).

	22	 Eghbal, 2016: 125.

22

Market and organisation

While acknowledging that the domains of market and organisation are deeply intertwined and co-exist

in the real-life production context as mutually conditioning spheres of relations, it is necessary to ana-

lytically split them for the present research to clarify the complexity effects. In a more strict sense, how-

ever, what I here refer to as market and organisation is close to the two kinds of mediation discussed by

the Marxist feminist theorists Maya Andrea Gonzalez and Jeanne Neton as the spheres of production

directly and indirectly mediated by the market. Gonzalez and Neton come from the idea that a com-

mon feature of all labour is that it has to be validated as such within a society, regarding a specific

function it carries out within the process of production. Once socially recognised, labour can take the

form of activities either explicitly productive and paid, such as manufacturing or service labour, or as

more hidden and unpaid, such as domestic or care work. This, they argue, necessitates the split of la-

bour into the directly market-mediated and the indirectly market-mediated spheres, which are more appropriate

for identifying the role of labour in the production process than other distinctions – such as productive

and reproductive spheres – because they are unspecific to what kind of activity it is or its use value. In

the directly market-mediated sphere, the return on investment is primary. Therefore, the activities have

to ‘meet or exceed the going rate of exploitation and/or profit’ while in the latter they are ‘highly vari-

able in terms of the necessary utilisation of time, money and raw materials.’23

Aligning with the division of market mediations proposed by Neton and Gonzalez, I focus the market

mediation split, in terms of my interest in operations, on the character of exchanges among the indi-

viduals and collectivities. The directly market-mediated sphere, or simply market in the present re-

search, deals predominantly with value exchanges, such as of commodities produced independently by

otherwise unrelated entities – either individuals or firms. The indirectly market-mediated sphere per-

tains to exchanges that do not involve exchange value as its primary concern but are determined by

common needs and purposes, often in the form of security or compliance demands. I categorise these

as pertaining to the organisation – either the state or any other institution that operates as an adminis-

trative body based on the social contract, rather than value exchange between independent entities.

Such a distinction makes it possible to clarify the different aims the two domains pursue: the market

mediation is focused on the labour outcomes, while the organisation is concerned with the process of

production, which is entangled within the organisation’s discourse and cultural norms.

Business and the technology value streams. The professional DevOps literature implies a spe-

cific intra-organisational kind of value expressed in the effectiveness of operations which is closely re-

	23	 Neton and Gonzalez in Endnotes 3, 2013: 63.

23

lated to the stream, or a continuous flow of work tethered to a business domain or organisational cap-

ability.24 The two facets of the stream are frequently evoked as the business and the technology value

streams. As the DevOps practitioner Gene Kim explains, the business value stream is more general

and defines a series of any actions aimed at fulfilling the customer's requirements, while the technology

value stream is a series of steps that aim to deliver the customer request through transforming a busi-

ness idea into a technology-driven service.25 As Chapter 3 discusses further, the technology value

stream usually utilises a deployment pipeline – a production technology that automates the delivery of soft-

ware products to the stakeholders, and which is usually kept coincident with the business value stream.

Production design lifecycle

The thesis works towards a model, fully presented in Chapters 3 and 4, of the production process ac-

tivated by the circulation of knowledge between the epistemic infrastructure as code (EIAC) and the problem

space of production. The former is the infrastructure that describes the ways of knowing about the soft-

ware being produced, and the latter is the space where the problems are negotiated between the stake-

holders. The two parts are linked by deployment and integration. Deployment is a set of processes that

make the system available to the stakeholders. Integration is the assimilation of knowledge, understood

here as incorporating the results of problem negotiations back into the epistemic infrastructure so that

they become a part of the overall body of knowledge about the system. The deployment deals with the

four main types of system components described in the EIAC – the data, the host environment, the

configuration, and the source code, which are the conceptual devices that provide a new layer of ab-

straction in the deployment. Such abstraction makes it possible for DevOps to address the complexity

that arises from the issues of compatibility between the components separately from the writing of

code, testing and other production activities. The production as a whole can be referred to as the

design lifecycle because all of its parts co-exist in the process of continuous readjustment, with each it-

eration instructing particular details of the cycle’s design. The system traction metric can be applied in

the production cycle to understand whether the EIAC and the problem space adhere well enough to

ensure smooth and seamless circulation.

Once the product is deployed, it becomes available to the stakeholders, who take part in the negoti-

ations within the problem space of production. The thesis accounts for the three criteria. Requirements

are the descriptions of task-specific givens, goals and operators. Acceptance criteria are the definitions of

done, which are used to understand if the customer value has been delivered. The criterion of customer

	24	 Skelton and Pais, 2019: Ch.5.

	25	 Kim et al., 2016: 7–8.

24

value, in turn, is used to define the priority of task completion. The materials that circulate in the pro-

duction system cycle are referred to in the present thesis as knowledge inventory. Such inventory can be

of at least two general varieties. In deployment, inventory is the software components which are as-

sembled into the product, whereas in integration, the inventory is the new knowledge about the system,

and it becomes a part of the production system’s knowledge base in such forms as technical document-

ation or policies.

Agents and stakeholders

For the present research, the terms agent and stakeholder are close in that both refer to the individual en-

tities that activate the production lifecycle, with a key difference that agents can be any kind of entity,

human as well as non-human, while the stakeholder category here denotes business owners, produc-

tion personnel and product users, all of which are assumed to be specifically human individuals or col-

lectives. The use of either one of the terms is chosen based on the aspect of the context of their in-

volvement with the production process. Notably, the terms differ from the category of social class in

that neither stakeholder nor agent implies hierarchical distinctions or any sort of antagonism in inter-

relations. In terms of its formal definition, the term stakeholders is used to refer to the groups that could

be potentially affected by the changes in production. The notion of agent is viewed here through the

lens of complexity science, where it implies autonomy and self-organisation, and can refer to any entity

which has some sort of agency. According to the definition of the computational neuroscientist Péter

Érdi, agents are ‘autonomous computational units endowed with the authority for decision-making or

strategic decisions or … to make selections among possible strategies.’26 The management scholar Max

Boisot observes, in addition, that agents are characterised by their states, which change depending on

their interactions with other agents. Such interactions are usually regulated, and can show the agents

form associations either locally with their neighbours, or globally.27 Due to the agents’ capacity to act

both in larger assemblies and independently, their function can be approached in two ways. On the

one hand, the agents are the participants of self-organising processes that see them enter into tempor-

ary associations to address specific cases of complexity. In this sense, the agents should be approached

in terms of the effectiveness of their collective endeavours, which can be evaluated through such

mechanisms as audit. On the other hand, agents are individual entities largely involved with the assim-

ilation of knowledge, in which respect the system’s resilience to complexity effects is best evaluated

through such individual agent characteristics as cognitive load.

	26	 Èrdi, 2008: 307.

	27	 Boisot in Boisot et al., 2007: 8.

25

Chapter overviews
Given these main themes, the thesis is structured in the following way. Chapter 1 reviews the project’s

core literature sources by comparing the major foundational texts of the past with more recent think-

ing. This enables me to trace the changes that have emerged in the field since the primary software op-

erations research was done. The first section looks at the analysis of technology in terms of systems as

theorised by Hughes. The key problem here, pointed out by Hughes himself, is the control crises that

such systems appear to have as their recurring attribute. I turn, for the possible solutions, to some of

the recent complexity management theories that expand the systems thinking via the application of

techniques of distributed control. The second section examines the seminal work of Frederick Brooks.

The core problem that demands attention here is that any organisational dysfunction bears a direct im-

pact on production. The response is found in the DevOps stream alignment organisation design

paradigm, based on the theory of Brooks’s contemporary, organisation theorist Melvin Conway.

Stream alignment suggests the intentional organisation design that conforms to the desired topology of

the software system.

The third section of the literature review outlines the context of the research as software capitalism, a

term adopted from the organisational scholar Nigel Thrift’s notion of soft, or knowledge-based capital-

ism. The section establishes the grounds for a more substantial discussion of software capitalism in

Chapter 4 by explaining the three shifts that had historically accompanied the soft capitalist transition.

These are the shifts in epistemology, technology and methodology. Epistemological shift prohibits the

strategies’ reliance on the consistency and stability of outcomes and prescribes instead planning to be

done with uncertainty in mind. Technologically, the new computational capacities increase the com-

munication bandwidth and make the mastery of acquisition and assimilation of knowledge a compet-

itive feature of firms in the market domain. In terms of methodology, this means a growing interdis-

ciplinarity of production approaches, with DevOps being one such example. Alongside the three shifts,

one overarching principle of software capitalism is seen as the coincidence of the business value stream

and the deployment pipeline of the software system the business is running on. As the DevOps practi-

tioner and author Michael T. Nygard has it, ‘there’s no such thing as a website project. Every one is

really an enterprise integration project with an HTML interface.’28 The key importance of soft capital-

ist context, which is also featured prominently in Thrift’s work, is the notion of culture, viewed here

more specifically as the culture of software production within an organisational space.

	28	 Nygard, 2007: 278.

26

Chapter 2 describes the research method through the three problems that it has to address: the hetero-

geneous matters of investigation that cross the disciplinary borders between cultural and industrial re-

search, the uncertainty of the domain, and the study’s inevitable empirical grounding. In the first sec-

tion, the interdisciplinarity is engaged through adopting a compositional methodology (CM) framework, un-

derstood here as the study of the possibilities that a problem has in the process of its involvement with

resolutions. The section introduces the two general categories of CM at stake here: the epistemic infra-

structure and the problem space.29 The former of the two is explained as the suite of principles for or-

ganising what is known about the problem, while the latter is the domain where the possibility of the

problem exists. The problem is thus not something that is given, but instead emergent in the process of

the application of the method. Second, the uncertainty of the domain is addressed by bringing togeth-

er the compositional methodology, via the cultural theorist Celia Lury, diffraction, via Karen Barad,

and abduction, via the philosopher and logician Charles Sanders Peirce as well as the post-Peircean

philosophers of science such as Lorenzo Magnani.

The compositional method is here seen as topological because it concerns the study of matters in

terms of their proximities and borders, and builds upon the similarity of the methods in cultural stud-

ies and the topological treatment of operations in DevOps. The cultural topological method is under-

stood in terms of its view of software as a tool for the new formalism, which extends reasoning beyond

the limits of senses or bodies. Instead, such formalism replaces the actual relations with their quantitat-

ive representations, such as indexes, metamodels or networks. These representations are then analysed

in terms of their topology, relying on mathematical principles of the study of space, which allows the

theorists to describe more specifically the relations between particular cultural phenomena and their

changes over time.30 The second facet, team topology, is a set of principles for developing a sense of

strategic awareness of the evolving software system. To use the terms of the team topology paradigm

creator, Matthew Skelton, its principles are technology-agnostic and allow flexibility to adjust the team

configurations depending on the operational requirements.31 The research aims to bring together these

two elements of the method by shifting the focus from the culture in general to specifically the culture

of software production embedded within an organisational sphere of norms and values.

The method of diffraction affords the necessary degree of precision when a more nuanced dealing

with case studies is required. The production process is viewed as disruption-oriented, which means

	29	 Lury, 2021: 141.

	30	 Cf. Lury et al., 2012.

	31	 Skelton and Pais, 2019: Glossary.

27

that the problems are described through discrete support tickets. The tickets bear the symbolic func-

tion and can be flexibly organised to present problems in a variety of their different aspects by cutting-

suturing and re-assembling the tickets in a variety of configurations. In this situation, abductive model-

ling of the production cycle appears to be the most suitable approach because the processes of creation

and organisation of knowledge, as well as of problem composition are highly volatile and tend to

evolve in unpredictable ways, making the upfront knowledge or testing impossible.32 Therefore, both

diffraction and abduction are included in the compositional methodology: the former as the view of

the queer performativity of the software production labour,33 and the latter as the way of creating op-

erative models for production in situations of high uncertainty.34

Chapter 3 discusses how the compositional methodology notion of epistemic infrastructure is used in

the topological treatment of operations in DevOps. This is discussed in three sections. The first section

addresses the deployment pipeline as the topological machine. It understands the automatic produc-

tion of space as a maximally auditable process and explains it through a computationally-informed de-

livery of the software components. The second section discusses the team topology principle, focusing

on the benefits offered by the stream-aligned organisational pattern over the more traditional division

into functional team types. Section three deals with the specifics of the circulation of knowledge in the

software production system. It discusses in more detail such dispositions as the structural coincidence

of organisations and the code of the software systems they produce, the tendency of software product

to become a process, and the propensity of systems to disintegrate.

Chapter 4 zooms in on the specificity of negotiation of meaning in the problem space of production,

which it finds to be intrinsically linked to the practice of audit. The chapter opens with an interlude

that explains the empirical part of my research where I first encountered this challenge, and then turns

to the discussion of the main facets of establishing the conditions for auditability. The first section

defines collectivity in relation to the software production system, including the negotiations that occur

in the intersection of the communities of practice and the organisation domain. In this context, the

chapter briefly addresses the notion of affect as the deciding factor of much of the organisation’s com-

munication, which here needs to be addressed in terms of the risks it presents to the integration of

knowledge, and more specifically, to audit. The second section aims to unpack the disruption orienta-

tion of the complex workflows through the continuity of dysfunction which, it argues, is a characterist-

	32	 Peirce, 1955: 151.

	33	 Barad, 2011.

	34	 Magnani, 2009.

28

ic trait of most software systems. The dysfunction means the inability to fully repair the software sys-

tem, and the necessity of treating its multivariate breakages as cases described in support tickets. The

third section looks at the support ticket itself as a focal point of the disruption-oriented workflow that

makes it possible to bring together the various criteria of production and enable the problem negoti-

ation.

The ticket, which is a complex tool used in a variety of production contexts, appears here in only one

of its aspects pertinent to the discussion of planning and review, as the audit tool. The practice of

audit is discussed as distributed in its nature, due to the force of complexity that prevents it from devel-

oping a hierarchy and evolving around a central axis. The audit instead focuses on the control of con-

trol, that is, operating not on the data itself, which, due to the complexity of the domain, cannot be

audited directly. Instead, audit requires a specific environment prepared for it – in the case of present

research, a software production system – which means that it is capable of verifying only what such an

abstracted view permits it to verify. This shortcoming of the systematic approach is taken into further

consideration in the thesis’s closing chapter.

The aim of Chapter 5 is to unpack the consequences of the complexity of the production system that

are faced by its governance. I suggest that, like audit, governance also tends to become distributed un-

der the pressure of the extreme complexity of the production context that it needs to regulate. The

complexity effects are aggravated by what is referred to here as the falling cost of computation. The

depreciation of hardware, which implies that businesses incur lesser costs for their compute, is evalu-

ated here not only in terms of the opportunities, which is what professional DevOps sources typically

focus on, but also the risks that organisations face, due to their inability to adapt to the continuous

change and exponential surges in complexity of their software systems.

Summary
Summing up the introduction, the argument of this PhD thesis can be outlined as follows. Software

capitalism creates profits by keeping the software in a state of perpetual disrepair. The valorisation of

disrepair works by increasing the complexity of software products through either deferring the integra-

tion of tacit knowledge or employing explicit knowledge to create new abstraction layers. The organ-

isation, in its effort to maintain the complexity equivalent to the software system, risks becoming un-

able to control and audit the production process. Evolving in the intersection of the market and organ-

isation, production acts as an interface for resolving the contradictions between the two domains by en-

abling the circulation of knowledge between its two parts, the problem space of production and its epi-

stemic infrastructure. The two main circulation moves here are deployments and integrations. Since

29

the deployments largely operate through freely scalable symbolic manipulations, and the integrations

deal with embodied and affective tacit knowledge practices which are not as easy to scale, the organisa-

tion’s governance mechanisms evolve to become distributed and adaptive. Starting from a general con-

cern that software production teams usually suffer from unnecessary complications that the organisa-

tional protocols introduce to their work, the research question grows to become entangled with epi-

stemological and methodological aspects of production. Towards the end of my PhD research, I

sharpen my question to ask, what kind of approach the production needs to develop towards its epi-

stemic infrastructure to plan and control in the uncertain and disruptive situation created by the soft-

ware complexity?

30

Chapter 1. The software production system

The chapter’s goal is to set up the overall context of this thesis as thinking about production in terms

of systems theory. Such an outlook seems important because the disciplines that the present study

works with, from management to organisational to cultural studies, predominantly engage with pro-

duction in terms of systems. More importantly, it is necessary to introduce the systems optic in the be-

ginning to grasp some of the notions that I use as building blocks in the later chapters: traction, mo-

mentum, reverse salient and conceptual integrity. Focussing on the systems of centralised type,

Chapter 1 explores their benefits and shortcomings to prepare for the discussion of distributed systems

in later chapters. I split the discussion into three sections. I begin by arguing that whether organised

centrally or in a distributed way, the balanced view of the system needs to account for the system’s

traction, for the present study defined as the relation of change rate to the ability to control. Then I

turn to the concerns associated with the loss of traction and the notion of software crisis that it brings

and ask what kind of solutions the systems approach had offered to the crisis in the past. Here the dis-

cussion evolves around the two early computer scientists that contributed to organisational thinking in

software production, Frederick Brooks and Melvin Conway. It explains the popularity of Agile meth-

odology, now present as the industry standard in most IT organisations, by its flexibility, which allows it

to deal with software complexity and maintain traction.

The chapter concludes by addressing the broad socio-economic context of current software production

as software capitalism, which I define as a culturally-informed capitalist formation where shared know-

ledge is the primary source of value, and every firm is seen principally as a technology firm. The dis-

cussion of software capitalism looks at the three of its principles relevant to the present research. First,

software can be construed simultaneously as a service and as a product, and involves labour which is

both value-generating and serves the interests of the culture of software production. Second, such cul-

ture lies outside of the capitalist relation of value exchange, yet cannot be entirely disregarded from

the study of such relations because it plays an important role in maintaining the system’s traction.

Third, the software capitalist production model tends to valorise complexity – in other words, it wel-

comes the disrepair because the disrepair creates interruptions which, in turn, allow the creation of

new cases and expand the scope of production, which concomitantly expands the capital circulation

with the potential to increase the financial gains.

31

Traction in technological systems
The interpretation of production in terms of systems is the usual way of developing or supporting soft-

ware throughout the IT industry. It is necessarily adopted in the present study because the operations

and production sources under investigation rely on such a systems view in all their activities within the

production process. The parameters at stake here are the rate of change in a software production sys-

tem’s traction as the ability to control it. Traction sees the centralised system as a matter of active con-

struction with the goal of creating a unified and coherent whole available for command and control,

and the distributed system as a unity subordinate to the distributed governance and self-organisation.

Management theorists Arash Azadegan and Kevin Dooley summarise the difference between the two

types of systems through their approach to innovation and agent motivations. The centralised ap-

proach focuses on the resources and infrastructure relevant to a particular problem-solving event in

proximity to the controlling mechanism. What is collected within the purview of control is seen as a

valid contribution to the problem. In distributed systems, the agents, on the contrary, have more free-

dom to choose their location within the problem space and therefore can specialise and diversify in an

ad hoc manner in relation to the problem space modifications.35 In the distributed model, no priority is

given to adherence to the core strategy, which empowers the self-organised units to discover new creat-

ive solutions.

In terms of motivation, centralised systems stimulate the agents by setting clear goals, requirements

and responsibilities. In distributed systems, on the contrary, enthusiasm comes from the alignment of

tasks to skills and reputation. The distributed approach is usually seen as a better fit for the spheres that

are difficult to position around the centralised control. This is relevant to supply chain management

and, pertinently to the present research, to complex production situations with constantly changing

contexts, such as in software development. Considering the two types of systems in their application to

production, the task becomes to understand the different treatments that software complexity gets in

the two positions. This section examines the centralised approach in terms of the proposal that the

traction in centralised administration tends to reduce as the systems grow progressively complex and

become harder to change and control. Later chapters address other meanings of traction, such as the

property of effective differentiation and integration of problems and assuring the auditability of pro-

duction in the context of ongoing change.

	35	 Azadegan and Dooley in Allen et al., 2011: 427–430.

32

Change process triggers and responses

The systematic approach to technics, equally common in the history and the sociology of technology

as well as in professional operations sources, makes it possible to carry out the analysis of harmonious

technological wholes comprised of specialised separate artefacts and people, complex yet open to re-

quired planning, quality control and other practices of audit. The analysis lends itself to the rational-

isation of technical and organisational complexity that permeates all aspects of a social contract that

the engineers, scientists and operations staff enter into for the duration of technical work. One ex-

ample of such analysis is utilised by the historian Thomas P. Hughes, who in the 1980s had pioneered

the application of systems theory to study technology. A technological system in this approach is per-

ceived as a goal-oriented set of physical artefacts and concepts which shapes society in the same meas-

ure as it is shaped by it. The challenge is to consider technical and social events in their mutual evolu-

tion without leaning towards either a technologically- or a socially-deterministic position. The com-

plexity of the system appears in this model linked to a system’s functioning, with a caveat that it is not

the sheer number of functions performed that contributes to the system’s complexity, but rather the

system’s heterogeneity, which then leads to the definition of a complex system as a system where con-

nections do not form an identifiable pattern.36

The two neighbouring terms, technical and technological, refer to the system’s scope. Technical refers to

phenomena and processes solely concerned with physical artefacts and software. Technological is a

broader term that refers to a whole comprised of organisational forms and technical functions.37 A

technical system denotes the system’s operation in the sense of its practical expression, while a techno-

logical one specifically addresses the associations between purely technical aspects of the system and

the organisational entities linked to them. Organisational entities may include manufacturing firms,

utility companies, financial bodies and other institutions taken in terms of the technological knowledge

they have. The knowledge comes in different forms, including records and protocols, such as technical

documentation or legislation, or various communication patterns, such as teaching programmes.38 The

associations between technical and organisational parts are dynamic in terms of their continuous

movement from one act of problem-solving to another in the presence of human actors who invent,

design and develop in a repeated sequence. In this relation, the production design lifecycle can be ex-

plained with DevOps as a pattern of mutually inflicted change that happens in the IT company and

the software product through the circulation of knowledge between deployments and integrations. The

	36	 Hughes, 2000: 454 citing Moses.

	37	 Hughes in Bijker, Hughes and Pinch, 2012: 74–75.

	38	 Ibid.: 45.

33

technological system acts as the mechanism for creating and resolving the problems that emerge in the

process of applications of methods, however, inevitably adding complexity with every iteration. Innov-

ation tends to follow the rotary movement of the technical and the organisational parts following one

another: product management is inclined to select the technical components that best support the ex-

isting system structure or the organisational form, and the organisation inhabits its technology through

communications.

It should be noted that not all change in systems, organisations or software systems end up with com-

plexity increases. For example, in terms of strategy, decommissioning the system’s components or fea-

tures may result in lessening the complexity due to the exclusion of these parts from the production

workflow. In the sphere of productive activities, some work intentionally aims at reducing complexity,

such as refactoring – the process of optimising the existing body of code by altering its internal structure

without changing its external behaviour. The present study, however, is interested in the reasons for

complexity increase, and largely is not focused on the changes that simplify things, following up on the

concern of Hughes that in real-world production most changes tend to add to complexity rather than

reduce it.39 The tendency for increases in technological systems with every change, in terms of com-

ponents, as well as staff employed, is fundamental to the complexity problematics and is something

that this thesis encounters in different facets which are dealt with as they arrive.

In this sense, looking at Hughes is informative, as it allows for tracing the trends which software sys-

tems have in common with the overall category of technological systems. One of these trends is a

propensity to overcome the growth pains by tracking the increases in the system’s load via the load

factor, which is frequently followed by diversifying the resources used to reduce the utilisation expenses

– an economic mix.40 The load factor measures the ratio of average output to the maximum output,

which makes it possible to adjust the supply during peak demands, for example, the use of electricity at

different times of day, avoiding system overload. In cloud architecture, this factor is also used and is

known as load balancing. In a similar vein, it describes how the available virtual machine instances are

managed to reduce the amount of time required to serve the user requests, such as in the peak times of

software use. Chapter 5 will return to the DevOps connotation of load balancing in its discussion of

cognitive load. In the second instance, the economic mix utilises the load factor readings for cost op-

timisation. The steady base load is usually carried by the most economical means, and the peaks activ-

ate the less efficient ones, or, put differently, the costs are higher for the times when the service is in

	39	 Hughes in Bijker, Hughes and Pinch, 2012: 50.

	40	 Ibid.: 65.

34

most demand. While the load factor makes it possible to track the usage dynamics, the economic mix

acts as the driver for change: when the system experiences higher demand, it undergoes more stress,

and the processes are directed at expanding the system.41 The reverse dynamic is also possible – when

the demand is not enough, it becomes economically unviable to support the exceedingly large band-

width, and thus the operations look to decrease the capacity. How effective operations can be in their

modification attempts is addressed by another system’s attribute, which is important for the present

case: the system’s momentum.

Momentum and balancing regression

While large systems are often more difficult to modify, the inertia, or momentum, is not a sign of the sys-

tem’s scale, but rather its maturity. As it is understood in the present study, momentum is a factor simil-

ar to a later notion of team velocity used in Agile. Where velocity measures the rate of completion with-

in a particular situation of production, momentum is the rate of change within the system as a whole.

Slowness in response to change does not always present a problem – in fact, a system can work ex-

tremely rapidly precisely due to its great momentum, supported by the organisational production cul-

ture, highly specialised teams or a workflow which is tightly adjusted to the production goals. Yet, since

centrally-organised systems largely maintain control through approximating complexity with standards

or integration of operations into the system, the overall structure may appear fragile when the problem

criteria change or do not follow regular patterns. As Azadegan and Dooley observe, ‘standardisation

and integration can lead to reduced flexibility… [which] may lead to an inability to effectively respond

to changes in the environment.’42

Throughout my fieldwork as a product lead, I have encountered that due to the effects of momentum,

some of the organisation’s top-down directives, even where they concerned minor issues, could not

have been easy to carry out immediately. As an example, in one of the weekly departmental meetings,

the stakeholders had voiced a concern that the last week's comments were still not addressed. From the

executives’ vantage point, the matter was carrying out a task pure and simple – which in this specific

case was a retrieval of a quote for a new service that third-party contractors were planning to provide.

However, the fact of the inability to do this task during the week made me reflect more broadly on how

the production flow could be organised for prompt response to changes that required immediate ac-

tion. After much consideration, I came to believe that the core problem was the missing technology ex-

ecutive role in the organisation’s hierarchy that prevented the production department from reporting

	41	 Hughes in Bijker, Hughes and Pinch, 2012: 66.

	42	 Azadegan and Dooley in Allen et al., 2011: 421.

35

its activity to executive staff in a significant way. Indeed, at that time, the organisation did not have an

executive level of technical expertise that would be sufficient to decide on the strategic delivery of the

website’s availability infrastructure. This, in turn, created a situation where the missing decisions on

technology-based issues had to be filled ad hoc by the production team. Since effective decision-mak-

ing was not entirely possible, due to the missing communication links, the production team struggled to

resist the force of momentum, which dictated that the work carried out each week was scoped and

scheduled for execution weeks in advance.

In Hughes' terms, for the system to acquire momentum, the technical and social factors have to be bal-

anced: the high adherence of the system’s social construction to its technological functioning creates

high momentum and conversely, where either of the two factors pulls away, the momentum reduces.

Some other factors that contribute to momentum are the sunk costs and assets, as well as the extent to

which stakeholders of different forms, such as scientific or engineering communities, are invested in the

system. An important outcome of my fieldwork has been that production team members tend to treat

the benefits of momentum, without explicitly referring to it, as their basic production tool, which was

mainly manifested in a more intensive style of communication at the initial phase of the project. For

example, when the newly on-boarded team included players who did not know one another and were

not familiar with the system, their first instinct was to have frequent and detailed discussions about the

various technical aspects of the system among themselves. After the initial period of high bandwidth

communication, I was registering a simultaneous increase in production momentum, and a shift in

communication to a more casual reporting on the already established ways of dealing with new issues.

Thinking about this self-organising tendency made me consider the difficulty of controlling it, which is

addressed further in Chapter 5, and whether a notion of a system's traction, as the ratio of the system’s

complexity to the ability of its administration to control it, could be related to the system’s momentum.

Hughes makes a distinction between innovation and invention as the primary causes of systemic

change, treated differently by the bureaucracies, standards and flows of funding. Such institutional

formations, he notes, create pressure for the system to reject the radical changes that do not conform to

the existing operations, by perceiving the new features as technically crude or economically insecure.43

Due to the numerous vested interests, large organisations are more likely to adopt the less risky path of

innovation, where innovation is the process of change that upholds the existing status quo and plays

along with the momentum of the system. On the contrary, changes of the inventive kind that demand

disruptions to the ways of present protocols are generally met with resistance and are construed as det-

	43	 Hughes in Bijker, Hughes and Pinch, 2012: 53.

36

rimental. The invention is a radical change, and, unlike innovation that seeks to find its place within

the existing system, either requires a new system to be created or gets lost, falling out as the mature sys-

tem moves on carried by its inertia. Innovation contributes to the system’s overall tendency of growth

and can be an outcome of activities that formalise the relations between the technical system and the

domains of the organisation and the market. Where invention appears unexpected and comes with

more risk of creating reverse salients, innovation enables planning since it can be recognised from the

inside of the internal corporate structure. The ability to foresee the changes that innovation is going to

bring also works to strengthen an organisational culture through reinforcing situated knowledge. In a

centralised production system model, the risk of not being able to control increases together with the

expansion of the problem space of production, and the efforts to compensate for the lack of control

may lead to complexity surges that echo throughout the system. This happens due to suboptimal ad-

ministrative strategies, such as overpopulated design efforts, discussed later in this chapter.

While the organisation and the technological system evolve mutually, where technical momentum is

larger, the system shapes the organisation more than being shaped by it. The continuities established at

the earlier stages of the system’s development become reinforced, creating a shift in the cultural fabric

of the organisation that brings a tendency towards technological determinism, or prioritisation of

technological requirements over the organisational strategy, which may welcome innovation that sup-

ports the existing continuities, simultaneously precluding the system from any radical change that does

not contribute to systems’ direction of movement or challenge the status quo.

The notion of traction helps to understand how the complexity spikes increase the problem space and

thereby stifle the organisational control, by bringing together the aspects of complexity and mo-

mentum pertinent to administrative control. The loss of traction occurs in the moments when the

technological base has already changed but is still entangled with an old model of administration (Fig.

1). The circle in the left part of the diagram signifies the position of the firm’s administrative approach

relative to the market distribution techniques, represented by the circle on the right, with the distance

between the two marking the boundaries of the problem space. The traction is at its best when the two

are located on the horizontal line and are in full balance. Whenever a new approach is introduced in

either one, the traction is negatively affected, the problem space expands and the complexity increases.

This chapter predominantly focuses on traction in the context of a system as a unified, centralised and

coherent whole enforced by the system builders, which, however, happens at the expense of diversity

and pluralism.44 Chapter 5 returns to the traction diagram to think about it otherwise, from the stand-

	44	 Hughes in Bijker, Hughes and Pinch, 2012: 46.

37

point of distributed control, which makes it possible to equalise the audit practice with the fluctuating

factors of processing and transmission of knowledge in the market domain through implementing the

global protocols of administration within the situated knowledges on the level of teams and individual

agents.

 

Fig. 1. Traction balance and the problem space.

Hughes refers to the topological ruptures caused in centralised systems by invention and innovation as

reverse salients – a term otherwise used to refer to effects similar to a protrusion in a geometric figure. In

system analysis, the term refers to the components that have fallen behind or are out of phase with the

others, and thus appear as limiting the potential, causing frictions or otherwise hindering systemic effi-

ciency. In a technical system of physical artefacts, engineers may change a characteristic of a power

generator to improve its performance. This, in turn, requires a change in the motor that will utilise the

improved power supply – meaning that the motor becomes a reverse salient at the moment the power

generator is changed, and remains reverse salient until its characteristics – resistance, voltage, or am-

perage – altered according to the new system environment.45 In other words, Hughes observes that in-

novation in fact, is capable of preventing the system in its entirety from achieving its development

goals, whenever the development of any of its parts is insufficient. Furthermore, reverse salients are

likely to reduce traction, because some of previously relevant production knowledge now has to be re-

placed, both technical and administrative, to warrant backward compatibility of new components,

along with their audit.

	45	 Hughes in Bijker, Hughes and Pinch, 2012: 67.

38

The roots of momentum are never uniquely technical or made explicit in the organisation’s policies.

The problem space of production evolves alongside its epistemic infrastructure or the abstract schema

of what is possible to know about the problems. Yet, because problems always come as a result of

stakeholder negotiations, the emergent knowledge reflects the variety of meanings present in social

groups, tangential to the technological system. The negotiation proceeds through diffracting – cutting to-

gether-apart, to use the term of Karen Barad, explained later in this chapter – a variety of interests,

resulting in something which may not fully benefit all parties. In the present case, this means that the

complexity spikes in the moments when the stakeholders on either the organisation or the market side

find it in their best interest to go to the contrary of what could seem like an appropriate technological

solution. Hughes observes that the likelihood of such a situation increases in mature technological sys-

tems, where the need for an organisation may often be a reverse salient.46

What follows from this is that momentum is a quality not of the teams themselves, but of the produc-

tion situations where the systems of high complexity meet the rigid administrative structures. For ex-

ample, in my empirical work, the momentum tended to come from whichever part of the system had

higher complexity: while the team itself was small and could negotiate without much difficulty, it

would still have a lot of momentum, since the organisation’s publishing platform it was dealing with

was already a complex software product. Moreover, momentum spikes, whenever software complexity

is added to compensate for the lack of flexibility in the administrative form, or, in other words, the

technologists, create unnecessarily complex technological solutions to still be able to deliver a function-

ing system that creates great profits, albeit at greater costs. A production practice that ensures that pre-

viously implemented functionality of the system continues to work after introducing new features,

known as regression testing, due to its high cost, can technically buttress the momentum. Regression can

also be explained in terms of managing dependencies and can stifle the change because of the high

amount of concomitant adjustments that will have to be made to neighbouring components after the

proposed change has taken place. For example, if the Continuous Integration workflow is already real-

ised through the use of GitHub in combination with third-party applications and a new Continuous

Integration method becomes available, such as by using GitHub alone, the organisation may resist im-

plementing the new method, even though the new method is easier to use. This will happen whenever

the costs of making a change in the workflow and the associated regression testing are disproportion-

ally risky and costly for the organisation’s operations, which can be the case for large and small teams

alike.

	46	 Hughes in Bijker, Hughes and Pinch, 2012: 67.

39

On the organisational side, reverse salients could be identified through some of its antipatterns, – tend-

encies which serve to the detriment of the system’s functioning. The two pertinent antipatterns – the

team overpopulation and delegation at the expense of communication – are emphasised by the com-

puter scientist Melvin Conway.47 This process mirrors the regression in interpersonal communications,

manifest in a ‘this does not work for our real systems’ kind of reasoning that business owners are in-

clined to put forward when confronted with production optimisation proposals. Such an interpretation

of a system’s momentum deals with sunk assets and sunk costs, understood in terms of organisation

and cognition theorist Herbert Simon, according to which such entities equally appear in the form of

the organisation’s communications as well as brick-and-mortar assets, exerting a pressure of previous

decisions that narrows down the options for future choices.48 Chapter 5 will return to this aspect of

momentum and its impact on system traction in terms of implied, or tacit, knowledge that it is linked

to.

My empirical research has provided evidence that a strong link between the business value stream and

deployment pipeline improves traction by making technological change easier to implement. Seeing

the product both in terms of its business value and its entanglement with the technology has allowed

me to introduce the changes despite the force of momentum pulling back into the existing status quo,

specifically in the cases where I acted as a liaison between the organisation and the third-party IT ser-

vice providers. My role at improving traction here meant that the work done by external contractors

was not viewed as a ready-made product that is delivered when it is complete, but rather as a service

that proceeds through the processes of regular communication and incremental steps of realisation so

that when the new component or feature is complete, they are fully integrated into the body of the ex-

isting system. Therefore, I had to change the approach to my work with contractors to become a more

explicit ambassador to represent the interests of the business. In this capacity, and having changed my

job title to product lead, I was able to assess production situations in terms of the relation between the

business value stream and the technological idiosyncrasies of the software system. This allowed me to

find possibilities to promote technological change, for example, the realisation of a new search inter-

face or migration to a new infrastructure, in the context where the habit of doing things in a certain

way – the momentum forces – would otherwise disallow introduction of any new features for the sake

of maintaining the existing status quo.

	47	 Conway, 1968: 31.

	48	 Simon, 1997: 148.

40

The crisis of control and the software crisis

In addition to change events and the attributes of velocity and momentum as discussed above, the no-

tion of control is also crucial for understanding the system’s traction dynamic. What is important for

the notion of control, in Beniger’s sense, as the activity of the goal-oriented persuasion, is that it is in-

trinsically linked through its history and etymology to the dual process of information processing and

reciprocal communication between the controllers and the controlled.49 In terms of information pro-

cessing, the controller deals with comparing new information inputs to the existing database records,

or, in DevOps, the policies that describe operations in their ideal shape. To do this, reciprocal commu-

nication is important, because it informs the control mechanism about the present condition of the sys-

tem, and, reversely, transmits the directions the system needs to evolve according to those descriptions.

Assuming the ideal feedback condition in which the channels of communication themselves relay the

instructions perfectly, the effectiveness of control mechanisms in a production system will be defined by

how well the receiving end is influenced. In other words, how fast operations and production teams re-

spond to the demand for changes, and how well the forces of velocity and momentum are utilised to

the ends of the predetermined goal.

The traction crises occur between the rate of change and the temporary dysfunctions, as illustrated in

Fig. 1, due to the various deficits and excesses that happen as the technology works its way through the

discontinuities between its components. The discontinuities either find their outcomes via the negoti-

ations in the problem space or become crystallised in the system’s epistemological infrastructure. Link-

ing traction to the system discontinuities in this way helps to provide a common motif in the various

historical meanings of the software crisis. It was first articulated at the NATO Software Engineering

Conference in 1968 as the crisis of demand for new software, which outstripped the capacity of the

combined engineering workforce to create it.50 However, the demand for new code since that time has

never reduced and has arguably become larger because later engineering had to deal not only with

creating new code, but also with the support of the increasing body of existing code, and the compat-

ibilities between the old and the new. Additionally, the notion of the ‘code’ itself is different in the

component-based production deployments, which contain, besides the source code, the environments,

configurations and databases. As the professionalisation of DevOps has brought together development

and operations in the mid-2000s, it may have become possible to observe a somewhat reversed dynam-

ic in the software crisis. Instead of demands for new software exceeding production capacity, the pro-

duction capacity begins to act as a limit to what the computation has to offer. Looking at such changes

	49	 Beniger, 1986: 8.

	50	 Randell, 1996.

41

within the software crisis, one thing that may be observed as a constant is that the production and ad-

ministration techniques always lag behind the rapidly evolving condition of technology, which continu-

ously threatens to erode control. In this capacity, a software crisis is thus a kind of control crisis which

exposes the audit techniques to situations of extreme uncertainty, which causes any events of planning

and review strongly rely on all the possible means of codification and abstraction following the parsi-

mony principle of agent knowledge acquisition, as Chapter 5 will explain further.

Such a control-based understanding of the software crisis makes it visible that centralised control is of-

ten not feasible, as it would involve too much overhead in audit activities. The overhead, to Azadegan

and Dooley, is created by the centralised administration tendency to functional determination, or pri-

oritising the knowledge and inventory that has been developed within the sphere of centralised control

and to neglect what has been done outside of it.51 This makes the system progressively hard to audit as

the rate of change grows because the centrally adopted epistemological regime may not always be con-

sistent with the infrastructural changes that occur in other parts of the system. In centrally organised

projects, agents are expected to follow a predetermined sequence of project steps, such as knowledge

acquisition, approval of requirements and execution. The motivation here lies in common goals and

the clearing of milestones in the project’s roadmap. Distributed control systems pay equal attention to

a more diverse range of initiatives, due to the difference in motivation of its agents. Here the respons-

ibilities are less deterministic in terms of project metrics and agents have more freedom, which pro-

motes a more tight local alignment between the agent’s skills and reputation and the tasks that the

agent carries out.

In the centralised production process, it is therefore easier to invest in upfront planning, with consecut-

ive rolling out of design and testing in a stage-gate way which makes it possible to audit the require-

ments, design and production of each system component, along with their integrations. As we have

seen, however, such division into steps does not work well in all production situations. The distributed

approach, instead of staged sequencing, relies on the bottom-up initiatives of agents who specialise

and diversify the production events within a system, which allows access innovation across the whole

spectrum of ideas that exist within the system and intensifies the circulation between the problem

space and epistemology, ultimately improving the system’s traction. Managing the software crisis in the

real-world production context implies maintaining a balance between full centralisation and full distri-

bution. This is required since, on the one hand, full centralisation risks stalling production due to the

impossibility of managing all of its aspects. On the other hand, full fragmentation brings the risk of

	51	 Azadegan and Dooley in Allen et al., 2011: 426.

42

the inability to follow any organisational agenda due to the excessive fluctuation of sub-processes car-

ried out by agents, without recourse to an overall goal. Maintaining such balance is a matter of con-

stant negotiation between the stakeholders in the context of change created by such factors as the fall-

ing cost of computation – matters that are discussed further in Chapters 4 and 5.

Incremental delivery in software production systems
As the previous section has shown, analysing technology in terms of centralised systems is fruitful for

specific cases, such as mass manufacturing situations, because of the factors such as easier accountabil-

ity, repeatability of contents and ability to plan. The question now arises, what kind of benefit might

such a view offer to the study of software systems? Should IT production be analysed in terms of sys-

tems at all, or should it rather use some other criterion that would place it orthogonally to complexity

effects? Starting from the foundational observations of Frederick Brooks that the essential complexity

of software cannot be done away with, and comparing this to the treatment of complexity in Agile

methodology, the section finds that a way of mitigating the complexity effects should not be sought

within the system or outside of it. Instead, it is possible to grasp the software system and the organisa-

tion producing it as a unity, so that it is possible to understand the mechanisms that iteratively codify

and abstract complexity to circumvent it within such a unity. Furthermore, while the systematic ap-

proach is well suited for strategic thinking when it comes to tactics, it may be favourable or even neces-

sary to split the software and the organisation along the lines of communication, as discussed by

Melvin Conway, the computer scientist active at the same period as Brooks.

Since the early software production efforts carried over the strong assumptions of mass industrial man-

ufacturing, their failures can be attributed to two key features. On the one hand, the fact that the soft-

ware system tends to reflect the problems of the organisation it interfaces with or Conway’s Law. On

the other hand, the organisational momentum at play in IT organisations does not allow them to ad-

apt to rapid changes in technology. Brooks puts these two factors together when he claims that there

can be no silver bullet in software production, that is, no one measure that would improve ‘productiv-

ity, reliability and simplicity’.52 According to the first factor, any complexity, even the one essential to

the system’s functioning, always signals the inconsistency between the software requirements, which are

constantly changing, and the organisation’s communications. Such inconsistency is a dysfunction that

makes necessary the next round of production efforts in the system’s oscillation between the disrepair

and the integration of the system in its minimally deployable and auditable state. According to the

second factor, however, this lag is unavoidable and essential, since the organisations are entangled in

	52	 Brooks, 1995: 181.

43

their communications and have a certain momentum that does not allow them to change their com-

munications as quickly as to adhere to the requirements. Therefore, the software system has to be ad-

justed to the organisation’s structure, resulting in a more complex software system on the one hand,

and hiring more staff on the other.

Essential and accidental complexity in organisation design

Since it is the function – and not simplicity – which serves as a measure of good design in software sys-

tems, the ultimate goal is not the simplicity alone at the expense of function, and therefore technical

complexity is not a problem all by itself. It is, rather, an essential property of the software system.53 The

systems’ function requires the heterogeneity of composition, and good design is a matter of finding a

ratio between the ease of use and specifications met. A software system necessarily compounds diverse

components, which may not have anything in common, yet can expand indefinitely and go into minute

levels of detail due to their abstract nature – such property affords no limits to how complex the system

can be, which is radically different from industrial production, where complexity is limited by the ma-

terial nature of resources. In a situation where some part of complexity cannot be eliminated, yet the

control has to be maintained, reducing the parts of complexity that are caused by non-functional

factors, such as performance issues or suboptimal infrastructure, is a high priority. Frederick Brooks

was the first to theorise the essential and accidental kinds of complexity. In the accidental complexity,

Brooks distinguished the accidents of conformity, changeability and invisibility.

Software conformity and changeability are beyond the scope of the present research and characterise a

software system’s involvement with the stakeholders. The changes can be imprinted onto the system by

the institutions and by economic, political and other systems it interacts with.54 Beyond those interac-

tions, the software system faces the requirements that come from its cultural involvement by way of its

applications, relations between its users, and the limitations imposed on it by its hardware. Complexit-

ies of this kind are largely accidental because, as Chapter 4 discusses further, it requires great discip-

line, reinforced by the organisation’s policies, not to add features that do not serve the primary design

idea of the system. The invisibility kind of software complexity falls within the purview of the present

argument and is related to the abductive modelling discussed in Chapter 2. In Brooks’s terms, the soft-

ware resists spatial representation because the relations between its components are too varied: ‘soft-

ware includes many diagrams at once.’55 The difficulty of visual modelling of a software system, how-

	53	 Brooks, 1995: 43.

	54	 Ibid.: 184.

	55	 Ibid.: 185.

44

ever, is a difficulty that can be addressed by clarifying what purpose the representation serves in the

first place. When the goal is to grasp specific aspects of the system in their particular relationships,

such a goal, as I find in Chapter 4, can be achieved using manipulative abduction. Such an abductive

method works by engaging intuition to bridge the knowledge gaps in a situation of uncertainty.

Having observed that essential complexity cannot be done away with, Brooks likewise expresses little en-

thusiasm for the attempts at reducing accidental complexity such as time-sharing, object-oriented pro-

gramming and artificial intelligence.56 To him, any such attempts would only be able to reduce the im-

pact of accidental factors, with essential difficulties remaining unchanged. Any real attack on the concep-

tual essence can only be carried out via such measures as further professionalisation of the domain,

strong intentions in what to build, or incremental development in the process of actual production. As

the present study later finds out, reducing accidents can bring enormous improvements, to the extent

that operations methodologies such as Continuous Delivery can be seen as a proverbial silver bullet or

a unified technique that organises the production process in a way that does not confront all of the

complexity at the same time. Yet, it should be kept in mind a lot of change has happened since 1975,

when Brooks first published his volume, most importantly, the Agile methodology and DevOps move-

ment. Therefore, I retain Brooks’s concepts of invisibility accidents and conceptual integrity, discussed

in the next section, as the signposts to serve as comparison points between the centralised and distrib-

uted governance paradigms.

In terms of the process of production as the circulation of knowledge about the system from deploy-

ment to integration and back to deployment, a software crisis appears as a roadblock and a driver of

organisational and technological change. Therefore, the terms on which such a crisis is negotiated are

new in every case, based on the pertinent technologies and the component configurations. Historically,

the first measure of improving such circulation was to create large quantities of code. As a result, this

required new staff, which initially came in the shape of the formally trained software engineers, and

later, less formally, via the grassroots movements as personal computers became more available. As

more commercial and open-source code got created, the importance started to shift towards the task of

integration. This, consequently, created a demand for production specialists who would deal with qual-

	56	 This can be contrasted by a more optimistic view towards complexity expressed by the mathematician Van-

nevar Bush, US wartime Director of the Office of Scientific Research and Development, who wrote in his 1945

essay: ‘Note the automatic telephone exchange, which has hundreds of thousands of contacts, and yet is reli-

able. A spider web of metal, sealed in a thin glass container, a wire heated to brilliant glow, in short, the thermi-

onic tube of radio sets, is made by the hundred million, tossed about in packages, plugged into sockets – and it

works!’ (Bush, 1945: 102.)

45

ity control, cost estimations, verification and validation. The increases in operations staff, in turn, al-

lowed for more deployment fluency, which came in the form of professionals dealing with data, config-

uration and environments. Such developments of the design lifecycle were a part of the general tend-

ency of IT-based socio-economic formation, widely theorised in different sources and primarily re-

ferred to in this thesis as software capitalism, to improve circulation of value through gaining knowledge

about itself, and more specifically by placing the business value stream close to the technology, up to

the point where the business itself was no longer different from the software system it runs – e.g., the

bank is merely an IT company with a banking license – the organisation becoming a sophisticated tool

for capturing and processing knowledge.57

Structured and Agile production methods

Second, a journey towards effective decision-making on what to build could be illustrated via the two

examples, Structured Design (SD) and Agile methodology, in terms of their treatment of conceptual in-

tegrity, a paradigm in software production design that prescribed the entirety of the work to be carried

out by a single mind, supported by the organisation, who has a perfect detailed vision of the product as

a consolidated entity that can be described by a set of requirements.

In the first place, SD, which became popular in the 1970s, in the account of the historian Martin

Campbell-Kelly, had been one of the more successful attempts at a centralised approach to software

production system governance.58 It replicated the waterfall approach of the assembly line operation,

prescribing all of the specifications to be written in advance, with design, testing and deployment

stages following one another in an extremely rigorously structured way. The rationale for prohibiting

the change requests, after the sign-off of the requirements, was to address the slowing down of the re-

leases via scope creep, an antipattern which is manifest in the unplanned additions to the project scope

after initialisation. The changes had to be taken seriously because the whole of the process, in line with

the conceptual integrity principle, was held in the mind of the team leader, and thereby the scope was

limited to how much new knowledge one mind could process. The leader was supported by a compact

team of support staff, which made the model akin to a surgical operation. The surgeon at the top of the

hierarchy is the one mind that brings the project together, with the assistance of the co-pilot. On the next

level of the hierarchy, there are the administrator and the editor. The former is responsible for the op-

erations, while the latter creates the main body of documentation and technical reports. One more

level below are the programme clerk, who maintains the catalogue of all human and machine-readable

	57	 Kim et al., 2016: 8.

	58	 Campbell-Kelly et al., 2014: 185.

46

texts, the toolsmith who writes custom utilities, procedures and libraries, the language lawyer who edits the

programme syntax, and finally the tester.59

Through such a presentation, it becomes possible to grasp a specific flavour of software crisis that the

Structured Design paradigm was vulnerable to. To use Brooks’s formulation, any large software pro-

duction system designed in such a way is trapped in the allegorical tar pit, a problematic situation ma-

terialising out of the numerous diverse interrelations within the system which are hard to discern.60

The risk of the tar pit is particularly prominent in large-scale production contexts, where the interrela-

tions are too complex. Hiring more programmers does not help to reduce production time, and only

seems to increase the number of communication links and the complexity of their interrelation. In

cases of automobile production managed according to the algorithmically defined worker behaviours

as prescribed in the Taylorist paradigm, a man-month metric is effective as a unit for measuring the size

of a job. Such a man-month assumes that any problem can be broken down into several discrete units

that could then be estimated separately, giving a reliable scale for measuring productivity. In the con-

text of software production, however, as the team at IBM found out, man-month was a ‘dangerous and

deceptive myth,’61 and adding engineers to the software project would not yield an immediate rise in

productivity. This makes it possible to suggest that high-complexity production is different from fact-

ory-style manufacturing in that it does not scale in the same way and requires additional communica-

tion efforts, often in the form of developing a certain degree of distributed audit, as the thesis finds out

in Chapter 4, to achieve the productivity increases.

The complexity of interactions within the collective encountered by the Structured Design efforts re-

vealed a crucial difference between software production and the industrial model described in Marx: a

greater number of engineers provide more useful outcomes in less time only when they carry out the

work individually, with no communication between them. Needless to say, in collective production of

complex artefacts the communication is by all means required, and in some cases, such as in training

and coordination of efforts, cannot be split for concurrent execution, and therefore requires an amount

of time that cannot be reduced. Furthermore, the interrelation between team members is another, and

by far the most deceptive, metric that inevitably exceeds time estimations. The metric, also known as

Brooks’s Law, demonstrates that the time required to bring new staff up to speed increases as the staff

numbers grow – ‘adding staff to the project makes it later.’62 This results in further delays that make it

	59	 Brooks, 1995: 32–35.

	60	 Ibid.: 4.

	61	 Brooks, 1995: 16.

	62	 Ibid.: 25.

47

necessary to bring even more people in. Despite a sea change that has taken place in production sys-

tem design since the 1950s, the complexity of communication in software teams is still a great risk,

which is met by a serious treatment of this matter by current DevOps. The DevOps theorist Matthew

Skelton acknowledges that collaboration is usually perceived as expensive, something that needs to be

restricted to well-specified cases and formalised as an explicit activity aimed at producing specific

measurable value.63

Despite the benefits of speed and clarity of the single-mind approach, the sheer fact that the software

is delivered to the requirements written in advance implies that the system is not as fast and flexible as

the changing environment to which it is deployed. On the one hand, prohibiting the changes of spe-

cifications makes the integration more difficult, since should there occur any change in the systems or

components that the requirements relied on, the finished artefact will have to be returned to the pro-

duction cycle to account for such changes. On the other hand, the long design stage with infrequent

deployments makes testing harder, more expensive and not extremely effective because such testing is

done outside of the context of the error, and therefore requires additional research. Another risk is that

if testing is a long and strenuous process, teams that work on tight deadlines cannot afford to test often.

The search for new design tactics that would allow avoiding such risks by incremental delivery in one

way or another eventually led to abandoning the Structured Design approach to a new Agile methodo-

logy. The Agile movement was started in the early 2000s by a group of analysts and software de-

velopers with the aim of adapting the lightweight practices that were used at that time for small-scale

projects, to heavyweight software production systems, and to replace Structured Design and other wa-

terfall-based techniques. The three Agile ideas have to be mentioned in this summary. The first is

something that Frederick Brooks formulated earlier as incremental development64 and what the Dev-

Ops advocate David Farley later theorised as Continuous Delivery. In essence, working software is to

be delivered frequently, in a cadence ranging from a couple of weeks to a couple of months, with a

preference for the shorter timescale – in Farley’s case, as the later chapter of this thesis shows, deliver-

ies should be done as frequently as possible, to make the release a low-risk activity.65 Second, as ob-

served by Gene Kim, the team has to be small-scale and self-motivated and there needs to be a high-

trust management model that is well adapted to the delivery in small batches.66 The third and by far

	63	 Skelton and Pais, 2019: Ch.8.

	64	 Brooks, 1995: 200.

	65	 Humble and Farley, 2010: 280.

	66	 Kim et al., 2016: 428.

48

the most important feature of Agile is that it mainly deals with ethics of production, and is voiced by

the production team, rather than by any other organisation’s division.

Approaching production in the abstract is something that makes Agile applicable in a variety of organ-

isational settings because it does not prescribe the production to be carried out in any specific way. In-

stead, the design of the production system is seen as largely instructed by the organisational structures

it is embedded in. Simultaneously, any intentional efforts of implementing Agile in a form more rigid

than described in the manifesto either leads to replicating routines without deriving any specific value

or ends up being silently or explicitly abandoned for other, often suboptimal, tactics. One example of

such attempts is Scrum, a governance-oriented Agile framework that puts an emphasis on metrics,

such as assigning business value points to specific development tickets and estimates the overall value

delivered by how many of the tickets were completed in a given period. Despite the popularity of

Scrum, its real-life application demonstrates that it cannot be sustained without extreme management

vigilance, which in the long run appears to merely produce glory metrics and not effectively designed

software production systems. In his support of general Agile methodology, Farley argues that Scrum is

not necessary for all Agile workflows and lists three main reasons why attempts to adopt it usually fail.

One is that the leadership’s commitment to Scrum tends to fade as they realise that it persistently

makes them face inconvenient truths about the system’s issues. The other reason is that Scrum is often

used as a replacement for good engineering, which means that organisations claim to use Scrum

without adopting its constituent Agile practices, such as test-driven development, refactoring and Con-

tinuous Integration. Lastly, organisations tend to change Scrum to fit their particular context too early

in the adoption phase. This means they don’t have a chance to learn from Scrum in its original form,

and slowly drift back to their usual way of doing things while continuing to claim they use Scrum.67

As an illustration of the field use of Scrum, I was involved with the team using it in my capacity as a

product lead during a large platform migration project. This meant that I was the customer represent-

ative working in collaboration with the third-party suppliers who used Scrum as their production

method. This approach had rigidly prescribed the tools, methods and cadence of production activities,

however, after the initial part of work was completed, the rigidity came under pressure due to the un-

structured flow of feedback that the suppliers were confronted with from the very first moment when

such feedback was made possible. Some of the feedback, including the construction of the home page,

had to be incorporated into the original scope, while some others, such as the construction of the web-

	67	 Humble and Farley, 2010: 427.

49

site search function, had to be postponed until the later release.68 Eventually, under the burden of the

scope creep, the migration was evaluated as delivered only partially, and the new version was launched

as an intermediary version. Post-launch, my task as a product lead was to create a production ap-

proach that would be a better fit for the organisation’s structure and communication.

 

Fig. 2. The production pipeline.

Since each instance of software complexity arises out of communication challenges in the interactions

between the stakeholders in the problem space of production, each system has its unique case of com-

plexity which arises out of these interactions. This uniqueness explains the popularity of Agile over SD

as the set of guiding principles flexible enough to allow production teams to circumvent some of the

complexity challenges. Agile, however, is largely tactical, meaning that it helps teams to deliver rapidly

and iterate in terms of software deployments and integration. Waterfall sequencing is useful, as the

General Introduction proposes, in terms of strategic planning on a wider scale. For example, the pro-

ject delivery pattern in the form that it has evolved in my fieldwork at JX, consisted of phases that fol-

lowed one another in a set sequence, or a pipeline, which resembled a stage-gate approach (Fig. 2).

Each project was initialised via a discovery phase, which included identifying the opportunity, initial

planning and preliminary estimation of associated production costs. This was followed by the visual

design stage, which started with creating an initial set of wireframes that allowed the content and mar-

keting teams to clarify the feature requirements before spending resources on extensive user experience

or graphic interface design. The stage concluded with the production-ready mock-ups, which were de-

fined as the design specifications used by webmasters to verify that the work was done as requested. Af-

ter the visual design, the feature went through development and testing stages and was eventually re-

leased. The release meant that all teams agreed on how the feature fits into the overall look and strate-

gy of the system and that it was approved to be deployed to the production environment as an integral

part of the system’s source code.

	68	 Some specific aspects of this work are described in Appendix, CS12 and CS16.

50

Importantly, the pipeline stages would remain the same for the production team regardless of the

project content. To take an example of the online film festival, one of the larger JX projects, the dis-

covery phase would yield a rough production plan based on the initial data collection, which in turn

enabled the creation of a roadmap, or a project Gantt (Fig. 3). In this specific case, the Gantt shows the

work split into three general parts that were to be delivered separately: festival open call, film festival it-

self and the awards, to be released after the festival is over, as the archival version of the project. The

first phase would have the objective of collecting filmmaker submissions and assembling the festival

jury, and would therefore focus on the contact form. The second stage required the integration of a

film streaming platform, which would have ticket sales options and would allow the jury to rate the

films. The final stage would include removing all the film-viewing functionality and creating a new

landing page to celebrate the winners. While the three phases were unique to this project, each of the

phases still had the same base stages, coming from the stage of discovery to creating wireframes, fol-

lowed by design, development, testing and release as per the general production pipeline of Fig. 2.69

 

Fig. 3. Production phases and releases.

One formal benefit of incremental delivery is that some of the complexity can be avoided through the

use of components with standardised interfaces which can be produced and deployed by separate

teams either within or outside of the organisation. As soon as the system is split into components, it is

technically possible to address the functionality of each building block via the cycles of deployment

and integration. The real-world scenarios, however, are not purely technical and therefore not as clear-

	69	 See Appendix, CS1.

51

cut as the product roadmaps. From my empirical study, I have learnt that sometimes the incremental

approach can also be damaging, in the bigger picture of a project portfolio, if the delivery of parts is

not timely. At one point in my practical work, the design and marketing departments had proposed up-

dates to the information architecture. The updates were envisioned in the form of new sections of the

website that would interactively cluster the information around geographic locations – something that

later became known as City and Country pages. After more analysis, however, it was understood that

the pages required additional work on other platform functions, such as the search algorithm, which

was to be utilised in the task of sorting and grouping the database entries. Consequently, the project

was broken into five parts, according to the rule of incremental delivery. Due to the involvement of

staff in other more urgent projects, however, the five stages were spread over two following years,

which meant that many of the original requirements were outdated. For example, the COVID-19 pan-

demic that broke out in 2020 meant that City and Country pages would not be a priority, as the travel

sections of the JX website were not in as much demand as they were in pre-pandemic times.

Where the changes could be rolled out more slowly, however, the method of incremental delivery had

proven to be more effective. For example, in the process of improving main navigation, other UX and

particularly refactoring. Refactoring, by its definition, is the process of optimising the existing body of

code by altering its internal structure without changing its external behaviour and can be delivered in-

crementally since usually no strict adherence to deadlines is required. Similarly, main navigation was

designed to extend on the previous UX and thus was not something that required frequent changes

and could be planned and released flexibly around other projects the digital production team was

working on.

To summarise, a software crisis witnessed by Brooks could be attributed to the misbalance introduced

by the limit of how much information a human mind can hold. In this light, the conceptual integrity that

Brooks proposes as a remedy might seem unachievable in situations where the complexity of the code

tends to expand indefinitely. In the later chapter, the present research views the conceptual integrity

problem through the lens of the concept of cognitive load, as it is discussed in Matthew Skelton.70 The

concept, as adopted in some of the organisation studies scholarship from cognitive science, explains

some of the current DevOps research trends that deal with the human mind’s limits of acquiring new

knowledge. For example, analysing the team’s functioning in terms of the cognitive load of its mem-

bers makes it possible to create a set of tangible metrics for assessing the overall team performance,

and to create new strategies for distributing the load. Adopting the lens of cognitive scholar Edwin

	70	 Cf. Skelton and Pais, 2019: Ch.1.

52

Hutchins, it becomes possible to evaluate the dependence of cognitive load and the character of cross-

team communications, which is relevant for planning, review and other audit practices,71 – something

that Chapter 5 deals with in more detail.

Principles of software capitalism
Software capitalism (SC) is a culturally-informed capitalist formation with two characteristics pertinent to

the study of production. One is that shared knowledge is the primary source of value. Granted that

knowledge is inseparable from its subjects, that is, those who have the knowledge, the domain of value

relations is entangled with organisational cultures. The other characteristic is that every firm is seen

principally as a technology firm, as Kim notes, with the dual-core of the organisation present as the

unity of the business value stream and the technology value stream,72 in which context ‘a bank is just an IT

company with a banking license.’73 I adopt such a two-fold construction in my research to understand

it as a formative feature of the software capitalist production model. The primary function of such a

model is the conversion of business hypothesis to customer value via a technology-enabled service,

manifest in the deployment pipeline of the production system. In other words, for DevOps, every com-

pany is primarily perceived as a technology company, regardless of what line of business it may see it-

self in.

The historical roadmap for SC is adopted here from the organisational scholar Nigel Thrift’s definition

of soft capitalism, which fits the capitalist paradigm shift into the long period between the 1960s and

early 1990s. The shift was made possible due to the economic and political factors. In terms of the

economy, the period is signified by the decline and eventual collapse of the post-war Bretton Woods

system that held gold as the basis for US dollar value and tethered the other currencies to the dollar it-

self. Politically, the period ended with the fall of the Berlin Wall. These events and the mind shifts they

produced in the ideas about economy and politics across the world, Thrift argues, had in turn resulted

in a tectonic shift within the global model of production and exchange. A previous more ‘hard’ version

of capitalism, associated with the modernist top-down style of administration and scientific manage-

ment, was confronted by the new ‘soft’ version that had a more flexible approach focused on planning

and administration of human capital as the emotional and creative resource.74 The change of under-

standing capital in terms of human characteristics is attributed to the growing importance of know-

	71	 Hutchins, 2000: 224.

	72	 Kim et al., 2016: 8.

	73	 Ibid.:xxvii citing Little.

	74	 Thrift, 2005: 31.

53

ledge in the creation of value, and, in turn, to the fact that the acquisition of knowledge escapes direct

appropriation and instead has to be assimilated diffractively through performative labour practices.

More specifically, in DevOps, one way of describing the novelty of such practices would be through

the negotiations between the epistemology, the technology and the methodology of production.

In terms of epistemology, the capitalist model of mass manufacturing treats the problem space of pro-

duction as the space where the ways of knowing are certain and well-balanced, while in SC, the same

domain of practice or experience is understood in different and inconsistent ways.75 The strategy is de-

centred and the popularity of a position is no longer assumed as a deciding factor of its validity, which

means that the solutions are not prescribed in a top-down way, but are produced in a situated fashion

through the ad hoc negotiations between agents. In terms of technology, there is a competitive advant-

age present in the new learning possibilities offered by the advancement of communication channels.

In a situation where knowledge is linked to value, the competition focuses on research, teaching and

learning, which sees organisations as learning units, with the scope of their learning including internal

investigations about themselves. Some of the industry’s professional occupations, such as business ana-

lytics, are uniquely engaged with research activities within the institutions. Learning makes it possible

to facilitate knowledge acquisition and spend less time processing the knowledge that has been ac-

quired. As such, it becomes a priority in the business sphere, which, as the three tendencies illustrate,

creates a context, which largely characterises SC, where knowledge bears the principal business value.

The strategic tendency of businesses towards improving their learning capacities binds them to the

sphere of academic research. As listed above, the interdisciplinarity of methods makes them applicable

in both academia and business.

Reversely, the extensive academic study of business is also taking place, which leads to new intensive

industrial research, including the use of complexity theory in management studies, such as the assimil-

ation of knowledge through agent-based modelling that Chapter 5 discusses in relation to the work of

management scholar Max Boisot. The studies are necessary, not least because the problems faced by

capitalism in the current shape of knowledge production are data-rich and thus tend to grow exponen-

tially complex over time. Furthermore, the agent-based research agenda opens an avenue for the pro-

cess-based, adaptive view of the system, since preventing change in epistemological infrastructures is

both difficult and does little for capitalist valorisation. In the face of the falling cost of computation,

the change required to acquire the user base and scale up production volume is no longer a risk. In-

stead, it becomes an opportunity because scaling the infrastructure in software is flexible and can be

	75	 Thrift, 2005: 26.

54

adjusted according to demand, and falls uniquely into the purview of DevOps, with no significant

change to the rest of the firm’s operations. While any change in the production system introduces

complexity, the trade-off of making a qualitative change to beat the competition is more lucrative to

the business operating with virtual assets than it is in brick-and-mortar manufacturing, where quantit-

ative change may often be easier. In other words, in software capitalism, delivering more of the same

product concerns distribution rather than production.

Lastly, there are epistemological and technological shifts in methodology that the study of software

capitalist mode of production needs to take into account. On the one hand, the new epistemologies

demand new production methods dealing with the acquisition and integration of knowledge. On the

other hand, the increasing capacities of communication channels create an influx of large quantities

of knowledge materials in the form of components, features, services and other inventory, which are

heterogenous, incomplete and highly perishable and therefore require new methods of dealing with it.

The methods in this situation benefit from crossing the borders of their disciplines, with no methods

prioritised over others, resulting in more engaged interdisciplinary encounters. Pertinently, DevOps as

a professional occupation can be drawn here as an example of the successful adoption of development

methods in the domain of operations. It is an interdisciplinary method of inquiry into the software

capitalist mode of production because it carries out research into the organisations of technical and

human knowledge76 in the context of a firm in which the business value stream coincides with the de-

ployment pipeline. Furthermore, as the next section explains, approaching DevOps in terms of queer

performativity of its practice raises the questions of accountability and responsibility of knowledges

negotiated in the problem space of production, leaving behind any previous assumptions and without

giving priorities to any approaches.77

The market and the organisation, in their coming together in the problem space of production, thus

spring from it in very different directions. The market interprets the logic of interaction via the value

as the basis of the exchange. The organisation is concerned with creating relations within production

itself and is thus shifting towards the production of its internal cultural values, which may not be dir-

ectly related to the exchange value recognised by the market realm. Instead, as the organisation and

cognition theorist Herbert Simon observes, the work of an administrator involves taking decisions, on

the one hand, about the organisation’s structure, and on the other hand, about the content of the work

	76	 Barad, 2007: 93.

	77	 Ibid.

55

carried out.78 While in the software capitalist juncture, both of these matters fall into the duties of De-

vOps, the divide between the two appears less clear-cut. The former factor is blurred by the effects of

Conway’s Law, causing the structure of organisations to coincide with the structure of its software pro-

duction system, to become stream-aligned, as Chapter 4 discusses further. This, to some extent, makes

it impossible to think about the content separately from the structure. Instead, both matters co-evolve

and adapt to one another, which is becoming possible as both structures become more loosely connec-

ted, ready to disperse and recombine according to the topological complexity demands. To grasp the

involvement of DevOps that realises the production system in the software capitalism formation, the

rest of the chapter focuses on the three themes. First, the stakeholder involvement in the problem

space of production has to be explained as a service, or performative labour. Second, software capital-

ist production needs to be understood as cultural production. And lastly, it needs to be made explicit

that the software production model derives its surplus value through valorising computation.

Performativity of software production labour

In this section, I approach the performative aspect of production through the following steps. I begin

with some foundational thoughts of Marx through the lens of the Italian Autonomist thinker Paolo

Virno, who contributed to the development of the concept of performative labour. I complement these

ideas with the view of operations studies, where, according to the sociologists Sandro Mezzadra and

Brett Neilson, the performative view might not be too relevant due to the macroscopic scale the opera-

tions are dealing on. In the next step, however, I find that the performativity of software as a service

cannot be easily separated in DevOps from the software as a product of labour. Instead, due to the

prominent presence of affect in the production of tacit knowledge, the labour in high complexity scen-

arios has to be viewed, in terms of the philosopher Karen Barad, in its queer performativity, which

makes it possible to avoid the split between the representation and what it aims to represent. This, in

turn, focuses my study instead on the performative as the relation prior to its terms, and instead some-

thing that constitutes them.79 I find the empirical way of accessing this relation in the example of Jira,

the support ticket software, and the practice of user acceptance testing (UAT). Both of these phenom-

ena act as interfaces for coordinating the dependencies in the domain of organisation, the identifica-

tion of market value, and the performative labour in production teams.

In its more general definition, the performative aspect of production can be sketched out through the

understanding of performance as something where the event of work cannot be separated from its

	78	 Simon, 1997: 327.

	79	 Barad, 2003: 804.

56

product. In Marxian terms, performance appears as the waged, but unproductive labour, where the

primary concern is the potential of deriving the surplus value from the activity in the absence of the

autonomous end product.80 To Virno, for performative labour to appear as the event of production, it

needs to occur in a specific context that brings together the participants in the same space and time. In

other words, performative production has to be publicly organised, which means it is manifest as polit-

ical activity and should be accessed in terms of such structural characteristics as the lack of an end

product and the necessity to be publicly exposed.81

In terms of its public organisation, the circuit of the software production system is only brought into

motion once all of the stakeholder groups, including business owners, production staff and product

users are brought together and begin to communicate within the same space, specifically, in the prob-

lem space of production. Such space is topologically defined in terms of continuities and borders,

rather than in fixed metrics because the geography of hardware resources, the location of company

premises and the whereabouts of staff can be varied. Once the stakeholders are brought together, they

enter into a specific regime of problem negotiation which is regulated by the demands of audit, as fur-

ther discussed in Chapter 4. The auditability dimension makes it important to integrate the knowledge

back into the EIAC by making it explicit, which is often problematic due to the tendency of agents to

develop a rich body of tacitly informed practices. Returning to the notion of performativity as the lens

that recognise labour in its affective and tacit aspects, at this moment it is important to note that the

software system can also be understood in its performative capacity, as something that operates

through disrepair, and is always present as legacy code. As it is known to developers, any code becomes

legacy code once it is written and deployed,82 or, in other words, during deployment the code enters

into a performative relation with other human and non-human parts of the system, making it possible

to computationally interpret and transmit the relations of production contained in the infrastructure

into the problem space for the next cycle of system development. Therefore, any software system needs

to be considered as perished in the moment of its production, or, conversely, once the system is not

maintained and any of the stakeholder groups are missing, the system, similarly to any other type of

performative production, turns into a memory, or a fixed document of the product’s condition at the

moment of its last deployment.

	80	 Marx, 1990: 1048.

	81	 Virno, 2004: 54.

	82	 Cf. Spolsky, 2000.

57

The study of operations approaches the performative aspect of production with criticism as something

which is not entirely sufficient to address the wide problematics that the operations of capital deal with.

Political theorists Sandro Mezzadra and Brett Neilson define an operation in this context as the frame

that brings into focus the concatenation of social activities, technical codes and the mediating equip-

ment which makes the operation possible.83 Due to its macroscopic logic that acts to establish the pat-

terns for the more nuanced production activities, the operation frame entangles the collectivities of

production within the networks of its outsides, consisting of institutional entities, either within the

same organisation or the wider organisational and market contexts. Contrary to this, the study of per-

formativity, the argument goes, is self-referential in the sense that it is directed inwards into the prob-

lem space of production. It is political in its capacity to enter the negotiation of collective subjectivity

through the conflictual relationships of its affective and embodied aspects, yet precisely due to its self-

referential character provides little in terms of understanding the orientations of the subject in relation

to the external relations of capitalist operations.84 Performativity, therefore, is only capable of provid-

ing the potential triggers for specific processes that occur on the plane of operations.

The impossibility of the performative to activate on the macroscopic scale that Mezzadra and Neilson

describe in some way resonates with the notion of momentum in large technical systems described by

Thomas P. Hughes. The case for performative labour in high-complexity production, however, could

be approached in terms of traction rather than momentum, which would shift the focus from opera-

tional maturity to governance. As mentioned earlier, the shift to distributed governance enables the sys-

tems to improve their resilience in the face of radical change, while being able to maintain auditability.

This means that instead of attempting to implement the performative style of operations on the macro

scale, the situation of high complexity causes the system to substitute it for the multiplicity of meso-

and microscopic local performative events. While a more detailed account would be beneficial to de-

scribe the mechanisms of system mobility from the momentum to traction-based operative principle,

this theme lies outside of my present scope and could provide a rich context for future research. At this

point, it is necessary to address an underlying principle that creates such a possibility, which is the

queer performativity of DevOps.

The queerness of operations in this context should be understood through the notion of diffraction of

the philosopher Karen Barad. While Chapter 2 provides a more nuanced discussion of this view as a

methodological underpinning of my project, the present discussion of the performativity of labour in

	83	 Mezzadra and Neilson, 2019: 67.

	84	 Ibid.: 248.

58

software production merits some preliminary remarks. Barad borrows the diffractive approach from

physics, where it is used to study the distortion and interference of waves, and applies it in queer theo-

ry to shift the focus of performativity from specifically human affairs to the study of the practices of

differentiating that non-human entities engage in the encounters with their environments. As Barad

puts it, ‘the point is not merely to include nonhumans as well as humans as actors or agents of change,

but rather to find ways to think about the nature of causality, origin, relationality, and change.’85 A no-

tion of diffraction, therefore, can be interpreted as the study which occupies multiple vantage points si-

multaneously, yielding a rich view of the matters under investigation, specifically in terms of their non-

fixed identity and across the assumed boundaries, such as the rigidity of distinction between human

and non-human entities. In another place, Barad elucidates a principle of cutting together-apart as the es-

sence of the diffractive method which entails identifying the differences which are crucial for the func-

tioning of assemblages, within the junctures of their constituent parts. Cutting together-apart consti-

tutes one move with the aim of making such differences clear: ‘diffraction is not merely about differ-

ences, and certainly not differences in any absolute sense, but about the entangled nature of differences

that matter … Diffraction is a material practice for making a difference, for topologically reconfiguring

connections’.86 The differences therefore are defined through the meanings they have in specific con-

texts, or, as the next chapter will further discuss, in terms of their topological orientation.

Queering DevOps, or in other words, approaching the high-complexity production event in terms of

its simultaneously differential appearance as a process and a product affirms the software system’s con-

tradictory position concerning the value-control axes. It allows acknowledging that labour in software

capitalism is fundamentally diffracted, in the sense that it is productive of business value to various de-

grees, depending on how the production lifecycle is viewed. Two examples may help to illustrate such

queer performativity. In the first case, Atlassian Jira is a piece of production software, which has exis-

tence after the moment of its production in the form of a software release, which is presented to the

users, who then engage with the product independently. Simultaneously, Jira appears as a service, in

terms of the maintenance work and development of new features performed by the production team

at Atlassian, which is inseparable from the process of software delivery.

In the second case, production is diffractively cut together-apart within the organisation at the moment

of the user acceptance testing (UAT). In Agile, UAT is the final testing stage which requires a limited

number of stakeholders, typically internal staff of the organisation, to use the product in real-life sce-

	85	 Barad, 2011: 124.

	86	 Barad, 2007: 381.

59

narios to test how the software performs and submit the feedback to the production team. To make

UAT possible, the product has to appear to the stakeholders as a stable and independent entity which

they can access and feed back on. Simultaneously, however, the testing activity itself does not constitute

the delivery of the software with the purpose of monetary gain and has no meaning without the

process of negotiation between the business owners and production staff, which is, in fact, its main pur-

pose. Therefore, the diffractive view of UAT as a production event would interpret it as a compound

activity which is essentially performative, yet impossible without its simultaneous presence as a product.

Another important aspect of labour performativity is further elaborated in Chapter 4, when the dis-

cussion turns to the stream-aligned production team topology paradigm, often utilised in DevOps. The

paradigm sees the teams as standalone entities which are continuously and flexibly assembled based on

the complexity requirements of a particular production situation. X-as-a-service is a mode of team in-

teraction where they consume or provide something with minimal interaction87 through a separately

managed interface or exchange protocol.

Summarising the queer performative specificity of labour in software which this section works with, it

might be possible to suggest that the self-referentiality of performative relations could be sufficient for

both understanding the process of negotiation of collective subjectivity in Virno and the politics of op-

erations in Mezzadra and Neilson. This, however, is only possible to a degree in which the system’s

governance assumes the distributed character. As the system becomes decentralised, the pull of its mo-

mentum decreases, and it becomes more suited for scalability. Traction in a distributed system is higher

in the sense that the system remains fully auditable regardless of its scale and complexity, according to

the scale-free principle discussed in Chapter 5. Concomitantly, the more traction there is, the more

prominently production practice can adopt diffractive behaviour. While such a presentation of labour

may explain some aspects of the labour process in software capitalism, it is now important to turn to its

other principle, which warrants the circulation of knowledge throughout the production lifecycle. It is

the principle of the emergence of organisational culture which creates the conditions for enacting and

reproducing labour relations in the first place.

The culture of software production within the organisational space

When referring to culture, the present thesis is generally interested in the organisational culture of high-

complexity production as the body of knowledge shared within an organisation that helps weave the organ-

isation’s collectivity. To clarify such a definition, two points are pertinent: what kinds of shared know-

ledge are at stake, and why should the culture of high complexity regime be different from the one of

	87	 Skelton and Pais, 2019: Ch.7.

60

low complexity. It has to be noted that some notions dealing with the category of shared knowledge

have to be left out of the scope of current research, to be able to use a specific meaning in the sub-

sequent discussion of how such knowledge is implicated with the software production lifecycle. Such

related terms are general intellect, institutional memory and group mind. To decide on the required meaning

of the term culture in my study, it is therefore necessary to understand in which way it might be differ-

ent from these notions.

Production of shared knowledge. The general intellect is a concept developed in Italian Autonomist

thought, which portrays knowledge as fixed capital that is no longer uniquely embedded in machinery

or other physical assets but instead is included in the living labour of service workers. In this sense, the

general intellect is something which is not necessarily attributed to any specific product, organisation or

community of practice. The term institutional memory, used in some of the organisation theory and oper-

ations research, refers to knowledge which is found in the minds of the team members, and which the

organisation aims to convert to a tangible, explicit form as the body of its documentation.88 The

present research uses a notion which is close to it when dealing with a part of the production lifecycle

which contains a set of executable instructions for continuously deploying the software system – an epi-

stemic infrastructure as code (EIAC). EIAC in this sense stands for the institutional memory, as much as the

compiled code binary in runtime – that is, when the application is running – stands for the outcome of

production. The third term, a group mind of an organisation, emphasises general knowledge as part of

the behaviour of an organised human group. Herbert Simon notes that the group mind notion can be

slightly misleading, in that often what appears as a group mind reveals itself upon closer inspection as

an enactment of the various organisation’s entities and relations, such as policies, balances of interests,

loyalties of different involved parties, effects of employee training and authority links.89 Rather than

being a kind of self-organisation, such a group mind functions by the adherence to audit practices sub-

jected to authority. In simpler organisational forms, each individual independently evaluates how their

actions will resonate with the rest of the group. In complex systems, they coordinate with a general

rule which acts as a predetermined course of action that would contribute to the corresponding criter-

ia in a reliable way.90

Seen in this way, the terms such as general intellect, institutional memory or group mind would not capture the

specific meaning of shared knowledge which is at stake in my research. It therefore, becomes necessary

	88	 Simon, 1997: 218 and Kim et al., 2016: 67.

	89	 Simon, 1997: 177.

	90	 Ibid.: 178.

61

to turn to the use of organisational culture as a term that would address a specific set of norms and as-

sumptions which encompass a more-than-human capacity for knowing, can exist in a tacit form resist-

ant to audit, and overlap the institutional boundaries to traverse both the organisations and the com-

munities of practice (CoP). The latter facet becomes particularly important for the discussion of dis-

tributed collectivities in Chapter 4, where the notion of CoP is approached through the foundational

theorisation of educational theorist Étienne Wenger. Wenger explains CoP as a form of mutual en-

gagement with a particular problem or a joint enterprise of negotiating what the problem is, and in my

research, I often expand this definition to everyone who contributes to the process of production of a

software system, in contrast to production teams specifically formed within organisations.

Furthermore, attention to CoP makes it possible to grasp the specificity of shared knowledge that per-

tains specifically to production within the organisational sphere. This cultural segment is characterised

by its adherence to the administrative protocols of governance, as well as the bottom-up initiatives

within the wider CoP. The difference lies in the motivations of its members and depends on freedom

and loyalty, which become particularly important in moments of change in the context of high com-

plexity. On the one hand, there is an organisational tendency to develop ways to warrant the system’s

stability under the pressure to change and to preserve the continuities of its interrelations. On the oth-

er hand, there is a web of creative and informal daily cooperations between the members of the col-

lective which ensure cohesion, albeit at the expense of formality of interactions and administrative

protocol. The notion of shared knowledge for the present research, therefore, necessarily has to ac-

count for its continuous negotiation between these two spheres. It should account for the factor pointed

out by Simon, that sanctions and rewards alone are not sufficient to advance the organisation’s goals

and there always has to be some form of enthusiasm for creativity and loyalty to the organisation’s as-

sumptions, practices and ethical norms.91

Management before and after software. Turning to the second cultural aspect, the question can

be posed more specifically, why is the organisational culture in the high-complexity production context

different from pre-software industrial low-complexity manufacturing? The hypothesis here, as the Gen-

eral Introduction has sketched out, is that in both high and low-complexity types, the stakeholders are

present simultaneously in their empirical and epistemic capacities. Empirically, there are the workers,

who bring to the table their labour-power, and the capitalists who own the means of production and dis-

tribution, and who alienate the results of workers’ labour. Within the epistemic dimension, the equival-

ent of workers and capitalists are the stakeholders who do not have an antagonistic relationship, due to

	91	 Simon, 1997: 21.

62

the absence of a requirement of mutual dependency for the sake of reproduction. They are instead a

category of individuals or groups who could be potentially affected by the changes introduced into the

system and can appear as business owners, production teams or the systems’ users, or a combination of

these. The stakeholders inherit their non-hierarchical quality from the larger category of agents, the

autonomous entities of various kinds which comprise a unity within a system. In the definition of Péter

Érdi we saw in the General Introduction, the agents are endowed with equal authority and are relat-

ively independent in their capacity to choose the most appropriate strategy.92

While there is no particular reason to invalidate either the empirical divide based on the ownership of

the means of production, or the latter epistemic view in an either high or low-complexity production

context, the agent-based paradigm usually applies to the issues arising in complex systems. The con-

sequences of grasping the organisational culture which is at stake in the present research, therefore,

should be explained by the qualitative shift that had historically occurred in the empirical and epistem-

ic categories in response to the change of labour composition from primarily industrial to primarily

knowledge-based production. Combining Thrift’s findings with what we have learnt from the discus-

sion of the performative specificity of labour in software production in the previous section, the key

differences are twofold. For one, the work outcomes are no longer as clear as to allow to rigidly plan

and necessitate continuous negotiations between the stakeholders. Concomitantly, there is an increase

in the managerial population of companies and the diversification of their functions, most of which

are performative.

The pre-software paradigm, as we saw in Thrift earlier, occupied Western organisational thinking to a

different degree throughout the whole of the 20th century, completely dissipating by the 1990s. The

paradigm largely assumed management as an organisational layer primarily concerned with oversee-

ing assembly-line algorithmic production and implementing the management based on metrics accord-

ing to the Taylorist scientific management. It was shaped by the world of business dominated by large

hierarchical and multidivisional corporations, which pursued a goal of increasing in scale by following

a unified strategy.93 Such a view of the firm, viewed in the context of the period’s high cost of compu-

tation, explains the ubiquitous figure of an organisation man, a corporate employee controlled by the

techno-scientific administration. The historian Lewis Mumford sees the organisation man as nothing

more than a human functionary who stands in place of a computational entity and only acts as a tem-

porary replacement for it. The figure is enacted, to Mumford, by a ‘part of the human personality

	92	 Boisot in Boisot et al., 2007: 8.

	93	 Thrift, 2005: 31.

63

whose further potentialities for life and growth have been suppressed’ for the larger purpose of a

mechanically operated collectivity, where the model for the employee is the machine itself.94 Due to

such automatism, it is only natural that the increased computational capabilities made the automatic

parts of human activity fall back into the sphere of computation. For example, the mundane clerkly

routines of the 19th-century bureaucracy portrayed in Nikolay Gogol’s short story, Overcoat (1842) are

replaced by the office printers in the 20th century, which are, in turn, rendered obsolete by the al-

gorithmically initiated, yet no less mundane, database backups in the 21st century.

In Thrift, the new capitalist paradigm began to evolve at the same time as the knowledge society. The

latter presented the former via such challenges as the growth of information to be processed, the intro-

duction of new market players and the increased speed of communication and logistics.95 All of these,

and many other changes in society and technology, might be seen in the context of the present study as

underpinned by a larger trend of the falling cost of hardware and computation. The start of this

trend, as we saw earlier, was announced by Gordon Moore in 1965, and it is likely to be a lasting tend-

ency of the IT industry for the reasons further discussed in Chapter 5. At this moment, it is necessary

to mention that because of its disruptive exponential character, the initial phase of computational de-

preciation caused an aggressive infiltration of software into all aspects of production and distribution.

This created the context of high-complexity production, since every company that introduced the use

of software, enabled the computational abstraction layering in its operations.

This change had two important consequences that made the organisational culture of high-complexity

production different from its low-complexity counterpart. On the one hand, the centralised gov-

ernance of technological systems could no longer provide sufficient traction, which resulted in software

crises, such as the one described by Frederick Brooks, and created a shift towards complex adaptive

production systems with the proliferation of situated and tacit knowledges. On the other hand, the

capitalist formation had discovered the phenomenon of software complexity with its potentially limit-

less topologies of the problem spaces of production, and the possibility to invite a larger managerial

population into the production process. The new managers, however, were no longer required as the

functionaries, since those were being replaced by increasingly ubiquitous computation, but as perform-

ative workers that would be able to partake in negotiations engaging with the various types of tacit and

explicit knowledges, for which purpose the transformation of culture in the organisation space was in-

evitable. Describing the preconditions of the production paradigm shift in this way helps to clarify the

	94	 Mumford, 1970: 277-78.

	95	 Thrift, 2005: 32.

64

second question of organisational culture about the distinctive features it acquires in the high-complex-

ity production context. Yet, the discussion above draws attention to the last important aspect of soft-

ware capitalism, the new pathways of valorisation that the paradigm shift has opened up, which is now

necessary to discuss.

Computation, valorisation and culture

Borrowing the definition of valorisation from Marx’s Capital, the present thesis understands it as a pro-

cess through which capital increases the proportion of surplus value or profit in its overall revenue. Ac-

cording to Marx, in valorisation, capital increases its value ‘through the unity of the labour process

and the process of production of increased value.’96 While the process of simply creating value hap-

pens at the moment of payment for the labour-power used in a specific event of production, valorisa-

tion creates value at any point in time after that moment.97 While a more detailed analysis of the spe-

cific forms of valorisation of computation is a matter of a larger future research trajectory, the present

study provides the context for some of the valorisation mechanisms specific to high-complexity produc-

tion, as they appear throughout the study. These are: the resale of the depreciating computation,

briefly touched upon in this section; the valorisation of the continuity of dysfunction based on the ex-

panding of production, explained in Chapter 4; and the retention of tacit knowledge, which is partially

addressed in Chapter 5 and the General Conclusion. The purpose of this section, which closes the dis-

cussion of the key features of software capitalism, is to sketch in broad strokes the general principles of

circulation of value in its production process, conditioned by the ubiquitous computation, which is

used by Thrift in his analysis of the engagement of capitalism with software, and which I see in the

present context as the inevitable consequence of the tendency of the cost of computation to fall.

In Thrift, ubiquitous computation refers to the computation that is autonomous in that it does not re-

quire human involvement and is present instead as an infrastructural property of the production sys-

tem.98 This implies that in software capitalism organisations, teams and agents no longer engage with

computation in the specific phases of production workflow, as was the case in the era of mainframe

computers, but instead exist and interact within the production topology created and maintained com-

putationally. Computation in this context stops being merely an operation that takes specific inputs and

delivers a precise result but rather evolves to become something capable of presenting qualitative

judgements and working with tentative, ambiguous propositions. As a result, it becomes possible to ab-

	96	 Marx, 1990: 36.

	97	 Ibid.: 302.

	98	 Thrift, 2005: 160.

65

stract the practicalities of creating the compiled code executed for the user in runtime and to suggest

the software production system as a production system that simultaneously produces itself along with

its products, operating through deployment and integration to stream the executable binary continu-

ously. The computation-based space forms a plane of immanence, as Chapter 4 explains by adopting the

term from the philosophy of Gilles Deleuze and Félix Guattari, which is a place of capitalist produc-

tion components and their relations. Such space is porous enough to create DevOps as a superimposi-

tion of the methodologies of business operations and software development and to enable the continu-

ous production design lifecycle. To achieve that, DevOps presents hardware, services, teams and other

resources as abstractions available for symbolic manipulation. At the higher level of abstraction, the in-

frastructure itself is the code, which, as Chapter 3 demonstrates, appears in its deployment as a pro-

duction of means of production, because it creates the entire topology of the production system, in-

cluding all the required services, resources, a testing suite and the allocated virtual hardware.

As the ubiquity of computation becomes possible through the increase in computational capacity and

emerges as an independent force, it initiates a tectonic shift in production relations that makes them

less distinct from distribution and creates the conditions for a sphere of production culture, as we saw

previously, as the space for emergent performativity of labour. Due to its radical non-humanity, ubi-

quitous computation is not connected to anyone's professional knowledge and takes place anywhere

and out of context.99 In Thrift’s allegory, ubiquitous computation takes on a role of a new prosthetic

layer of the real that carries out routine cognitive operations, not unlike a new force of nature. The

calculations, he argues, ‘are so numerous and so pervasive that they show up as forces rather than dis-

crete operations.’100 The outcome of such a mundane and unspecific presence of computation in the

organisation’s technology value stream is that additional computational resources are available at little

or no additional cost, which makes the creation of surplus value through computational processing

and transmission of knowledge a commonplace valorisation feature. One way of doing, it, which I

dealt with in the field, is based on reselling the depreciating computation, which can be argued to lie at

the core of cloud computing firms, such as Amazon Web Services (AWS). While AWS computation ca-

pacity is rented out, the value chain extends further into the AWS platform which is present as a ser-

vice, providing an interface for managing the resources and various aspects of infrastructure. The ser-

vice, in turn, is used by DevOps professionals who appear as the platform’s community of practice. In

this sense, the valorisation of computation is immediately linked to at least two kinds of services.101

	99	 Thrift, 2005: 156.

	100	 Thrift, 2008: 100.

	101	 For my field engagement with DevOps professionals and AWS, see Appendix, CS21.

66

This culturally conditioned valorisation junction could benefit from the tangential critiques of capital-

ist modes of production and distribution. For example, in her theorisation of supply chain capitalism, the

anthropologist Anna Tsing describes a model of commodity exchange that creates value via the ex-

treme identification of production and distribution, typically realised through outsourcing or subcon-

tracting labour. At the core of supply chain capitalism, Tsing argues, is the tendency of the workers

and the managers to converge in the figure of a servant leader. Servant leadership celebrates the workers

as new self-managing individual producers and decisively banishes from the economic realm the cul-

tural aspects of their identity, such as gender, race, ethnicity, citizenship, age or sexuality. The charac-

teristic double move of, on the one hand, erasing the legacy of labour struggles, and, on the other

hand, encouraging the self-exploitation of workers, is made possible because the supply chain ex-

change mechanics remain reliably concealed among non-economic factors.102 In real-life scenarios, the

scheme is realised by presenting the workers as independent contractors who cannot help but keep the

market rates low for everyone by pitching against one another, as in the examples of Fiverr and other

contract-based platforms.

While the present phase of my project doesn’t leave me enough space to deal with the cultural aspects

of identity, the methods for concealing the value extraction and concomitant exploitation of workers

are perceived here in alignment with the supply chain capitalism model. For example, due to the prin-

ciple of retaining tacit knowledge, companies will be motivated to delay creating technical documenta-

tion because it is costly and does not yield immediate business value. Therefore, it would only be pos-

sible to alleviate the cognitive load of the workers when they are too overwhelmed or confused to be

able to work without relevant technical documentation. Likewise, in exploiting Conway’s Law, the

management would always choose to increase the complexity of the company hierarchy to defer the

decision-making in fact, concealing the creation of value by extending the value chain. Similarly to the

value chain capitalism concept, the valorisation mechanisms are presented as organisational achieve-

ments. In the case of exploitation of tacit knowledge, there is the encouragement of a Musketeer attitude,

which promotes mutual support among team members.103 In the case of the deferral of dysfunction,

there is a celebration of managerial outsourcing and delegation skills.104

A self-reinforcing valorisation model that emerges from such a presentation of software capitalism can

be thus argued to engage with both the performative labour and the cultural sphere of high-complex-

	102	 Tsing, 2009: 158.

	103	 Rubin, 2012: 203.

	104	 Conway, 1968: 31.

67

ity production. The two categories are employed in conjunction to mediate the extraction of surplus

from the knowledge circulated within the problem space of production. Within the problem space of

production, the three key criteria help to connect the three spheres, as the general schema of the pro-

duction design lifecycle demonstrates (Fig. 4). Creating new requirements employs organisational

forces, acceptance criteria engage with the technical system, and the customer value connects the mar-

ket sphere.

Chapter conclusion
This chapter has outlined the context of my research, which is constituted by the three main traits in

thinking about software production systems. First, systems theory offers two kinds of structuring of

software production, centralised and distributed, with each having its benefits and downsides. The be-

nefit of the centralised control is that it allows systems to rapidly produce great quantities of inventory,

where the outcomes can be set out in advance and the workflow stays largely unchanged. At the same

time, such systems are fragile in the face of change, with the main reason being that in such systems

the relevance of methods is measured by their proximity to the central control mechanism. The

strength of the distributed systems, on the contrary, has been attributed to their resilience in the face of

complexity through being able to develop local solutions and situated knowledges. In the second in-

stance, the chapter has considered that the popularity of the Agile methodology may be due to its abil-

ity to distribute the cognitive load and approach complexity from a topological perspective. This, in

turn, suggests that software crises can be abstracted away by methodologically splitting their various

problematics from the maintenance of the organisations’ technology value stream. Lastly, the chapter

has turned to the realisation of software capitalist value exchange via the organisational culture and

the computational topological stratum. Here, the complexity has been explained in its role within a

system to be the tool for valorisation that employs the system’s dysfunction as the stimulus for the fur-

ther expansion of production activities. The chapter has described such a valorisation mechanism as a

defining characteristic of a current facet of the mode of software capitalist mode of production.

In the context established through reviewing the literature sources, there can be noticed an association

of the process of change in technical systems with the activities of agents, which may point to the pos-

sibility that it is due to such activity that software production is capable of absorbing surplus amounts

of living labour at rates higher than industrial manufacturing and other sectors of production. This

absorption, however, only leads to further increases in complexity, which acts as a roadblock to the or-

ganisation’s practices of audit, while promoting capital circulation. The agenda for the next chapters is

therefore twofold – on the one hand, the argument needs to trace the infrastructural effects of software

complexity to understand the negotiation of problems that happen among stakeholders, and in which

68

ways the complexity is circumvented in real-world software production scenarios. On the other hand,

there is an urgency to sketch the source of complexity arising from concrete practices, primarily seen

here as the effects of the falling costs of computation. The latter causes the misbalance between the or-

ganisation and the market, which in turn creates the continuity of dysfunction within the system in the

face of software complexity. Studying such an elusive and ever-moving target makes use of the produc-

tion system design lifecycle model, which the next chapter turns to, borrowing from the compositional

framework, queer theory and abductive logical reasoning to create such a model.

69

Chapter 2. The compositional method

As Chapter 1 has aimed to demonstrate, highly complex production systems with a potentially unlim-

ited number of components present the research with challenges different from the systems where the

number of elements is finite and can be fully accounted for. This calls for developing a distinct study

method that would see software systems as evolving through their complexity effects. This chapter

works towards such a method by combining the elements of the three methodological frameworks.

The first one is compositional methodology, a framework that sees the problems not as something ex-

ternally imposed on the system, but instead as its integral parts. Viewed as such, problems act as com-

munication vehicles for sharing meanings through the processes of continuous negotiations by the in-

volved parties, such as business owners, agents of production or end users. The problems appear differ-

ently throughout the different stages of negotiations, yet are always associated with various kinds of

knowledge inventory. Methodologically, such inventory can be split into new knowledge to be assimilated

into the system and confirmed knowledge, verified in a way that makes it useful as grounds for further in-

terpretations. This difference is reflected in the methodology as a division of the production lifecycle

into the problem space and the epistemic infrastructure, which deal with two types of knowledge, re-

spectively. The epistemic infrastructure appears as the suite of principles for organising what is known

about the problem. The problem space is a domain of possibility of solutions that emerges in response

to the application of the method, while also accounting for the change that the problem itself under-

goes as it is being solved.

The second methodological motif is concerned with the aspect of verification of evidence, or objectiv-

ity, which I argue should be made possible through engaging with queer theory, and more specifically,

diffraction. Diffraction here is seen as something that opens an escape route for the disadvantaged re-

flexive position and, instead of fixing the researcher’s point of view, creates a dynamic multiplicity of

viewpoints, which allows engaging with operations and software development in a queer way, by tra-

cing the effects of difference. Here the queerness of the approach does not necessarily entail a queer

reading of DevOps but rather employing the queer potential of transforming the existing relations

through enabling different points of access, such as body performativity and affect. The third method-

ological constituent of my study deals specifically with constructing the production model in a situation

of high uncertainty. This is done with abduction, as it is theorised in the foundational work of logician

C.S. Peirce and the recent post-Peircean thought. Abductive modelling works through the tentative

70

propositions, preserving ignorance where an opportunity of deciding reliably for the long term does

not present itself.

Composing problems
In its formal definition, a compositional methodology (CM) is the study of the possibilities that a problem

has within a problem space. Beyond composing or putting things together, CM makes it possible to ex-

amine the action of putting together through the things it puts together, for example by looking at how

things change through the application of the method. The topological understanding of the problem

spaces in the present study is based on the fundamental theorisation of the philosophical notion of the

plane of immanence, which is here applied more specifically to the sphere of production to present it

as the plane of components and relations of production as well as their organising principles. The im-

manent view of the capitalist mode of production is viewed here through the lens of the philosophers

Gilles Deleuze and Felix Guattari’s presentation of capitalism as the formation that has no exterior

limit, but only the interior limit that is continuously reproduced through its expansion. The capitalist

general principle is immanent because it has its internal coherence which, rather than recognising the

external world, works by setting up boundaries for the application of its own rules and extends the area

of application of such rules, subsuming the external world by making it compliant.105 In Chapter 4,

the philosophical underpinning of the plane of immanence will be explored further to understand the

capitalist principle of continuity of dysfunction, which will be argued to animate the circuit of the soft-

ware production model.

Two further considerations face CM in the context of the practices of audit and any implications to

governance. On the one hand, CM plays an active role in setting up the conditions of the topological

unfolding of problem spaces, rather than their passive description.106 On the other hand, while enact-

ing their becoming topological, as the cultural theorist Celia Lury has it, the method also needs to ac-

count for how the conditions allow the reproduction of these spaces – that is, to understand the rules

of its repeatability, which will allow for the practices of audit to take place. Such repeatability is crucial

for audit because to undertake the review, the audit needs to understand how the problem composition

is established through repeatable routines. The present study takes advantage of the topological capa-

city of CM and formulates the ideal shape of the knowledge-based capitalist value model with the soft-

ware system at the centre of an organisation, in the same way DevOps research does it, with the aim

to understand the possible consequences of such placement. This, in turn, suggests that some of the

	105	 Deleuze and Guattari, 1983: 230.

	106	 Lury, 2021: 9.

71

topological characteristics of the production model have to be prioritised, for example, the organisa-

tion design pattern that divides the teams into the ones tangential to direct provision of business value

and those concerned with the specialised service and support work. Chapter 3 explains this pattern as

stream-aligned team topology and suggests that problem spaces can be seen as emerging in the bound-

aries and neighbourhoods created by the intersections of the stream-aligned teams and non-aligned

services. Such an approach to team design views the problem in compositional terms – that is, as Lury

describes it, through the relational transformation of the context, without treating the problem space

of production as a mere representation of the problem, in the sense of its being a re-presentation of

the external referent.107

CM recognises the constituent parts out of which the problem space is composed, and provides the av-

enues for thinking about the double move of methods – in the first instance, their capacity to constitute

the problem space, but in the second, to describe a circular motion in the development of the problems

themselves. In Fig. 4, the production design lifecycle demonstrates the circulation of knowledge in

terms of CM, among its two major constituent parts, the epistemic infrastructure as code (EIAC) and

the problem space of production. For the present dissertation, the diagram serves as a methodological

blueprint and guides the discussion of the parts and processes of the software design lifecycle. The pro-

cess of deployment, defined here as making the composed things available to stakeholders, is not some-

thing fixed and numeric – albeit algorithmic and auditable – but rather a matter of distribution

through bringing the executable code, the database, the environment and all the configurations into

one place. The software system in the production circuit comes as a result of deployment as the sym-

bolic conversion of the components, configuration and strategy as code into a concrete manifestation

in the shape of the working digital product.

	107	 Lury, 2021: 208.

72

 

Fig. 4. Production design lifecycle.

Once deployed, the software appears in the problem space of production, where it comes into contact

with the criteria, split here into three groups – requirements, acceptance, and customer value. Such en-

counter initiates the process of negotiation of the system among the stakeholder groups. As agree-

ments are reached among the stakeholders, the meanings become assimilated in the form of know-

ledge throughout the agents and agent groups, and undergo the reverse symbolic conversion into code

that adds to what is known about the problem into the EIAC ready for the next round of deployment.

The two processes share their ongoing character with the two paradigms of DevOps – Continuous De-

ployment and Continuous Integration, which are becoming increasingly dominant in software produc-

tion as the costs of computation continue to fall and the streaming of large quantities of data becomes

more affordable. As noted above, the interpretation of knowledge in CM is open-ended in that it does

not presume the problem as a given, but rather works with methods and facts to analyse the character

of transformations that occur in the problem space to construct an appropriate way of approaching

the facts about a specific case.

With this in mind, the construction of a production model is a fruitful exercise because it acts as an

epistemic mediator to use the interpretation of a problem in terms of its becoming to think about its

potentialities. Abductive manipulation, in the way the philosopher of science Lorenzo Magnani uses

this method, becomes possible as a way of creating variations of the model to come to some strategic

decisions, where the future criteria are unknown.108 In this context, only the knowledge contained in

	108	 Magnani, 2009: 35–36.

73

the EIAC can be treated as a reliable reference. The act of composition refers not only to the activities

carried out by the researchers, but also the operations that are associated with the epistemic infrastruc-

ture, which take the shape of propositions, engagements, activations or, as is the case of EIAC ex-

amined in Chapter 3, automation.109 The composition as a method is important because it permits fo-

cusing on the components in terms of their non-equivalence and spares the effort of taking account of

the identical parts, which, as we saw, make no structural difference in software systems. The non-equi-

valence between components, however, can be infinitely extensive, due to the frequent use of incom-

patible technologies and paradigms, and therefore is usually resolved through adding complexity – a

process which in turn, activates the valorisation mechanisms in the market domain.

CM enables studying the problem space by substituting the static notion of a problem with a process

of problematisation. The process involves abductive manipulation that provides a way of reasoning

about uncertain outcomes through cognitive and epistemic mediation of external models.110 This in

turn leads to the automatic production of a problem space, which means that the knowledge about the

problem variants, produced through the mediations, accompanies the establishment of new rules of

engagement that necessarily and automatically assume mutual topological relationships. While this

means that every act of the application of the method contributes to the expansion of the problem

space, the results of different applications do not merely add up to one another. The research is rather

boundary-making, and as per the cutting together-apart principle of a diffractive method, it is when

different things are brought together that the boundaries become most prominent.111 Any relation

bears the dynamic aspects that detect and activate the conflicts of interpretations, to be able to draw

such boundaries. The boundaries in CM are important because they serve as the markers of under-

standing the emergent performative subjectivities, which appear differently in each new event of pro-

duction in response to the change, momentum and control parameters of the production system.

Composition and ANT

Since the present study owes much of its methodological thinking to the group of intellectual practices

known as actor-network theory (ANT), a brief explanation is required of how the former framework is

used for my project. More precisely, ANT here is not seen exactly as a theory or method, but rather, as

a way of thinking about research which benefits from the critiques developed by the original ANT

thinkers themselves. Since its formation in the 1980s, ANT had been concerned with eliminating the

	109	 Lury, 2021: 17.

	110	 Magnani, 2009: X.

	111	 Barad, 2007: 93.

74

distinctions between technical, social, economic or political factors, up to the point where a distinction

can no longer be made between natural and cultural phenomena. ANT is characterised by one of its

key proponents, the sociologist John Law, via its ‘ruthless appliance of semiotics’ in the sense that any

entities only appear in specific capacities only through their associations with other entities.112 Things

also cannot be categorised before their relations are clarified because before that moment they don’t

have any inherent qualities. This has an important outcome in that ANT does away with various well-

known dualisms such as human/non-human, true/false, and micro/macro, seeing them instead as net-

work effects.

In a more recent development in ANT, which is sometimes referred to as post-ANT, there is a stronger

emphasis on self-reflexivity, which sees ANT reflecting on itself. Such self-reflection is expressed via the

multiplicity, fractality and complexity of the phenomena under consideration. Multiplicity means that

there may be several versions of the same phenomenon, such as the instance of the same illness in dif-

ferent bodies that figure in the case studies of the sociologist Annemarie Mol,113 or deployment of the

same software system components in different environments, which creates the portable clusters of

agents and relations that allow focusing the attention on the effects of difference. The fractality para-

meter implies that the versions of the phenomenon may be related, but not on all points or in all di-

mensions. In this sense, an example of a coastline drawn by Melanie Mitchell can be a good illustra-

tion of the fractal. The three images of the coastline – as viewed on the satellite image, observed from

the nearby hill, and seen from up close when standing on the shore – appear similarly as rugged lines.

In the first instance, the coast is rugged on a large scale, with inlets, bays or peninsulas; in the second

and third cases, the ruggedness is still present but consists of the elements of a smaller scale.114 Such an

effect of the self-similar structure is what fractality refers to in the case of ANT – each of the compon-

ents in the current actor-network conjunction can be exploded to reveal a self-similar structure within.

In other words, self-reflexivity extends as a horizontal and a vertical series: any one given instance is

self-same to the series of itself on the same level of abstraction, and simultaneously to the series ex-

tending downward, the instances that can be found inside it, and upward, the ones it is a constituent

part of.

In real-life scenarios, multiplicity and fractality co-exist in various entanglements, which creates com-

plexity as a third dimension of this structure, and concomitantly, as Annemarie Mol emphasises, com-

	112	 Law in Law and Hassard, 1999: 3.

	113	 Mol in Law and Mol, 2002: 247.

	114	 Mitchell, 2009: 103.

75

plexity is the third major concern of ANT.115 Due to the multiple and fractal specificities of the ex-

amined phenomena, they are rife with local knowledge, which concentrates on one instance of a series,

yet may not be relevant to other instances of the series. The specificity is tactical, that is, no one in-

stance is a complete replica of another one, and yet strategically the parts of the system adhere to the

general pattern informed by the production systems’ epistemic infrastructure. Hereby, the present re-

search links the fractal principle to the auditability requirement of the production context, seeing the

self-sameness as the hope for avoiding the confrontation with the full force of complexity which would

eradicate any possibility for planning and review. Similarly, to be consistent, it seems plausible to gener-

ally refer to the entities that the system consists of as agents rather than actors. This is possible because

the term agent can be used to refer to the scalable analytical unit, which can be kept consistent with the

current abstraction layer, and therefore can be flexibly adjusted according to the fractality principle.

In alignment with the post-ANT critique, I see ANT as a framework, but not as a theory or method. In

the first instance, ANT can only be considered a theory in a minimal sense due to its design, which is

meant to be theory-agnostic. Second, ANT is not meant to be a method, since its ‘ruthless semiotics’

does not let ANT make any specific recipes as to what the researcher has to do. Instead, as the sociolo-

gists Christopher Gad and Casper Bruun Jensen explain, the implication is that relevant actors, and

what it is that comprises a network, can only be determined based on the understanding of the prac-

tices, the relevant local categories and differences. This makes it impossible to carry any assumptions

outside of the field, before research takes place, or offer any concrete methodological propositions out-

side of specific cases.116 The only motif that relates it to any method is that it reminds the researchers

that whenever they go, they are likely to find clusterings or ‘hybrids of action’ comprised of actor-net-

work relations, rather than any definite entities. In other words, ANT, to Gad and Jensen, gains value

when it forms specific constellations with matters of empirical study,117 creating the interpretation of

knowledge as practice.

As an upshot, this thesis does borrow some specific ideas from ANT, such as fractality, which is utilised

in Chapter 5 to understand scale-free systems. In the present research, I am less interested in comput-

ing or management as symbolic manipulation and rather focus on developing a workable model for

abductive analysis. For this purpose, it is important to understand how knowledge is assimilated and

valorised through nested problem spaces of various applications of tentative propositions, which makes

	115	 Mol in Law and Mol, 2002: 246.

	116	 Gad and Jensen, 2010: 76.

	117	 Ibid.: 75.

76

it more urgent to think not in terms of actors and networks, but rather in terms of agents and systems.

Agents are primarily used here to be able to describe the principles of stakeholder involvement with

the feedback criteria of the problem space, and the notion of the system as a topological unity is em-

ployed to grasp the mechanisms of boundary-making practices. Furthermore, it is in the project’s best

interests to follow a methodological schema proposed by operations research in IT or DevOps, which

itself is already a hybrid discipline emerging from operations and development methodologies, to be

able to comprehend the tangible qualities of frameworks it creates. In this sense, rather than adding to

this recipe, ANT works as a robust set of guidelines without the obligation to aim for a description of

their precise configurations as a research objective.

Goals and patterns of the problem space

Providing some further details on the notion of the problem space at this point seems necessary. As a

general working definition for this research, the problem space is the space in which the search for

solutions takes place, alongside the iterative process of articulation of the problem itself. The early re-

cognition of the importance of the problem space as a problem-solving device belongs to Herbert Si-

mon, who suggested that ’every problem-solving effort must begin with creating a representation of the

problem—a problem space in which the search for the solution can take place.’118 This space contains

the conditions of possibility for solutions, largely avoiding carrying the assumptions or validating the

problem with an external referent, such as through the evidence already contained in the epistemic in-

frastructure. Rather, since the solutions cannot be final and there can be no certainty about the

premises, the best option is to work with a model for abductive manipulation. Such a model is created

through an iterative selection of situations that allow the potential resolutions to evolve relative to the

problem, which is also simultaneously undergoing transformation.119 The two pertinent characteristics

of the problem space that are necessary to mention here are its goal orientation and repeatability.

Goal orientation presupposes that the becoming of the problem space usually begins with a goal,

which may often be tentative, yet the goal is important for initiating abductive modelling, through

which then the goal is further adjusted. By convention, the goals are complemented in the problem

space by the givens and operators (Fig. 5). Due to the changes that the three components undergo, the

problem space, described in terms of relations between them, changes too, which makes the problems

re-emerge in any moment where the system finds itself in misbalance. The goals can be defined as the

definitions of done or conditions that have to be met for the problem to reach its desired end state.

	118	 Simon, 2019: 108.

	119	 Lury, 2021: 208.

77

The givens are the facts that describe the problem. And the operators are the actions that create the conti-

nuity between the givens and the goals.120 I apply these three CM terms equally for software produc-

tion, to acknowledge that the negotiation of the problematics in IT products is generally underpinned

by a similar logic. The givens of software products evolve as new hardware or technical styles emerge

through invention or innovation. The new goals emerge as the new releases of products get tested and

rolled out, and the new use cases come back to production, opening up opportunities for optimising

the system’s technical functioning. Changes in givens and goals give rise to new operators, such as

methods and concepts, which are used to update the definition of problems to situate them according

to the changing requirements of the problem space.

 

Fig. 5. Component relations in the problem space of production.

Importantly, the progression between the three components is not linear: the circulation, or the process

of mutually abductive definition of problems and their spaces, can play different roles. Not only do the

problems themselves have different capacities to employ the various properties of circulation, but the

reverse is also true: the different forms of circulation support the explication of problems.121 Goals can

change due to market pressures or organisational changes, and can lead to changes in givens and oper-

ators. The change in the givens, such as rapid growth of computational capacity in software, can bring

about organisational changes. The failure of organisations to respond promptly may lead to major fail-

ures, as in the case of historical crises in IBM in the 1950s. Yet, of course, the misbalances can be

evoked by the changes in operators too, as in the examples of the Taylorist style of scientific manage-

	120	 Lury, 2021: 2.

	121	 Ibid.: 48.

78

ment, the emergence of the Human Relations segment of organisation studies, or the movements for

refusal of work, such as those advocated by the Italian Autonomists.122 As one of the examples later in

this section will illustrate, a change request which may emerge among the stakeholder groups may not

be a problem itself, but could rather be treated as a symptom, through which the composition of its

nested problem space begins. A first draft of the actual problem can be formulated in the process of

data collection, staff interviews and discussion of requirements.

While the whole of the problem space is too difficult to represent, the goal orientation makes it pos-

sible to create a visualisation, contrary to Frederick Brooks’s software invisibility observation. Creating

the problem in these conditions could rather be described via the analogy with the late 19th-century

study of movement done using laboratory photography, where the recordings of movement phases

were superimposed into a single image (Fig. 6). Likewise, the superimposition of the problem in its dif-

ferent moments of becoming onto the problem domain creates a range of inquiries into the problem

space that does not aim at creating a complete external representation, but only the movements, as the

image of the pelican shows, pertaining to a specific activity. The image distinguishes the movements of

the pelican linked to flying without adding any other potential pelican movements, which would have

created the excessive complexity of visualisation. The goal orientation in this sense provides a more de-

tailed account of the problem by nesting the problem space within a larger problem topology terrain.

	122	 For the in-depth critical discussion of Taylorism and Human Relations, Cf. Hanlon, 2016: 7. For Autonomia,

Cf. Virno, 2004: 9 ff.

79

 

Fig. 6. E.J. Marey, A photo of a flying pelican, circa 1882. Source: Wikimedia. https://commons.wikimedia.org/wiki/File:Marey_-_birds.jpg

Since a problem does not disappear from the problem space once it has been addressed, but rather be-

comes one of its properties, it is implied that the terrain is largely constituted not only by the solutions

to problems but by the past solutions and future problems, as well as the possibilities of the future solu-

tions and the problems addressed before. Therefore, it is important to be able to retrace the steps, in

case the problem arises again or a new instance of a problem case presents an opportunity to see why

the previous solution is no longer relevant. Repeatability in this context is important for abductive ma-

nipulation because it allows adding a variety of states to the problem space, providing tentative, uncer-

tain solutions to the problems that are not fully graspable simply for the reason they have not yet fully

occurred. The repetitive movements within the problem space leave deeper traces and suggest the to-

pological patterns which eventually transform into infrastructural features. Needless to add, repeatabil-

ity is also important for making the system available for audit, since every repeatable procedure can be

included as a standard in the project’s technical documentation and version log, making it accessible to

search engines or abbreviated for reports through the regular expressions.

Epistemology as the infrastructure of already known

Since any organisational change modifies the configuration of the problem space of production, stabil-

isation of what exactly constitutes the matter of research is the top priority. For this purpose, the be-

coming topological of the problem space becomes an indispensable consideration, since it would allow

tracing the properties which remain invariant among the numerous transformations. Thus presented,

the unexpected can still be reasonably accounted for, falling, as it does, within a certain territory that

has some representation on the map of the overall terrain. Yet, dealing with problems purely as the en-

80

tities of a problem space would make the method appear detached from the reality of the domain. To

compensate for this pitfall, the composition of the problem space of production has to go hand in

hand with its epistemic infrastructure, which should be most appropriately defined in relation to the notion

of epistemic culture in a theorisation of the anthropologist Karin Knorr-Cetina. To Knorr-Cetina, an

epistemic culture has an infrastructural quality in its capacity as a suite of principles for organising

knowledge, which serves as the means of the orientation of understandings, explanations, justification

and beliefs about what is known rather than the content of the known itself.123 Likewise, the epistemic

here assumes an infrastructural quality because it provides material support for knowledge, which in

software production systems usually comes in the form of technical documentation, production reports

and company policies.

Despite the materiality of its being in the world, in the shape of documents, code binaries and data-

bases, epistemic infrastructure does not necessarily imply that the knowledge it reflects and situates is

fixed in place. Instead, the infrastructure as the idea of what is possible is iteratively composed together

with the problem space, which is the space where the possible may take place. Yet, the application of

any method does not only bring the outcome in terms of solving the problem but also in terms of the

impact the act of problem-solving has on the problem itself. Such impact creates an adjustment in

what is known about the problem, which is fed back via the integration movement into the epistemic

infrastructure. To propose a method, the problem has to be put together first, yet the requirements that

can never be written fully in advance make it impossible to outline the full idea of what the problem is,

what it could be, or is going to be, and some part of the requirements is always located on the other

side, on the yet-unsolved part of the problem. The process of composition thus is not something that

comes from either the inside or the outside of the problem but rather is shaped across the space which

emerges in the act of problem-solving.

As part of my field duties, I was often searching through the archive of Jira that our production team

used for the past three years for technical support work. Looking through Jira tickets, I frequently

found that many tickets from the past were either still open with requirements written up to varied de-

grees, or had to be reopened, as the issues that were addressed years ago had resurfaced once more.

Some problems were associated with whole clusters of tickets, which gave a manifold presentation of

previous work. The linked tickets often contained accounts of different aspects of the problem that had

been dealt with by different staff members. The outcome of this archival component of my inquiry

into the software system led me to conclude that the reason why the tickets on Jira are ‘closed’ rather

	123	 Knorr-Cetina, 2007: 361, 363.

81

than ‘deleted’ when the work is finished is precisely that the problems do not vanish completely after

they have been addressed. Rather, they transform into potential new givens or operators, partly mer-

ging into the ways of solving similar problems as they arise. With every new ticket opened, the system,

as an epistemic infrastructure, moves closer to a more accurate account of the problem space of the

product that it services.

Through working on cases like these, I became increasingly convinced that Jira is capable of providing

a deep insight into the epistemic infrastructure of the organisation’s software system and the workflow

– in other words, a tool that is perfectly suited to learn about the organisation itself. In my fieldwork,

Jira played a crucial role in capturing feature requirements, maintaining the acceptance criteria and

evaluating the delivery of customer value, thereby encompassing all the aspects of the problem space

of production. Importantly, these activities were happening not in a linear progression, but rather

based on support tickets, which ensured that each piece of work was assessed in its context, and in rela-

tion to other work. As such, Jira warranted the terrain of the possibility for the emergence or re-emer-

gence of problems because the documentation of the organisation’s goals and budgets, as well as re-

ports on required computational and human resources, could all be accessed together. Turning to a

more detailed discussion of a support ticket in the problem space of production in a later chapter, I

find evidence that the ticket is important both for the deployment and the integration procedures be-

cause it is located on the boundary between the business and the technology value streams, interfacing

with both.

Studying the uncertain domain
Having seen the key principles of composing problems in the previous section, it is now time to turn to

the practical way of modelling the production design lifecycle, in the context in which the problem

composition takes place. It is important to recognise that such modelling is necessary when initiating

case studies of a given production system and is also an ongoing procedure that is capable of recog-

nising change and adjusting for new data as it comes in through the problem space. This section looks

at the two approaches that this study’s way of creating models benefits from – diffraction and abduc-

tion. Within a combination of these two methods, diffraction makes it possible to occupy a multiple

and more-than-human notion of the system’s operations. Here, diffraction is an opportunity to employ

queer theory as a way of thinking differently, and including the body, performativity and affective di-

mensions in the study of DevOps. The other ingredient, abductive modelling, helps to preserve the ig-

norance while still being able to hypothesise, which is essential to the study of software as something

that is rapidly changing and presents a constant risk of radical complexity increase, able to crush any

approach which is excessively hard-bound to its underlying assumptions.

82

Queering DevOps

The risk faced by the technical DevOps literature, despite the adoption of such situated analytical

frames as team topology, is to get entangled in a reflexive epistemology that maintains a sharp distinc-

tion between the software and the rest of the constituent parts of the production design lifecycle, with

a routine emphasis on productivity. For example, technical innovations often occupy centre stage, giv-

ing little consideration to any of the political aspects of production, such as why the software is pro-

duced in the first place, or what kind of ethics are at stake. The section considers the two ways in

which the relation of the researcher to the research can lead to a methodological rabbit hole, through

exercising either an absolutely relativist or overly representationalist accounts. Absolute relativism leans

towards studying relations without any attention to the role of the researcher, while the excessive prior-

itisation of representation, conversely, tends to rely on external evaluation of phenomena under study,

and pays less attention to the relations, which places it at risk of missing the inconsistencies that super-

imposition of multiple viewpoints may reveal. At this point of discussion, I contend that the diffractive

approach, inspired here by the thinking of the philosopher Karen Barad, provides a third view, which

acknowledges the active participation of the researcher, without, however, the urgency for the situated

knowledge to undergo an external validation. Both reflection and diffraction approaches, Barad ex-

plains, come from the definitions of the optical phenomena, yet differ in that the former predomin-

antly deals with mirroring and sameness, while the latter ‘attends to the patterns of difference.’124 Re-

turning to the model of a production system that the present study aims to create, the complexity ef-

fects are best identified by adopting a view from multiple vantage points, which could include com-

munities of practice and the policies of specific organisations.

Diffraction and reflection. The term diffraction originally comes from natural sciences, where it de-

notes the distortion and interference of waves as they come into contact with other waves or encounter

obstructions. To diffract, in its traditional use in optics, means to aim apart in different directions.

Working in the intersection of particle physics and gender studies, philosopher Karen Barad shifts the

principle into the taking together-apart of human and non-human phenomena by placing them into

the plane of the symbolic-material becoming of matter. Diffraction is not the same as critique, and in

fact, it’s opposite because it works by affirmation rather than negation, and seeks to identify the pat-

terns of interference which appear when things get taken apart and superimposed once again. As

Barad puts it, ‘diffractive reading might be understood as a form of affirmative engagement … A dif-

fractive methodology seeks to work constructively and deconstructively (not destructively)…’125 This, in

	124	 Barad, 2007: 29 citing Haraway.

	125	 Barad, 2014: 187.

83

Barad, makes it possible to identify previously inaccessible patterns of understanding and becoming of

matters of negotiation. In a similar vein, the present study’s application of diffraction is an attempt at

queering DevOps which questions the reflexively normative vantage points which prescribe a specific rep-

resentation of operations, without recognising the positions that are being negotiated throughout the

software production process. The queer view makes it possible to grasp the uncertainty as a situation

where no terms exist independently of the relation,126 and the terms are only defined in their coming-

together, rather than as a mere collection of moments of production captured by productivity metrics.

Breaking things apart is an essential constituent of the CM – or rather, to be able to compose, there

has to be a diffractional viewpoint that recognises how the opposite qualities come together within.127

For example, a diffraction pattern helps to visualise the connections among the political orientations of

agents within the problem space and the associated epistemic infrastructure, which is not capable of

political action of its own, and, consequently, does not counter or support any epistemological posi-

tions. Diffraction is a useful counterpoint to reflection: both phenomena come from optics, yet reflection is

only a mirror image, caught up in the loop of finding the places of similarity. By contrast, diffraction is

interference, or something that arises from intersections and differences, and therefore makes it pos-

sible to identify the differential patterns.128 Focussing the research method on diffractive patterns ex-

hibits the entangled and interactive processes of not only the modes of being but also the emergent

nature of the modes of knowing. Therefore, it becomes evident that the study of the software produc-

tion system cannot be taken as the study of any of its parts, deployment, integration, criteria or stake-

holders.

Likewise, research that merely focuses on the system itself without simultaneous inquiry into the meth-

ods of its analysis is at risk of falling into some of the pre-existing hegemonic epistemologies. Instead,

all parts of the system have to be taken together, as an apparatus of investigation. The notion of an ap-

paratus, which has a complex history in various methodological schemas, is taken here in terms of its

dynamism as a specific material configuration that goes beyond a mere static instrumental embodi-

ment and is actively engaged in the iterative reconfigurations of research matters in their epistemolo-

gical, political, and other sorts of becoming.129 Because of such a character of involvement, the under-

standing of the phenomenon itself proceeds through cycles, where each preceding understanding en-

	126	 Barad, 2011: 154.

	127	 Barad, 2014: 174.

	128	 Barad, 2007: 71.

	129	 Ibid.: 142.

84

folds into the methods of research, which in turn results in sharper investigative tactics.130 Similarly, the

design lifecycle model at stake in the present research is not a mere means of passive accumulation of

knowledge acquired in the field, but precisely a continuous process of design of the production system,

through the entanglement of methods with the process of inquiry into operations. The cyclical motion

entails deploying existing knowledge into the problem space, which in turn feeds back, through the

process of integration, into the epistemic infrastructure, being actively involved in its re-articulation.

This constitutes the extended understanding of the process of Continuous Deployment as described

by its originator, DevOps practitioner David Farley, discussed further in the next chapter.

Risks of reflexivity. To understand where my research stands in relation to reflexivity, in its capa-

city as a method of constructing evidence through a systematic account of the role of the researcher, I

think of its various manifestations through the discussion of the sociologist Steve Woolgar. In Woolgar,

reflexivity is generally construed as an optic that uses the figure of the researcher as the means of vari-

ously splitting the research domain into the three areas: phenomena under study, the part that carries

out the study – an individual researcher or a research body – and the matters of mediation with the

mediating entities present as documents, but also as other human or non-human agents. For example,

an object can be seen as an underlying reality, and the document is its surface appearance. Reflexivity

usually relies on the adequacy of representation to consider either the distinction between representa-

tion and object, or the similarity between them.131 Such a necessity to maintain or verify the relevance

of representation to the object can lead to either of the two extremes.

In the first instance, it risks absolute relativism, which in essence has little to offer in terms of concrete

research outcomes because it does not allow for any invariants, present in operations research in the

form of standards, best practices, policies or regulations. In such a view, there is no longer an option to

account for the social conditions of research in terms of the identity of the knowers, that are high on

the agenda of the queer or feminist lens. Since the knowing subject is not in the picture, their identity,

through their exclusion from the inquiry, gets substituted with assumptions. In the second instance,

however, the reflexivity may go the opposite way and bring overly fixed ideas about the positions of the

researched and the researcher. This might mean disqualifying any new knowledge that the inquiry may

yield by giving too much priority to what is already known about the problem. The risk of such an ap-

proach is that dealing with representations, instead of the matters of research themselves, may make

the problems difficult to detect due to the isolated nature of the models’ system of reference. Given

	130	 Barad, 2007: 73.

	131	 Woolgar in Woolgar, 1991: 20.

85

such risks, the diffractive approach, as described above, can provide a third path which affirmatively

engages with the figure of the researcher and considers the local practices on their own terms. The

queer diffractive view, as Chapter 1 discusses in terms of its performativity, allows me to investigate the

research through the act of cutting-suturing engagement with the entanglement of its differences.

Diffraction, dysfunction, DevOps. Reflexivity as a method for locating the researcher and organ-

ising the associated relations, therefore, does not imply any problems in and of itself but can lead to

problems depending on its use. This can be illustrated with the example of Frederick Brooks’s dilemma

of software invisibility we saw in Chapter 1. In terms of reflexivity, Brooks’s conceptual integrity

schema places the researcher as an external referent, which makes it impossible to construct an ad-

equate representation of the software production system, since, due to Brooks’s own admission, it con-

tains multiple diagrams at once.132 The complexity of a software system appears as a conjunction of

differences which stand in opposition to the uniformity demanded by Brooks’s centralised administrat-

ive schema, forbidding a disinterested view from nowhere as reflection without practical or affective parti-

cipation. The fact that software systems are essentially hard to understand makes them opaque, or as

we saw previously, their essential queerness makes them appear differently depending on the context

and reflexive research positioning. In this sense, the software invisibility appears as a dilemma to the

conceptual integrity paradigm, yet it can be effectively modelled when approached diffractively from a

diversity of vantage points. In this case, the fact that a system contains multiple diagrams at once,

which is a problem to Brooks, would not appear as a problem to a production team using an approach

which is open to diffraction, such as Agile.

Agile methods can, in large part, address the reflexivity dilemma through the disruption-based work-

flow, which may partly explain the popularity of this production methodology, at least in the granular

day-to-day production activities. A key diffractive feature of Agile is that instead of having to bring

into production the fixed references, such as rigid requirements or architectural blueprints to validate,

it works by affirmation, evaluating the specific material entanglements directly.133 Agile makes it pos-

sible to pursue the diffraction method’s agenda to identify which differences matter, how and for

whom, rather than becoming a view from nowhere. As Barad puts it, diffraction gets past the representa-

tions and instead offers a ‘critical practice of engagement, not a distance-learning practice of reflecting

from afar’.134 In terms of its orientation towards disruption, as Chapter 4 will explain further when dis-

	132	 Brooks, 1995: 185.

	133	 Barad, 2007: 87.

	134	 Ibid.: 90.

86

cussing the theorisation of desiring-production of Deleuze and Guattari, Agile makes it possible to en-

gage with the production’s epistemic infrastructure and problem space through the discrete parts

evolving within the topology of the capitalist plane of immanence. Due to the discreteness of parts,

Agile makes it possible to create a software system that would have dysfunction as a necessary precon-

dition, induced both by the capitalist value relation and by the control society governance regime. The

sphere of capitalist value relations requires continuous system breakdown to create technologies, pro-

cesses and infrastructures to reproduce and scale itself through intensified circulation. The domain of

governance, through its struggles to maintain control, creates the disruption-oriented environment of

distributed audit, which uses complexity as a pre-condition of its fractal construction.

Thinking about DevOps with diffraction reveals that the two-slit point of view from development and

operations enables a more direct and specific overlay of the topology of the software production sys-

tem with the topology of business operations. The resulting combined terrain opens up the continuities

that bridge the gaps between the technical components and the different parts of the knowledge and

value circuits, allowing it to compress the repetitive acts via its ability to codify temporality into its in-

frastructural schemas. Furthermore, the intentional design of the organisation’s communication lines,

as per Conway’s Law, along the architectural seams of the software system is effective enough to ad-

vance the required production model without the need of writing a precise list of always already out-

dated requirements beforehand. Instead, it renders total control unnecessary through the strategic en-

dorsement of communication that produces desired organisational effects, characterised by either self-

organisation or cooperation.

Creating abductive models

How is it possible to reason about the production model in the absence of a stable backdrop against

which the decisions can be evaluated? The research logic suggests the two common ways of reasoning,

deduction and induction, neither of which can, however, be relied upon in extreme uncertainty. Thinking

with the originator of pragmatic reasoning about problems, Charles S. Peirce, deductive reasoning re-

quires a certain organisational context to propose a theory that would form the basis of the research

trajectory, against which the outcomes are evaluated. Inductive reasoning, in contrast, requires a rule

to evaluate the cause and effect, usually by looking at individual interpretations that build up to form a

generalised account.135 Peirce appoints deduction as non-ampliative, in that it does not allow broaden-

ing by adding new information, and thus certain: given the premises are true, the results can also be

guaranteed to be true. Reversely, induction is ampliative and uncertain, with results often requiring fur-

	135	 Peirce, 1955: 152.

87

ther testing.136 To go one step further and allow for hypotheses where neither the premises nor the out-

comes can be fully relied on, Peirce offers a third way, abduction, which does not aim at warranting the

truth, thereby making it possible to preserve the uncertain and unreliable knowledge in its uncertain

form. Deduction and induction are the staple tools of any exercise in logic and are relatively low in

their computational complexity. Abduction, on the other hand, may be more demanding because it is

non-trivial and requires a leap of imagination from observation to understanding the intentions. Much

relied on in real life, abduction has no ground for being valid from the strictly logical point of view,

since instead of inductively arriving at solutions it affirms the consequent through guesswork. Abduc-

tion is the entertaining of a hypothesis, or a proposition, made without prior knowledge or testing, that

an observed phenomenon may take place under different circumstances.137 And since the initial pro-

posals, specifically in strategic implementations of software production systems, are frequently in no

position to carry out or access prior knowledge, abduction plays a central role in theory building.

Similarly to induction, abduction serves the purpose of expanding knowledge beyond observation, al-

beit in a different way. While induction infers about the future course of events based on what is

known to have happened, abduction concerns the unobserved or the speculative causes of the ob-

served, which gives way to the manipulation of events. What use can such an anti-logical way of think-

ing have in a research method? While it may strike the researcher as overly relaxed, abduction offers

options that other, more logical tools do not. For example, that leap of faith opens a pathway for shift-

ing from inductive to deductive reasoning within the bounds of one argument, which in turn makes it

possible to iteratively build theoretical frameworks as they evolve together with empirical research and

engagement with documentation and other references, something that makes abductive logic import-

ant in business analysis. Moreover, like induction, being ampliative, abduction approaches new data,

often conflicting and contradictory, that comes in from field research, without any assumptions estab-

lished beforehand.138 In the formal tradition of case study research, abductive logic is commonly used

to enable the researcher to explore the social phenomenon through the eyes of the social actors. This

endeavour is, however, not any less risky in software research than in any other sociological and cultur-

al studies: after all, the signification would not be the same in different organisations, even where the

general context is similar, which makes it necessary for the researcher to rely on the signs without being

sure what they mean. Abduction makes it possible to rapidly chart the problem space and to infer

	136	 Peirce, 1955: 197.

	137	 Ibid.: 152.

	138	 Lury, 2021: 159.

88

based on what could be guessed about the reasons for events, rather than on the requirements written

in advance.

As the analogic move that is characterised by its openness to exploration, creativity and curiosity, ab-

duction fosters the interactions between the disciplines that may otherwise be kept separate. As Peirce

notes, abduction makes it possible to expose the nature of the phenomenon by making inferences from

the observed data or events to existing knowledge to understand their patterns. In Peirce’s example,

since in the abductive form of inference ‘the hypothesis cannot be admitted, even as a hypothesis, un-

less it be supposed that it would account for the facts or some of them,’139 the reasoning would proceed

in the following sequence: ‘The surprising fact, C, is observed; but if A were true, C would be a matter

of course; hence, there is reason to suspect that A is true.’140 The repudiation of an inductive move in

the inference introduces guesswork, which opens the argument to creative solutions. The situation of

software production invites using such a type of inference on a routine basis. The reasons for that

could vary, from the opacity of organisational communications or the gaps in institutional memory to

the ambiguity of behaviour in users of the software. For example, some facts might have been commu-

nicated to the narrow circle of staff without informing all of the staff associated with them. The act of

communication might have happened years ago, as is sometimes the case when dealing with system

bugs that were discovered after a new release or upgrade. Institutional memory may also have rup-

tures, which makes current staff ponder about some decisions and past solutions, which may have been

left without proper documentation and thus require a leap of faith to imagine what they were.

As a scant-resource strategy, abduction acts as a response to the ignorance problem – a situation where

the cognitive target cannot be reached with current knowledge. The usual ways of dealing with ignor-

ance are either by attaining additional knowledge, by making peace with the absence of knowledge,

even if temporarily, or, lastly, by employing abduction.141 In the latter, the agent has the grounds for ac-

tion, even without giving any assurance or evidence that the ignorance is or is going to be overcome.

One of the benefits, and, as Peirce contends, the inevitable effect of abduction, is the emergence of

models and diagrams. Peirce ascribes a great deal of importance to diagrammatic thinking, which pre-

supposes that the phenomena are constituted by the mind in a creative and model-based way. In other

words, there are essential and indispensable perceptual presentations, that are presented to the mind’s

eye and cause the bodily responses to the phenomena which are not yet present in the external reality,

	139	 Peirce, 1955: 151.

	140	 Ibid.: 151.

	141	 Magnani, 2009: 65.

89

to be able to derive any preliminary ideas of what the actual perceptual encounters might be.142 The

philosopher of science Lorenzo Magnani explains that while most of such affective diagrammatic in-

ferences are a part of routine cognitive behaviour and do not have much importance, they can also

cause significant bodily responses, and all of them should be understood as valid as the scientifically

employed abductive inferences of any other models. The model-based abduction is understood by

Magnani as extratheoretical, or opposed to theory-based abduction, and arises from the fast and un-

controlled knowledge-producing function of the body. The perception here appears as a tool for rap-

idly retrieving and grouping knowledge previously organised by different more long-term inferential

processes, producing ideas which are so seamless and habitual that they appear as matters of fact.143

 

Fig. 7. The abductive problem negotiation event. Adapted from: Magnani, 2009: 16.

A general schema of abductive reasoning that happens throughout the negotiation of meaning in the

problem space of production can be adopted from Magnani as shown in Fig. 7. The diagram indicates

abductive inference as a relation between the problem space of production and the incoming data,

such as requirements, the definitions of done and the criteria of customer value. The circuit is animat-

ed through the iterative steps of knowing, selecting and observing. Thus, the new data incoming on the

right-hand side of the diagram is used to create the plausible diagnostic hypotheses that get inductively

injected into the problem space, where it is evaluated against the other new knowledge that was not yet

assimilated and is also present in the state of negotiation. If any new data emerges during evaluation, a

deductive move back to the criteria is performed, and the cycle is repeated. It should also be noted that

	142	 Magnani, 2009: 35.

	143	 Ibid.: 35.

90

the hypothesis that is iteratively shaped on the left-hand side of the diagram is deductively verified by

going back to the data which is expected from the criteria, while it receives the abductively produced

knowledge that travels to it from the observed and through the explained. Such repetition interspersed

with adjustments makes it possible to navigate the unsound logical reasoning that, by the nature of the

process, has to deal with the defeasible incomplete information.144

The benefit of such an application of inference is that it permits the ignorance-preserving behaviour

of the agents that are involved in problem-solving. The ignorance-preserving quality here points pre-

cisely to the fact that abduction is not a valid logical inference, and therefore, cannot produce depend-

able knowledge, but only lets creating the substitutes that bear enough relevance to suit creating the hy-

pothesis. The disadvantage to the agents, as Chapter 4 explains in more detail, is connected to the

agent’s cognitive load, and is connected to the fact that abduction clusters the series of deductive and

inductive moves, which can lead to stack overflow and cognitive shocks in agents in cases of extreme

complexity spikes.

Composition with case studies
The present research used case-based work for field data collection as the best option in the situation

of high uncertainty of the matters under investigation. Conventionally, case studies are well suited for

the phenomena which unfold as the research takes place, within their real-life contexts, especially when

the boundaries between the phenomena and their context are hard to define. Having an identifiable

beginning and end, each case study affirms the changing environments qualitatively by constructing

preliminary suggestions and tentative theories in parallel with collecting and evaluating the data. Case

studies are not limited to observing, measuring and collating data for cross-case analysis. In my study,

the cases were real-world scenarios that I, as a product lead and a day-to-day project manager, used to

constructively intervene in the organisation’s interactions in the problem space of production to main-

tain the continuity of communications and project deliveries. The application of the compositional

method in case study research has made it possible to achieve sufficient parsimony of means, largely

through the use of a repeatable process, discussed later in this thesis, as the production pipeline. The

Appendix lists the most prominent cases I was involved in throughout my work at JX.

Besides the production pipeline, which applied to the whole team, I had specific protocols that I per-

formed personally within each case. At the case initiation, I carried out the rapid knowledge acquisi-

tion phase to get as fast as possible to a stage where I could create the first dummy or a sketch of the

	144	 Magnani, 2009: 16.

91

goals, requirements and methods of study. As soon as these were sufficiently clarified, I began the work

on the case information architecture in parallel with the work in the field. I saw this phase as com-

pleted when the application of methods returned some first actionable knowledge. For example, in the

case of selecting a software package for the film festival screenings,145 the initial phase could be seen as

passed when the data gathered via a combination of surveys and software vendor demos was substan-

tial enough to be presented and evaluated across the organisation’s departments. In Steve Maguire’s

terms, and as the rest of the section elucidates, the case-based work makes it possible to cut through

the complexity of cases by reducing the operational data to the minimum which is required to make

valid predictions accurate enough to be useful in the body of casework. In other words, filtering the

knowledge which is useful for the epistemological grounding of the case, from which all the subsequent

pertinent evaluations can be made.146

Such casing suggests that case studies need not be interpreted nomothetically, or in terms of general laws,

to establish the causal models based on the accounts of associations between the variables. Instead,

causality is understood as complex and contingent. This makes case study research appear, in the

definition of sociologist David Byrne, as an ideographic project, taking each case as a unique instance to

be understood on its own terms, and casing as an act which does not make peace with pre-given data

sets or pre-constituted assumptions.147 The specifically topological flavour of case studies describes soft-

ware systems via establishing the spatially continuous entities, such as the variables, that are simultan-

eously present in the different facets of the complex domain under study.148 For example, the constella-

tions of people and technologies within the continuous planes of relations – the market and the organ-

isation – become possible to grasp analytically via the variables such as the requirements and project

stages. The continuities aid in finding a balanced approach to the problem of analysing the systemic

complexity, where it needs to be sufficiently generalised to provide the grounds for the cross-case com-

parisons or drawing conclusions, while not being overly simplified to still be able to define all of the ne-

cessary conditions for the process of change.

The problem in developing the topological approach to case study research, as I learnt from the facts

of my empirical study, is that the cases tend to be elusive, with the boundaries becoming blurred over

time and requirements diminishing in their importance in the face of looming deadlines. This may ex-

plain the importance this study sees in spelling out the epistemology of cases, or how cases organise

	145	 See Appendix, CS1.

	146	 Maguire in Allen et al., 2011: 84 citing Moldoveanu, and Boisot and Child.

	147	 Byrne in Byrne and Ragin, 2009: 2.

	148	 Lury et al., 2012: 21.

92

what is known about the problem, in terms of the agent’s expectations about what kinds of knowledge

can be derived from the data and information available within a specific production context.149 The

ontological position of the present study is understood via Barad as discussed above, in relational terms

of the agential realist framework.150 The emphasis on epistemology throughout the thesis does not

mean that the predominance of relations in defining the terms is here less important ontologically, but

rather that thinking about the epistemology of the production method has played a greater role in my

fieldwork. Since the ontological investigation is not the primary focus of my study, I generally align

with Knorr-Cetina’s outlook on the proliferation of local ontologies among the various levels of soft-

ware abstraction, with the agents coming in a variety of forms, from standalone entities, such as ex-

perts or instruments, to firms, strategic alliances or whole industries.151 As in the cognitive theorisation

of Max Boisot, the agent can be present at any level as a ‘system that receives, processes, and transmits

data with sufficient intelligence to allow learning to take place,’152 yet, as in Barad’s agential realist ac-

count, the emphasis would still have to be on the relationality, rather than on what kind of agencies the

agents contain. As Barad puts it, ‘agency is an enactment, a matter of possibilities for reconfiguring en-

tanglements.’153

Furthermore, epistemology in production is inextricably bound to the notion of audit fit for planning

and review within extreme complexity situations. The abductive leap in developing a method suggests

that relations and processes should be prioritised over thinking about objects. The latter only congeals

as results and manifestations of such relations and processes, and thus can be largely used for retro-

spective evaluation of past strategic decisions. My agential realist stance assumes that even though soft-

ware complexity is socially negotiated, the materials gleaned from the concrete cases cannot be dis-

counted in favour of any particular theory. Technological complexity as a social phenomenon does not

merely present a difficulty in understanding the software systems by the human operators, but also has

a range of implications for the entire production lifecycle, including stakeholders and the system’s tech-

nical parts, which makes it inextricably bound to both the process of generation of value in software

capitalism and the society’s regimes of governance. Knowledge thus is active, it decisively posits things

in the real world. The method appears not only as something malleable enough to accommodate the

study matter, but also as the assertion of action onto this matter, whereby using a verb, such as casing, to

define a method of composing the cases as they get formalised and evolve within the situation of

	149	 Boisot and Canals in Boisot et al., 2007: 19.

	150	 Barad, 2011: 154.

	151	 Knorr-Cetina, 1999: 253.

	152	 Boisot in Boisot et al., 2007: 8.

	153	 Barad in Dolphijn and Tuin, 2012: 54.

93

knowledge labour, seems appropriate. Such a method, iteratively developed through the actions of

capturing, queueing, composing or sorting, is mutually epistemic and ontic because the act of doing the

method organises knowledge about the world together with the aspects of the world itself. The act of

casing for my research is a way of rehearsing a responsibility in such doing, in the way that would bring

a sense of rigour and accountability into the research practice.

From complexity to parsimony

During my fieldwork, I have adhered, as rigorously as the institutional ecology would allow, to the

qualitative comparative analysis (QCA) case study framework for case studies developed by the sociolo-

gist Charles Ragin. QCA has been effective because it has allowed me to balance the knowledge de-

rived from casework with the existing knowledge base and the change request fluctuations incoming

from the stakeholder negotiations. QCA presupposes that it is necessary to gather in-depth insight into

the variety of cases to capture the complexity of the context and to find, through gaining a better

grasp of the problem space, the connections across cases. In the empirical case-based work, as it

evolves in the present study, the approach includes three main steps: the initiation, the casework itself

and the interpretation. Each stage represents an evolution in the processing of the case data, or, as the

sociologists Benoît Rihoux and Bojana Lobe explain, something that QCA defines as the funnel of the

complexity/parsimony continuum (Fig. 8).

 

Fig. 8. The funnel of complexity in case study research. Adapted from: Rihoux and Lobe in Byrne and Ragin, 2009: 229.

Since the present study’s challenge is to zoom into the issues pertaining to specifically technological sys-

tems and their production, the notion of complexity/parsimony continuum is used as a guide in situat-

94

ing empirical findings in the problem space of production, which makes the activity of casing inseparable

from the construction of the epistemic infrastructure that concerns a specific technological system un-

der investigation. At the beginning of each case, there is an overwhelming amount of reference materi-

als, which are, however, irregular, not entirely accessible and therefore offer little value to understand-

ing the problems. The goal at the case initiation is, therefore, to come up with a set of guidelines, usu-

ally in the form of a case report, that would propose a way to reduce the amount of knowledge and

leave only the evidence specific to the case at hand. In the second stage, the complexity is further di-

minished through selecting the variables and coming up with the core formulation of the case prob-

lem, or any underlying principles. In the third stage, there is the reverse move back to the case, where

the principle is verified through the application in the complex context of the field.154

The following example illustrates the use of the complexity funnel. In my empirical research, the case

was initiated by a failure of the physical server, which led to the business stakeholders’ concern that the

failure might have meant the inaptness of the IT support contractors. In the first stage, the initial com-

plexity had to be narrowed down by creating the initial draft of requirements and locating the vari-

ables in the form of specific actions, processes, technologies or people. Since the whole story of our

collaboration with this IT contractor was not entirely familiar to me, I set out to draft a set of require-

ments based on the existing contract, my own knowledge of the system and the discussion with the sys-

tem administrator. This resulted in a set of pain points that made us question whether the main issue

was not with the IT contractors per se, but rather with the services they agreed to provide, and which

we no longer required in the same capacity as years ago when the contract was written up. For ex-

ample, nobody seemed to use that physical server since the time of the company’s switch to remote op-

eration.

In the second stage, we collected the data narrowing it down to key variables: the remote team’s re-

quirement of easy access to archives, parameters for the automatic backups of those archives and any

service of the physical equipment remaining on site. In this stage, we have conducted group meetings

and face-to-face interviews with the aim of generating enough material to be able to come up with re-

commendations for adjusting the requirements. As a result, we found out that we need to migrate the

archives to the Google Workspace, splitting the access permissions between finance documents and ed-

itorial archives, and to decommission the old physical server. In the final phase of the case study, the

interpretation, I sought to elucidate the causal connections between the cases and which of the vari-

ables give the most data in their comparison, or which of them may contain the explanatory value.

	154	 Rihoux and Lobe in Byrne and Ragin, 2009: 230.

95

Thus, the move back to complexity was necessary and aided the understanding of the impact of

change on the continuity – what makes the relationship persist, and how the continuous relation is re-

established if the rupture occurs. Since the time when the server migration started, we have learnt that

members of staff were not using the old server due to its low performance, and instead opted for the

ad hoc remote storage solutions which were not secure and where no archival backup was in place.

When the server was moved to the cloud, a series of onboarding workshops were planned to make sure

that staff understood how to use the new cloud solution in a way that complies with security protocols.

The new file system also meant that editorial, marketing and production teams had an opportunity to

come together and agree on the folder hierarchy that would be convenient for all.

The act of casing

A case, in light of the compositional method, is present as an event of problem negotiation. It comes in

the form of a collaboration between the agents performing different types of work and has to be audit-

able. The case can involve a variety of parties involved in casework – human or non-human agents, a

member of the production team interacting with a user, a tester writing an automated test suite or an

automated backup server communicating with the database. The base requirement, however, is that

those involved in casework have a place to report to. Reporting may happen by internally produced

means such as opening, closing and progress reports, presentations, spreadsheets, documents, design

boards or development environments, as well as with the efforts of external audit such as assessment of

key performance indicators (KPIs) or other performance reviews. In the ideal scenario, the case is

tethered to the problem space of production via one or many support tickets, depending on the level

of case complexity, and similar to tickets, multiple cases can be clustered, split or nested into one an-

other. The modularity of cases makes them compatible with the bug-tracking software, and it should

be generally observed that cases are, in fact, material enactments of tickets, and vice versa, that tickets

are the means of symbolic manipulation of cases.

The activity of casing as the method of activation of the infrastructure on the one hand, and re-articu-

lation of the problem space on the other enables to achieve both autonomy of the interdisciplinary re-

search and accountability. This is possible because of the diffracted situatedness of the case, when the

epistemology is continuously scrutinised from the position of the ontological awareness, presupposing

the mutual influence between the researcher and the researched. Such processual awareness helps cre-

ate a situation of the casing, where further categorisation, cross-case analysis and any other research

procedures become possible. Casing, through becoming an integral part of the process of problem

space composition, accounts for a spatialised and dynamic understanding of the field of knowledge,

96

and no fixed or geometric construction of the argument is either desired or necessary in the context

where the ground of action itself is not stable, but drifting in response to that action.155

Speaking of the empirical application of the method, taking software products as technological sys-

tems makes the casing more specific in capturing the data and composing the case studies based on the

formulation of problems as the structural approach to what is known about them. Technological sys-

tems have many interconnected parts across the variety of components that can be located in either

the market or the organisation, and the disruptions can have echoes in many ways that would other-

wise be hard to anticipate, explain or detect. By way of illustration, the problem I encountered in my

fieldwork had been the back-end programming of the product’s code. There are two sides to this prob-

lem. On the one hand, the product was limited in its functionality and did not have many third-party

add-ons, meaning that we had to hire a contractor every time we needed a new feature. On the other

hand, we did not require new features frequently enough to necessitate hiring a permanent member of

staff who would, as the toolsmith in Brooks’s surgical team, regularly create new code.

Thus, in the cases where existing plugins required maintenance or were not working as expected, we

would suffer from the rupture in the relations between product and staff, as well as between staff mem-

bers spanning across the entire space of operation of the technological system. For example, where the

database query plugin returned, by error, the title of the journal post with unwanted non-alphabetic

characters, the piece could not be shared on social media, which meant the stop press in the editorial

schedule and disruption of work in the marketing department who could not initiate the campaign.

The inability to solve the problematic situation directly by hiring the engineer for resolving each case

individually, and the activity of casing the topology of the problem made it possible to accumulate

enough evidence for hiring the back-end engineer after the fact, with a larger backlog of items.

Managing affect

When a project’s model is created, the project managers are usually not required to use it for anything

more than clarifying relations between the workload of staff assigned to do the tasks, the task durations

or the budget allocated to them. This, however, means that a lesser consideration is given to the role of

affect – the sphere of relations that condition bodily responses and emotions. While the detailed review

of the wide and thoroughly researched body of affect scholarship is outside of the scope of the present

thesis, some brief examination of its aspects pertaining to the production process is important. The in-

terest of the present thesis here is to understand whether affect contributes to the mitigation of soft-

	155	 Lury, 2021: 131.

97

ware complexity and, in case it does, in which way it manifests on the agenda of audit and other gov-

ernance practices. This facet of my project points to a potentially fruitful study that could merit its own

future trajectory of research, yet at present, some consideration needs to be given to the idea of a dual

move that affective dimension may have in relation to the production process. This can be explained

through the ideas borrowed from the philosopher Brian Massumi, the anthropologist Gregory Bateson,

and the sociologist Patricia Clough, who have contributed to the theorisation of the aspects of affect

relevant to this discussion.

Massumi approaches affect as a pre-individual capacity for the bodily response that precedes the vis-

ceral perception, which appears as the condition of linkage without considering the linked entities

themselves.156 Affect, Massumi observes, is indeterminate and therefore autonomous from whatever it

inhabits – a ‘pure holding-together (minus the held).’157 Affect therefore precedes emotion in that it is

present as a relation, or a condition for the possibility of emotion, which emerges in conscious percep-

tion as the narration of affect, implying that the affective force itself can never be fully exhausted with-

in the sphere of emotions, and some excess always remains in the pre-individual realm. Bateson, theor-

ising the collective moment of a behavioural unity, describes affect as the cultural dimension of a hu-

man group, which makes it form and inhabit a body of its behaviour as a coordinated whole. The

unity of the collective behaviour, Bateson writes, ‘is oriented towards affective satisfaction or dissatis-

faction of the personalities’.158 The cultural aspect of affect here implies that within a collectivity, the

individual motives are grouped and balanced out to produce a consistent emotional flow which gets in-

terwoven into the rest of the production activity. Clough, thinking through the politics of affect, dis-

cusses the post-disciplinary shift of governance to manipulation of affect with the aim of producing

the subjects of value exchanges and control protocols. She comes from the definition of affect as the

‘pre-individual bodily forces augmenting or diminishing a body’s capacity to act’,159 which are open for

engagement with the technologies, including both the technologies of circulation and distribution, as

well as the technologies of control. In other words, despite its implicit and indeterminate character, af-

fect is nevertheless susceptible to manipulation by market forces, which Clough summarises as ‘capital

accumulation in the domain of affect’,160 and to the organisational framing which de facto employs af-

fect as a mediating mechanism to gain control over bodies.

	156	 Clough, 2018: 8 citing Massumi.

	157	 Massumi, 2002: 261.

	158	 Bateson, 1987: 75–76.

	159	 Clough, 2008: 1.

	160	 Ibid.: 2–3.

98

Establishing the notion of affect in this way makes it possible to think about its role in the mitigation of

complexity as a concomitant dual operation of the individual and the group aspects of the affective di-

mension. As an autonomous category, affect makes it possible to evaluate the meaning and magnitude

of software complexity resonance within the pre-individual, to a degree of affective relation’s involve-

ment with production. For example, it finds whether the effects of cognitive load during the extreme

complexity spikes – the phenomena further explained in Chapter 5 – are in any way transformed by

the existing sphere of organisational culture and to determine the complexity threshold after which the

associated tacit knowledge is no longer effective. As a collective disposition, affect acts in its capacity for

accumulating and transmitting embodied practices, and may help to explain why the tacit knowledge,

which is necessary for creating the collective behaviour as a unity, does not stifle the audit efforts in

complex production contexts. This links the affective dimension of production with the discussion of

distributed collectivities, which Chapter 4 follows up on.

Because of such a twofold function, managing affect in professional DevOps is crucial, albeit not as

easy to plan and review as other production practices, due to its being resistant to standard manage-

ment methods. Such tools as a roadmap prove to be particularly effective for producing two-way trans-

port between the individual and group affects. Due to its specific visual character, the roadmap

provides the means both to discuss the existing tacit knowledges and to develop a collective behaviour

as a unified body. In my fieldwork, I frequently turned to the roadmap, often in the form of a Gantt

chart, which in practical terms allowed me to spatially distinguish the representation of the project’s

tasks from the time required to do them and the attribution to a member of staff carrying it out (Fig.

9).161 Due to the inability to visualise the affective relations between the tasks, the Gantt instead ap-

peared as the tool for the enactment of affect, serving as a support for real-life discussions in team

meetings and the project’s written correspondence. As the archival project case study discusses in the

Appendix, the affective relation would unfold over time on the interpersonal level between the team

members, which meant that the Gantt model could be regularly revisited, often to account for the re-

duced time in completion of tasks, alongside the increase in momentum.162

	161	 For further discussion of my use of Gantt charts in the field, see Appendix, CS2.

	162	 See Appendix, CS15.

99

 

Fig. 9. The project Gantt.

The affective enactments around the Gantt made it possible to negotiate a common understanding of

software complexity that the team has to deal with, establishing the possibility for the affective relation

based on the fragments of the pre-individual forces which are always not-yet bearing the deterministic

relationship to the collectivity, due to the complex and indeterminate nature of the production context.

For example, sharing the attitudes in my fieldwork helped avoid the blockages in the communication

channels created by misinterpretation, as the pre-individual traits were mutually explored and negoti-

ated. To return briefly to the server migration field case mentioned earlier, during the process I was in-

volved with many different activities, each being something that I’ve never dealt with before. As

demonstrated partly in Fig. 9, the activities consisted of many moving parts which were occurring sim-

ultaneously and also involved different staff members and departments in and out of the organisation.

The inaccessible files required contacting stakeholders for permissions and the IT department to activ-

ate those permissions; the destination cloud storage volumes required a new contract to acquire more

storage space; the DevOps engineer was sending through the backup policies that had to be approved

by the client operations department; the contract with the IT company had to be reviewed in the light

of the changes to storage and backups; company staff had to be onboarded in terms of new access

and security protocols, the map for the new file structure had to be drawn. During the complex co-

ordination process, in parallel with the work communication itself, some affective relations with the

team – for example, frustrations about the difficulty to communicate about all of the moving parts

clearly and concisely – came up as equally important parts of the negotiation. I saw my role in this as-

pect of coordination to formalise the affective goal of the involved parties as understanding the rela-

tions of dependency and trust they shared regarding the system’s complexity. Setting up such a goal, in

hindsight, has helped maintain open minds throughout the team about thinking of how the project

communication could be improved.

100

Methodologically, the affective dimension can be employed within the formal schema of QCA dis-

cussed earlier in the section, in its capacity as the outer limit for the sphere of emotional operations in

the complexity-parsimony sequence. As an autonomous relation, it would allow identifying the relevant

degree of parsimony that would allow coming up with a core formulation of the problem that a partic-

ular case study deals with. As a potential future trajectory of engaging with affect as a method of oper-

ations research, it can be critically approached as metric, or what Clough defines as affect-itself. Linking

labour and affect within the context of the capitalist mode of production, Clough proposes a radical

autonomy of affect through which it becomes an abstract category, alongside the abstraction of labour,

as something that creates a possibility to measure the pre-individual capacities within the control

mechanisms of production. To Clough, affect-itself is ‘meant to address the becoming abstract, and

therefore becoming subject to measure, of that which is seemingly disparate’,163 including the capital’s

involvement with the effects of software complexity for generating profits.

Chapter conclusion
In view of the overall goal of the present thesis to develop a model for the software production system

lifecycle, this chapter described how such a model could be realised. Turning to the discussion of com-

positional methodology, I acknowledge the links that the matters of the present investigation have with

the domain described by the ANT framework, specifically in terms of its multiplicity and fractality at-

tributes. Turning to the core problem space dynamic which unfolds through the givens, goals and oper-

ators, I have emphasised that the operations are repeatable and tend to follow the patterns which make

problem negotiations auditable. At the same time, the key trait of the epistemic infrastructure is its to-

pology, which organises the existing evidence about the problems of production into a consistent body

of knowledge. The second theme of the chapter has discussed some of the aspects of employing dif-

fraction and abduction methods in situations of high uncertainty. Diffraction was seen as the necessary

aspect for problem composition every step of the way, as the act of cutting things apart before putting

them together, but also the putting-together being an iterative activity of continuous overlaying of

shapes in search of the effects of difference, up to the point when cutting together-apart becomes one

and the same event. Simultaneously, the method of abductive modelling deals with such tentative en-

counters to create hypotheses that enable the preservation of the unknown without employing any as-

sumptions disconnected from the facts established in the field.

Lastly, I present the fieldwork as the crucible where the composition, diffraction and abduction are

brought together through their consistent utilisation in case studies. Through casing, the materiality of

	163	 Clough, 2018: 3.

101

organisation and market relations as established in Chapter 1 become entangled with the performativ-

ity and affect of real-world production situations. The main question that this chapter poses is, what

kind of methodology is required to study the complexity effects in the production system of software

capitalism? In view that the encounters between the software production system and the organisational

entities are fractal, the answer is that the study is possible by creating a template for abductive model-

ling applicable to the various abstraction levels, which would elucidate the relationships in a scale-free

way. Creating a template would facilitate creating the models in a variety of production scenarios, be-

ing able to navigate the uncertainty by preserving ignorance where the data is unavailable.

This concludes the literature review and the methodology chapters of the present thesis, and therefore

it is possible to sum up what the study saw thus far, and what are its next steps. Centralised technolo-

gical systems have been argued in Chapter 1 as characterised by their rigid internal hierarchy of con-

trol. Systems of this kind are appropriate for production scenarios of low or limited complexity, such as

the factory production of physical objects. Going forward, the research is interested in looking into the

systems that I refer to as distributed – or those which are capable of unlimited increases in complexity,

such as most software systems, and therefore cannot be managed in a centralised manner. The focus

on distributed systems, I contend, is urgent due to the ubiquitous utilisation of software systems in pro-

duction. Admittedly, production systems used in mass manufacturing in most contemporary factories

already do not qualify as simple systems for this argument. They are no longer limited from the mo-

ment they start using software in their processes because the software is capable of abstraction layer-

ing, and thus of infinite complexity, even if the physical quantities of materials on the shop floor are

limited by the actual size of the shop.

In the following three chapters, I think of the ways of understanding the governance of distributed sys-

tems by creating a more nuanced production design lifecycle model (Fig. 4, at the beginning of this

chapter). Chapter 3 focuses on the left and top of the diagram. It discusses the notion of epistemic in-

frastructure that contains definitions of the system components, and the process of deployment of soft-

ware, which makes software available to its users. Chapter 4 discusses the part of the production pro-

cess which is crucial for understanding the involvement of governance with software complexity – the

practice of audit. This practice is understood as control of control, in alignment with the accountancy

theory of Michael Power,164 and is prominently present in the negotiation of meanings that happens in

the problem space of production, located in the right part of the lifecycle diagram. Chapter 5 moves to

the involvement of governance with computation and cognition through the process of integration of

	164	 Power, 1999: 12.

102

knowledge, found at the diagram’s bottom. The integration activity concludes the description of the

research model and enables me to apply the research findings to the wider context of software and cul-

tural studies. This is possible due to the effects complexity bears on computation, a process which is

present as a common trait of much of the research carried out in these fields.

103

Chapter 3. The epistemic infrastructure as code

As the previous two chapters argue, there is a decisive split within any knowledge-based production

into the new and already confirmed knowledge. This chapter is interested in the epistemological con-

stituents of the system, the infrastructure of existing evidence, and the process of deployment of the

system based on this evidence, practised in DevOps as Continuous Delivery and argued in this thesis as

the topological machine. In this sense, I treat software production as the production of means of pro-

duction, and simultaneously as the reproduction of the labour ecology of the entire business value

stream. This point of view facilitates the establishment of a notion of epistemic infrastructure as code

(EIAC), a notion inspired by the DevOps concept of infrastructure as code, to be able to account for the

complexity that arises in the relations between software components in Continuous Delivery.

The three sections of this chapter look at the three research agendas common to most complex deploy-

ments. Starting from the deployment pipeline, the first section explains it as a core operations pattern

used to treat the complexity in component-based systems. It does this by first establishing more firmly a

difference between industrial mass manufacturing and the production of software, and then discussing

the delivery pipeline and its components as they are used in Continuous Delivery. The second section

turns to the topology of production system design through its two popular varieties: functional, which

is used in centrally-managed systems, and stream-aligned, a widely accepted standard for complex

non-hierarchical production situations. Section three focuses on the specificity of the circulation of

knowledge through its three main features, the structural coincidence between the source code and the

organisation’s structure, the conceptual fuzziness of software as a product and software as a process,

and the disintegration tendency in technical systems.

Deployment pipeline as the topological machine
This section brings together the two notions, of the deployment pipeline and the topological machine,

to be able to work towards a Continuous Delivery critique. This is done here through three themes. I

begin by working through some specific assumptions that may be risky if carried over to the sphere of

software production from mass manufacturing. Next, I explain the DevOps notion of deployment

pipeline and how it fits within the general schema of the production system proposed in the present

study. Lastly, I describe the central topological configurations of production teams that would allow un-

derstanding in which way the continuous deployments are made possible within the overall organisa-

104

tional structure of software capitalism. Throughout the section, I assume that the central feature of the

topological Continuous Delivery production method is its continuity, which means that it describes the

space in terms of continuous surfaces between the points in space, separately from their metric attrib-

utes. In this type of deployment, the distances between the points can be flexible and relative. For ex-

ample, while the straight line can appear as the shortest distance between the two points on the geo-

metrical map, it does not account for hills and valleys that appear on the way from one point to anoth-

er. The deployment pipeline as the topological machine, explored in this section, activates the al-

gorithms for creating the points in the problem space of production, along with the continuous rela-

tions that bridge the gap between the points, creating the production system’s topology of negotiations.

The increase in complexity in the production of topologies, however, is unavoidable because the topo-

logical promise of continuity is not necessarily kept by the machinic deployment, which works through

its breakdowns, rather than by warranting the delivery of a required outcome.

Industry antipatterns

In the world of manufacturing physical objects, tasks are repetitive, activities are reasonably predict-

able, and the resources should be located in one place at a time. In software product development,

many tasks are unique, project requirements constantly change, and the information-based output can

reside in multiple places simultaneously. The several potentially risky antipatterns emphasised by the

operations research of Stefan Thomke and Donald Reinertsen, often cited in the professional DevOps

literature, are high utilisation, large batches, forward planning and adding new features.

High utilisation. First, speaking of exorbitant resource use antipattern, high utilisation in software

production adds complexity because variable tasks form long queues and have longer waiting times.

Such observation may seem to come into contradiction with the Marxist critique, which postulates that

the extracted value will continue to increase alongside the increase in the utilisation of factory ma-

chines. This explains why early capitalist production favoured day and night shifts work arrangements

that would allow running the machines at their full capacity. The principle of full utilisation, however,

fails to apply in workflows where the tasks are more variable than on the factory’s assembly line. While

in repetition-based workflows an increase in work tends to increase execution amount in the same pro-

portion, in qualitative workflows such as software production, the outcome of the increase in workload

is uncertain. One of the outcomes is the miscalculation in completion time, where the teams are over-

committed most of the time, which is dealt with in Agile through the practices of story point estima-

tion and tracking the team velocity. Another facet of the same problem is the accumulation of tasks in

the backlog, which is specifically addressed by the dedicated team member who can mitigate the un-

certain time of addressing backlog tasks by negotiating the release cadence with the stakeholders. For

105

example, if the tasks added to the backlog queue deviate too far from the initial release objectives, it

might be possible to treat them as change requests and transfer them to a different release where the

objectives might be amended to address them.

The issue seems to stem from the fact that the inventory – that is, things produced or otherwise con-

tained in the space of production – are not immediately visible. Whereas in industrial manufacturing

the accumulation of stock can be noticed in storage facilities, the informational output of software pro-

duction efforts has no physical signs and is only expressed in the documentation, test procedures and

results, or infrastructure code instructions. The serious excesses in resource rent or data accumulation

can go unnoticed for months or years, even in small organisations – for example, in my fieldwork the

AWS infrastructure was running on a configuration which was at least three times the size of what was

required, and had been generating regular automatic backups that were never used and never erased,

which meant increasing expenses which could not be diagnosed and addressed without the involve-

ment of an experienced system administrator. This uncertainty had added to my product lead duties in

the field, meaning that even if I knew about the excess, I could not address the issue without creating a

convincing case that would allow the stakeholders to evaluate if the expense of hiring a dedicated con-

tractor to solve the problem would make more business sense than leaving the problem unaddressed

and continue paying for the unused resources. In the context of the present argument, it should be

noted that component-based systems, as opposed to monolith software blocks that have no internal di-

visions, are more resilient to the high utilisation issue. One of the ways to balance the load in compo-

nent-based systems is to abstract the issues which threaten to cause significant delays as new compo-

nents. This means that issues of potentially variable complexity can be addressed in a more granular

scaling fashion than in the monolithic system.

Furthermore, the high utilisation has an additional negative side effect, in which the management as-

sumes that the sooner the project is started, the sooner it will be finished. With this consideration in

mind, the management proceeds to exploit any staff downtime by starting new projects earlier to fill in

the gaps. However, this scenario means that the new work will be undertaken slowly and will be con-

stantly interrupted to finish off the tasks related to other work in progress. This is as risky as doing slow

and intermittent work under any other circumstances. The risk is caused by the fact that the software

production outputs are highly perishable and can become obsolete before any version worthy of re-

lease can be achieved. The warnings that real-life situations present is that often the work still has to be

undertaken to grab the opportunity of a resource that will not be available later, or when there is at

least some assurance that the work done is not going to perish soon. In my fieldwork, we have under-

taken overlapping tasks with relative success, albeit causing some unnecessary frustration in the team.

One of the product features we had to deliver was city and country landing pages for the travel section

106

of the organisation’s website. This required a back-end engineer, who had a bit of time available, while

the rest of the team was busy on another, more urgent, release. It was also known that if we don’t seize

the opportunity to use the back-end at this specific moment, they will be switched to a different project

later, and the decision was made to initiate the work. While it has allowed the team to deliver the city

and country landing pages feature on time, the back-end was not able to communicate effectively to

the front-end staff who were busy on other projects, which caused additional stress, highlighted in the

project retrospective meeting.

Large batches. The second potentially dangerous industry assumption is large batches. Feeding the

large new pieces of work into the main production adds complexity because larger bits of new materi-

al are harder to integrate and test, especially when the new pieces have been developed separately from

the main line and are not easily compatible. This antipattern sees the production teams waiting until

releasing a larger batch of work, rather than delivering continuously. Reducing the batch sizes is cru-

cial for lean manufacturing principle, and works through optimisation of the two primary costs: the

transaction and the holding cost. As batch sizes become larger, average inventory levels rise, which rais-

es holding costs. But at the same time, transaction costs decrease because it takes fewer transactions to

service demand. With these two parameters in mind, the optimal batch size would be located in the

area where the combined holding and transaction costs are the lowest. By making frequent releases its

essential requirement, hence its name, Continuous Delivery claims to decrease production expenditure

in two ways. One is the cost of risk updating the parts of code which may perish while waiting for the

release, another is cutting the cost of integration. The rationale here is that any testing is easier to car-

ry out if the deployment is done on the same day, as it supports the easier localisation and trou-

bleshooting of any new changes.

Forward planning. The third complexity-adding antipattern is excessive forward planning. In soft-

ware production, creating a detailed plan at the beginning of the project is not optimal because means

and ends change during production. Insisting on carrying out the work as planned despite changing

circumstances may also lead to increased complexity in relation to legacy code. The usual rationale for

forward planning is that if the production adheres to the original development plan as closely as possi-

ble, this will help to deliver the required features on time. In a real-life context, however, it proves to be

ineffective because new knowledge is being generated throughout all moments of the software produc-

tion process, creating conditions which were not available for upfront planning. Furthermore, the

frameworks and tools used evolve alongside the product itself. Thus, on the project level, as the Agile

method prescribes, the tactics have to be continuously adjusted. As Chapter 1 explains, the stage-gate

or waterfall principles can still be beneficial for high-level strategic planning.

107

There are good reasons why a related trend, which assumes that all the requirements can be met in the

first release, is also discouraged in Continuous Delivery. For one, it makes teams prefer less risky solu-

tions to avoid any errors in the first release, which usually means underreporting of errors and an in-

crease in momentum at the expense of the overall resilience of the production system. Another reason

is that overly safe releases often result in delivering less value in the value stream, leaving the users

wondering how the proposed product is better than any competitor products that might already be

available on the market. Finally, this aggravates all the negative effects of the stage-gate process, such

as decreased throughput and late discovery of issues, when it’s more expensive to solve them. The

practice of frequent deployments in Continuous Delivery is generally considered a way of assuring

that an environment remains safe from failures and experiments. This is achieved either by deploying

in multiple testing environments or by being able to rapidly roll back in case of an error. However,

Thomke and Reinertsen admit that creating an environment open to failure is not easy: failure is

negated in many organisational cultures, for example, those known as ‘zero tolerance for failure’ or Six

Sigma, and managers who fail may be putting their careers at serious risk.165

Another issue frequently referred to in relation to this problem is the number of hand-offs between

teams, which adds more time added to the task than is accounted for. As Gene Kim notes, assuming

that each code change would require the full cycle of hand-offs between network, server, database and

other teams, factoring in the time required for testing and approvals the task will cause an exponential

increase to the completion timeline.166 This is addressed, as the team topology section in this chapter

finds, by decreasing the number of hand-offs by orienting teams along the streams rather than func-

tionally. The problem still exists, though, as it can only be addressed partially by this method.

Adding new features. The fourth antipattern that needs to be mentioned is adding features through

change requests. While there’s the risk of cementing the plan from the very outset, this case presents

the opposite extreme: too much deviation from the initial strategy by adding new features throughout

the production process, which may be equally risky. Here, the complexity may increase because the in-

coming requirements for new features may obscure the larger task, which is a thorough definition of

the main problem. The rationale for this antipattern is that the more features the product has, the

more business value there is. While it is clear that focusing on fewer features will make delivering the

requirements easier, it is not always easy to keep the product simple due to the two interdependent fac-

tors.

	165	 Thomke and Reinertsen, 2012.

	166	 Kim et al., 2016: 435.

108

The first factor is that extra effort is required to define the problem. This stage is frequently overlooked

since the task of understanding the real underlying problem often looks easier than it is. The second is-

sue connected to it is that to define the problem, the team has to spend time going through the stage of

setting the goals and then proceed through the multiple rounds of testing and experimenting to under-

stand if the strategy addresses the problem, and, importantly if the problem addressed is in sync with

the business value stream in terms of customer delivery. The initial stage is sometimes referred to as

the discovery stage and is worth the additional investment since it then contributes to significantly lim-

iting the production efforts to the features critical to the value of the specific product. Mitigation usual-

ly proposed in Agile-inspired methodologies is setting up an explicit condition, referred to as the defini-

tion of done. The definition usually comes in the form of a policy that describes the criteria which a tick-

et or other piece of work has to meet after which no more work is required – for example, passing spe-

cific tests or gaining approvals from certain parts of organisations. Regarding the antipattern that dis-

places design efforts with marketing, organisational culture needs to shift towards refactoring and the

unified technical treatment of features, which would be capable of catering to the diverse marketing

requirements.

The problematic assumptions outlined above can be seen as the reasons why Continuous Delivery ad-

dresses the complexity in software systems through component deployments. Splitting the system up

into components, as this chapter finds later, promotes sufficient flexibility in both parts of the system

that require the work and the team topologies that carry out the work. Complexity, however, is not ig-

nored but is made more accessible for analysis as it is abstracted into a matter of compatibility between

the components, something which can be addressed strategically by operations in the deployment

stage, rather than in an intermittent manner throughout the writing of code, testing and other produc-

tion activities.

Component types and rationale

This section works towards a more thorough understanding of the epistemic infrastructure method in

its application to the study of a software system. To do this, it is necessary to turn to the notion of a

component, which in Continuous Delivery serves as the primary means of mitigating the risks associ-

ated with deployments and is a key category in negotiating meanings in the problem space of produc-

tion. It is appropriate in this context to turn to the notion of a component in David Farley’s description

of the Continuous Delivery framework. Here it is defined as a conceptual device that adds a new layer

of abstraction to the deployment process so that the complexity of compatibility between the different

parts of the software application can be dealt with separately from code creation, testing and other

109

production activities.167 A component, Farley suggests, is ‘a reasonably large-scale code structure within

an application, with a well-defined API, that could potentially be swapped out for another implement-

ation.’168 It should be emphasised that in this sense the component can be deployed independently into

the working application without affecting its general performance and therefore bears a coherent set of

behaviours.169

A component-based application is viewed in this context as an application where the code base is split

into a number of discrete parts which relate to one another in a stable and well-defined way. Each lo-

gical part of the software system exists separately from another, which makes such a construction dif-

ferent from the alternative, which is a monolith that has no segmentation between the parts and thus

contains all of the complexity inside one system, which makes it harder to understand. The compon-

ent-based approaches to system deployments are argued as more efficient in at least four ways. First,

they allow for the discrete analysis, since the components divide the problem space into a series of self-

contained areas. Second, they have different lifecycles, which makes it possible to analyse different

parts of the system on different temporal scales. Third, they allow dividing the responsibilities of

teams, making it easier to adhere their production schedules to the practices of audit. Lastly, and most

importantly, they abstract the complexity that underpins the functioning of components, creating a

new relationship between the inside and the outside of the components. The relation is manifest in the

creation and maintenance of boundaries, a process which is, as Barad demonstrates, indispensable for

making meanings and is present as the instances of power that have material consequences.170 On the

inside, this gives the teams the freedom to optimise, test and maintain each component separately. On

the outside, it creates a possibility for symbolic manipulation of components which serves as an inter-

face with the internal organisation’s governance protocols and can be effectively reported on and ac-

cessed by the executive staff. Simultaneously, the main problem is that due to their differences, com-

ponents introduce new uncertainties in the deployment process.171

As far as Continuous Delivery is concerned, the software system consists of four main components:

data, host environment, configuration and executable code. To be compliant with delivery requirements, all com-

ponents, save for the data, are required to be written down as code to be repeatable and ready for de-

ployment from the version control system. Without a doubt, data take the shape of code too, yet it

	167	 Humble and Farley, 2010: 345.

	168	 Ibid.: 345.

	169	 Ibid.: 356.

	170	 Barad, 1996: 182.

	171	 Humble and Farley, 2010: 356.

110

would be more precise to refer to them as a collection of basic units of meaning made accessible for

further interpretation. An environment is a complete set of resources that the software system as a whole

needs to operate.172 This consists of hardware, such as processing units (CPU) and memory on the one

hand, and an operating system and middleware, such as the application, database and web servers,

and messaging systems on the other. Configuration, put simply, is the desired state of any part of the sys-

tem. What makes it different from configuration uses in other production paradigms is that in Continu-

ous Delivery, the configuration is managed through version control, together with source code and

documentation, thus making it deployable via the pipeline as any other part of the infrastructure. Ex-

ecutable code is the code binary which is compiled from the source code created by the developers, con-

tained in the appropriate production branch and delivered to the environment. It is built every time

the source code is changed, and goes through a series of automated test procedures, or a test suite,

which is also ideally included in the pipeline.

 

Fig. 10. The layered delivery of the software system during deployment.

Deployment, which is a set of processes, described in the infrastructure code and performed by a com-

puter, makes the software system available to users through various sorts of engagements with all four

system’s components. As demonstrated in Fig. 10, the compilation is one of the important steps in de-

ployment, during which a computer translates the information derived from EIAC to produce the ex-

ecutable binary. The binary is then consecutively delivered to production in layers. This comes from

the DevOps best practice principle that the safest deployments are easier to achieve if they are carried

out with settings which are known to be performing well and error-free. Layered deployment makes

this principle easy to follow, since if there are any errors in deployment of the preceding layer, there is

	172	 Humble and Farley, 2010: 277.

111

no deployment of the consecutive layers. The base layer is the hardware configuration – usually an op-

erating system. The second layer is middleware, which includes all the auxiliary software that the main

system depends on. The two layers are deployed as separate layers to make sure they are configured

and running well before rolling out the top layer, which is the system, its own configuration and any as-

sociated apps and services.173

Technical and organisational facets of the deployment pipeline

According to the Continuous Delivery approach, any production risks can be avoided by releasing as

frequently as possible – hence the delivery is continuous. A pattern central to Continuous Delivery is the

deployment pipeline, or the automated implementation of a software system’s build, deploy, test and re-

lease processes. The goal of reducing risks in releases deals with software complexity in the sense

defined for this study, particularly when maintaining the account of the complex relations between the

components in software system deployments. For mitigating the complexity effects, Continuous Deliv-

ery utilises the deployment pipeline in two ways. On the one hand, it serves as the abstraction layer

that supports the focus on complexity in relations between the application’s components without going

into the details of development work. On the other hand, it is tightly linked and evolves together with

the company’s technology value stream.

Where the latter utilisation engages the stakeholders in understanding how technology converts

strategy into value delivered to customers, the former creates a blueprint for the technological solution

that makes the delivery happen. Importantly, the deployment pipeline does not merely compile the ap-

plication source code, but also activates a complete specification of what resources are to be used,

builds the infrastructure and initiates all the testing stages the code has to go through. The specification

for the pipeline is written down in the code, which is referred to in DevOps, appropriately, as infrastruc-

ture as code. This makes the deployment pipeline appear more than a means of production, but rather a

tool that combines the process of creating the means of production, that is, the infrastructure, with the

outcomes of production – the executable binary.

Automation and repeatability of the deployment pipeline are relevant for the present software com-

plexity argument in two respects. On the one hand, it makes the deployment process auditable, which

is important in cases of malfunction, since the feedback comes immediately. On the other hand, once

the production of the problem space of production as a whole is described in code, it means that it can

be reproduced any number of times, for example as a test copy for troubleshooting. In fact, in DevOps,

	173	 Humble and Farley, 2010: 162.

112

deployment is only acceptable when it is automated because it is mainly through the verification of the

automation scripts that the deployment’s policy compliance is established. If any of the deployment

stages were done manually, it prohibits risk assessment and is thus considered a breach.174 Further-

more, having infrastructure written down as code makes it possible to carry out a variety of adminis-

trative procedures to it, such as change management to understand who made alterations to environ-

ments and why, assigning team members responsible for approving the deployments and managing ac-

cess permissions, or requiring the updated version of the documentation to complement the releases.

In other words, an organisation gains access to scalable control of its knowledge frameworks. Since the

code can be used algorithmically to recreate the epistemic infrastructure from scratch, there exists an

assurance that, regardless of the number of times it’s been created, all of its properties are identical,

down to the very minute details. It also reduces the cost of errors, since the epistemic infrastructure

can be tested and debugged as any other code, rolled back to a previous version and streamed continu-

ously – or in terms of topological framework, provided as a service.

 

Fig. 11. The layered software product construction.

The construction of the deployment pipeline tends to closely adhere to the value stream of the organ-

isation’s business model (Fig. 11). Since no organisation is like the other, the deployment pipeline will

also vary in each particular case. The general pattern that each pipeline follows is that it always begins

with the Commit stage, contains some Test stages, and ends with a Release stage. The Commit stage

would consist of creating the source code and its initial analysis. The Test stage deals with automated

tests and depends on how sophisticated the organisation’s test suites are. In the Release stage, the pipe-

line makes the code available for release into any of the organisation’s environments. This stage de-

pends on the company’s deployment policy and team topology. Any releases would initially be de-

ployed into an environment only accessible to a limited number of users, such as stakeholders, who

would have to accept it before the release is deployed into the publicly available production environ-

ment. It is important to pay attention to the differences between the technical side of deployment in

	174	 Humble and Farley, 2010: 438.

113

the previous, Fig. 10, and the deployment stages in Fig. 11. It may become clear that while the underly-

ing mechanic is relatively invariant and always follows a pattern of compiling the code and deploying

it, in the context of organisational structure the deployment process can be very different depending

on the organisation’s structure and the procedures of approvals or compliance.

There need not be any ambiguity about which software is at stake when investigating software com-

plexity as the property of the problem space of production. This becomes clear once production is

presented as a layered activity: while there can be no doubt that all layers that Continuous Delivery

deals with are the software in the broad sense, it is specifically when the whole stack is produced that the

complexity of the constituent interrelations is the most relevant for the present study. Furthermore,

complexity thus understood can be investigated on a much broader scale, since the tensions between

the system’s components, as the previous section demonstrated, can be traced from the topological ori-

entation of software to the team topology. There is thus a continuity that links the configuration of the

organisation’s departments, its development operations, delivery pipeline, technology value stream and

the software system as it is presented to the user.

Deployment of the topological machine

This section has found that a deployment pipeline’s role is to activate the business value stream and

regulate the deployment activities. The pipeline deals neither with the database design nor with the

code contained in the repositories of version control systems. Instead, it operates on a higher level of

abstraction and instructs the decisions on which databases and which versions of the system are de-

ployed in the specific release, how to compile the application code and which test suite to run. As a

mechanism of governance, it is an example of a topological machine, a term used in software studies to

refer to the automatic production of space that encapsulates specific behaviours and conditions users

through its internal structure, for example, when analysing the database design. The two notions, the

topological and the machinic, that define a topological machine give it a very specific meaning that sheds

light on what Continuous Delivery does. On the one hand, the delivery is topological, meaning that

the stakeholders are dealing with a specific spatial configuration, based on the relations between points

or nodes. On the other hand, the machine connotation implies the computational core of the spatial

configuration, based on the event sequencing using if-then boolean logic.

The purpose of defining the deployment pipeline as a topological machine in the present argument is

to be able to explain the continuity of the deployment dysfunction, which appears as a defining prin-

ciple throughout the production process. The dysfunctionality can be understood on two levels. The

primary cause of the break is that the operation of the software system and the operation of the

114

pipeline are two different processes that operate independently. As the next section finds, the stream-

aligned team topology principle addresses some of the frictions that arise from the traditional divide

between development and operations, yet there remains the essential antagonism between the parts

which was pointed out by some of the pioneering thinkers of automation in computer science. For ex-

ample, the mathematician John von Neumann, who addressed the matter in his theory of self-reprodu-

cing automata, notes that within any unity some parts act antagonistically to other parts. As cited by

the historian Philip Mirowski, von Neumann writes: ‘it has already happened in the introduction of

mass production into industry that you are no longer producing the product, but you are producing

something which will produce the product … the relationship is getting looser.’175 The difference in

planning and production between producing the product and producing something that produces the

product means that the primary automaton functions in parallel, with its parts running simultaneously

on different features, there is a possibility of conflict. In other words, while gaining the production

power in automated deployments, some of this gain has to be spent in addressing the complications

that inevitably arise in the system which is functioning separately from the functioning of the produc-

tion system.

In the second instance, the dysfunctionality can be accounted for through the optics of French philo-

sophers Deleuze and Guattari, who contend that the plane of immanence, or the internal operations of

capital, upon which the components and relations of production are organised, has dysfunction as a

necessary precondition of production.176 This is the case because of the increasing involvement of

governance with operations, and the concomitant growing concern with the management of depend-

encies, which is only possible if the gaps and breakages are present and made available. While this

problem will be more fully discussed in the next chapter, it has to be mentioned here that dysfunction

is, in fact, essential to the computational sequencing of deployments, where the instructions are carried

out step by step, and the space does not have a reliable, pre-determined quality, instead being pro-

duced contingently based on the if-then outcome of each consecutive instruction. Thinking with Melvin

Conway, the disruption is therefore required by the organisation that structures itself to coincide with

the system that it aims to repair, and also for the system’s audit, since any effective planning and review

of software is only possible where the communications of organisation and the software construction

coincide.177 Once the dysfunction is understood at the operative principle of Continuous Delivery, it

	175	 Mirowski, 2002: 149 citing von Neumann.

	176	 Deleuze and Guattari, 1983: 151.

	177	 Conway, 1968: 28.

115

becomes possible to organise the disruption-oriented workflow, for which Agile methodology and its

tools, such as the support tickets, are essential.

It is thus a topological machine that does not only define the continuities, but also creates the condi-

tions of the possibilities for such continuities to emerge. The machine quality of the deployment

pipeline lies in the fact that the pipeline itself is nothing more than the executable code which, being it-

self open to governance, unfolds spatial configurations fit for the audit. In fact, the best DevOps prac-

tice demands the auditability to be ingrained so deeply in the deployment that it can be considered an

architectural property. The key to auditability is to implement any change via EIAC: ‘there is no better

audit trail than a record of exactly which change was made to production, when, and who authorised

it. The deployment pipeline provides exactly such a facility.’178 The code of a topological machine in

this context is an ultimate account of the business value stream, and is referred to as an infrastructure as

code, precisely because it is capable of such functions as starting up and configuring new resources and

processes. In the present chapter, the thesis aims to gather enough evidence to be able to expand the

DevOps notion of the infrastructure as code into the realm of continuously delivered knowledge about

the software system as EIAC – the knowledge infrastructure which is provided as a service and which

evolves alongside the problem space of production.

The team topology principle
This section examines two of the most prominent topological team arrangements: functional and

stream-aligned. Among the many organisation design approaches, these are selected for two reasons.

On the one hand, this is because the rest of the more intricate approaches still would have either one

of the two topologies at its core. On the other hand, because the functional approach is more tradi-

tional, looking at it in comparison to the stream alignment paradigm makes it possible to understand

what kind of team arrangement is required for the effective implementation of the Continuous Deliv-

ery method. The discussion has to begin from understanding that a team in any such arrangement is

taken, in Matthew Skelton’s terms, as the smallest entity of delivery within the organisation. For ana-

lytical purposes, the team is usually defined as a stable group of five to nine people who collaborate to-

ward a shared goal.179 The team comes with the interface, which can be referred to as an API, or an

application programming interface. This is the same term as the one used in source code program-

ming, and its use for teams is justified because it serves the purpose of succinctly describing the attrib-

	178	 Humble and Farley, 2010: 273.

	179	 Skelton and Pais, 2019: Ch.3.

116

utes of the team’s relations to other components of the problem space of production. Such attributes

are code produced by the team, configuration, technical documentation, culture, communication and roadmap.180

Each of these attributes describes how easy it is to integrate the team into the technological system.

Source code is what the team produces in terms of tangible outcomes: libraries, user interfaces, compon-

ents or other assets. Team configuration management describes how the team treats the changes. It is of-

ten synonymous with version control, which is a mechanism for keeping multiple versions of data so

that when the change is made to any file, it is still possible to access the previous revisions. Documentation

is frequently thought of as an audit technique that makes it possible to quickly find information about

a specific aspect of work. This is required, as Farley notes, either to inform a team about something

new, to refresh the memory, or in the case of troubleshooting, to be able to locate the relevant changes

that caused the problem.181 The caveat is that, of course, the fact that something is written in the docu-

mentation does not guarantee that the event has taken place,182 and in this sense, EIAC provides a

more reliable audit trail – the ‘automation over documentation’ DevOps principle.183 Culture is present,

as defined in Chapter 2, as the unity of shared meanings organised to promote cooperation. Communic-

ation describes the practical approaches, in terms of which tools and which types of information are

being circulated: chat messaging, comments in version control systems and meeting cadences. The

roadmap accounts for the way in which the team sequences its work: how is the current plan structured,

what is the velocity and how the tasks are prioritised.

The key concern of the topological approach to designing the teams comes from the concern about

the cognitive load of the respective team members. Cognitive load, which I discuss in more detail in

Chapter 5 in relation to the integration process, can be understood at this moment, via psychologist

John Sweller, who coined the term to refer to the ’total amount of mental effort being used in the

working memory,’184 in other words, the capacity for retaining and processing information either by in-

dividual workers or teams. The concern here is that the more complex the system that an organisation

builds, the higher the cognitive demands on the teams’ efforts. The topological approach works by

splitting the teams to address the problem space in a way that facilitates managing the cognitive load.

An intuitive way of estimating the distribution of cognitive load is to think about the organisational

	180	 Skelton and Pais, 2019: Ch.3.

	181	 Humble and Farley, 2010: 280.

	182	 Ibid.: 437.

	183	 Ibid.: 437.

	184	 Sweller, 1988: 257–285.

117

body in terms of its communication lines that naturally divide it into something DevOps refers to as

fracture planes.

The idea of such planes comes from the early notion of the large single-block software systems which

are sometimes referred to as monoliths – or large stones – which are hard to understand when ap-

proached in their wholeness, but lend themselves to more productive analytical engagements when

split, similar to large stones, alongside their natural seams. The natural seams, or fracture planes, help

locate the key communication channels, which appear in accordance with the structural coincidence

principle known as Conway’s Law. To Conway, ‘organisations which design systems … are constrained

to produce designs which are copies of the communication structures of these organisations.’185 This

means that when the teams are formed according to the fracture planes, there are no unnecessary de-

pendencies or extra communication efforts between them. A metaphorical interpretation of the prob-

lem space of production in terms of fracture planes is useful when designing the team topology, which

needs to keep the software boundaries aligned with the various parts of the business domain. Fracture

planes can be either of a more functional kind, such as change cadence, risk or regulatory compliance,

or based on specific challenges, such as a technological solution to be implemented, improving the per-

formance of a specific part of the system, or dealing with a particular user persona.

 

Fig. 12. Comparison of functional and stream-aligned paradigms. Adapted from: Kim et al., 2016: 83 and Skelton and Pais, 2019: Figure 7.5 in
Ch.7.

The two kinds are sometimes referred to in DevOps as the functional and stream-aligned team types,

and for the present study, I refer to both as topologies, however of two different foci (Fig. 12). On the

	185	 Conway, 1968: 31.

118

left of Fig. 12 is the diagram of the functional type, where the teams work separately based on their

functions and report to the operations team, which serves as the mediator of all communications be-

tween them. In the diagram example, network, server and database teams are divided based on the

components they work on. Due to the explicit separation of operations into its own unit, this configu-

ration enforces the separation between operations and development. The alternative topological con-

figuration, portrayed on the right side of Fig. 12, does not have this separation and is more resilient in

the face of change. This is referred to here as a stream-aligned team topology, and mixes the spe-

cialisms from different functional units together, having at the core the problem the team addresses,

rather than the function team members carry out. The diagram shows the relation between Skelton’s

main stream-aligned team types: platform, stream-aligned, complicated subsystem and enabling teams.

The two kinds of team topologies are discussed in more detail below.

Functional topology

Functional team topology is formal and rigid, which makes it fast, yet fragile in situations of rapid

change. It is optimised for either expertise, division of labour or labour costs. In DevOps sources, func-

tional topology is seen as a team arrangement which had historically been dominant prior to the con-

fluence of Operations and Development to form a new boundary discipline of DevOps. The function-

al topology is enacted through the hierarchy, and groups staff based on their specialisations – for ex-

ample, server team, network team, database team. The key advantage is that functionally oriented

teams can achieve great productive velocity in periods of stability, due to their good traction – a com-

bination of organisational momentum with full transparency to the practices of audit. The team mem-

bers are capable of processing the tasks quickly when they are used to working with one another, well

acquainted with their tools and the tasks they work on are similar enough to be able to process them in

a similar manner without drastic changes to the workflow. This orientation can be ideal for technical

support in large systems, and arguably, when the velocity and momentum are good enough, changes

can be introduced gradually via collaboration with enabling teams without noticeable detriments to

the overall performance. The slow responsiveness to change in such topology can largely be attributed

to the fact that different specialisms never work together and are located on different fracture planes,

which means a lag in their communications.

Some functional topologies deal with this problem by introducing the elements of stream alignment

and are usually referred to as matrix topologies. This arrangement is meant to be flexible in that it sup-

ports a dual function in carrying out both functional and feature work. However, they achieve this at

the expense of somewhat muddled reporting protocols, since individual contributors often have to re-

port to both business and functional managers. In organisation theory, such an approach is usually

119

frowned upon because when a subordinate has more than one person to report to, this leads to con-

flicts in crisis situations, since they would have no idea who is taking precedence as the primary line

manager.186 Despite their drawbacks, matrix topologies can be used either in cases when avoiding them

can create unnecessary complications, or when using purely functional design is too difficult. In the

first instance, the reporting can be doubled but happens in the orthogonally positioned organisational

planes with no risk of conflict. For example, when a standard market or functional orientation is sup-

plemented by additional reporting on specific supplies or expenditures. In this case, the work progress

is reported to the department line manager and the balance sheets are submitted to accounts. In the

second instance, an example could be a team that is assembled on an ad hoc basis to provide a specific

service which requires expertise that other teams are lacking. This may lead to conflicts, but it is too

difficult to provide a highly specialised service via any of the other two orientations. Furthermore, as

Herbert Simon notes in his discussion of functional organisation, the teams have to be split in such a

way that any budget decisions are made at the point where it is possible to evaluate different value pro-

positions and select the most cost-effective one, and there is no bias arising from the substitution of or-

ganisational objectives for personal aims.187

Stream-aligned topology

The stream-aligned team topology is a more recent approach that was theorised by the practitioner

Matthew Skelton based on the context of DevOps and Continuous Delivery method. Skelton defines a

stream as ‘the continuous flow of work aligned to a business domain or organisational capability.’188

This makes him propose stream alignment as a set of principles for designing a technology-based or-

ganisation in accordance with Conway’s proposal, focusing on the construction of communication

within the organisation or the team to match the design of the software system that the company de-

velops. Adherence to streams avoids some parts of the friction which Frederick Brooks warns about in

something that is known as Brooks’s Law, which claims that ‘adding manpower to a late software pro-

ject makes it later.’189 In contrast to the functional view, the stream-aligned topology places the priority

on associating the company’s business proposition to the delivery pipeline, which is its technological

core. The stream alignment maps teams in relation to the pipeline in a way that would allow them to

continue delivering customer value in situations of extreme uncertainty, avoiding any direct confronta-

tions with software complexity.

	186	 Simon, 1997: 31 and 191.

	187	 Ibid.: 295.

	188	 Skelton and Pais, 2019: Ch.5.

	189	 Brooks, 1995: 25.

120

As Gene Kim notes, prioritising streams over products or features creates better conditions for the con-

version of business hypothesis into customer value – in this context, via a technology-enabled ser-

vice.190 Rather than splitting based on the systems’ functions, stream alignment has teams focus on spe-

cific aspects of system features at stake: the stream itself, as well as the platforms, subsystems and sup-

port services for any of them, and interact with one another as individual service providers. The

stream-aligned topology can also be implemented in contexts that do not match the organisation as an

entity – for example, in an agency which handles differently organised work, only its selected depart-

ments responsible for specific services can be arranged in a stream-aligned way. Streams can also over-

flow organisations – for example, in open source and other large initiatives, the stream span communit-

ies of practice across organisational boundaries. In essence, the stream alignment aims at creating the

organisation structure that overlays the system components in such a way that enables DevOps to focus

most of their efforts on mitigating the complexity of the relations between components. This requires

the teams to be flexible enough to change their positions in the workflow, which in stream alignment is

achieved via the service-based treatment of their work. While the team boundaries are rigidly main-

tained, the internal composition of a team itself is taken more flexibly to allow for rapid adjustments to

maintain the quantity and specialisation of team members in one stream relevant to the amount of

complexity, and to reduce the efforts associated with hand-offs and integration.

Since the present discussion is interested in the relations of teams to deployment, the other three team

types formulated by the team topology framework – platform, subsystem and enabling teams – can for

the moment be grouped together as not aligned to the stream, or simply non-aligned. This will make the

discussion easier since the latter three team types are not a part of the technological value stream. In-

stead, they provide ad hoc services that concern specific technical aspects of the domain. Nevertheless,

a brief reflection on the non-aligned teams’ duties will help to illustrate how a confrontation with soft-

ware complexity can be avoided through the application of organisation design methods.

The platform team delivers the platform, which in this context should be defined as a product or ser-

vice used by stream-aligned teams to deliver revenue-generating or customer-facing features, yet which

is not necessarily a part of the company’s value stream itself. A distinguishing feature of a platform is

that it is self-contained and provides an API or other interface, documentation and community or cus-

tomer support. Examples are the Linux and Windows operating systems, the Java Virtual machine,

public cloud services such as Google Cloud, Microsoft Azure and Amazon Web Services, or a contain-

er platform, like Kubernetes. In terms of its use by the business, a platform is, on the one hand, a layer

	190	 Kim et al., 2016: 8.

121

of technical abstraction which diverts the software complexity of the system parts which are not associ-

ated with the immediate concerns of the stream-aligned teams, such as networking or infrastructure,

into the purview of the dedicated platform team.191 On the other hand, the platform can also be used

as a managerial abstraction to encapsulate more complex team structures, depending on how complex

the platform is, and how much of it is delivered by third parties.192

Subsystem teams are brought in intermittently to help stream-aligned teams with specialised technical

skills that the latter do not have on board. For example, in one of my fieldwork cases, the business re-

quired us to implement a search function on their website. This entailed an integration of a plug-in

provided by our cloud service, however, our core team, which was a stream-aligned team in that it was

busy with customer value features, did not have any capacity for such an integration job. We resolved

the situation by assembling an additional subsystem team of two additional members, a DevOps and a

back-end engineer, who would focus on the integration task for a limited period of two weeks. The

subsystem team members would also be present in the stream-aligned team meetings, meaning that the

hand-off efforts would be reduced by the time they are finished.

Lastly, enabling teams are the research units, and even though they are similar to subsystem teams in

that they are highly specialised, their role is guidance and not execution. In the example of my field

study, one of the business requirements was to implement a scalable cloud architecture, which would

allow the production team to add more computing resources to the platform in moments of high

traffic, such as in cases of online events or special project launches. This required a new set of skills

that the stream-aligned team did not have, and thus we have requested a DevOps specialist to be regu-

larly present in the weekly team meetings for a period of six weeks to report on the progress of scalab-

ility implementation and answer any questions, which allowed for a soft transition to the new method

of operation.

Additional utilisation of epistemic infrastructure as code (EIAC) in this context lies in its logical split-

ting into several different pipelines where the circumstances make it necessary. The scenarios generally

depend on the team topology, considering the ownership. For stream-aligned teams, different deploy-

ment pipelines can be used when the parts of the system belong to different streams. Subsystem teams

stream their work as a service that other teams use without having to consider the underlying complex-

ity details of the service. Platform teams can have their own pipelines for specific platforms – this is the

	191	 Skelton and Pais, 2019: Ch.5.

	192	 Ibid.

122

best practice for deployment for any components that are stable or use distinct technologies or build

processes. For enabling teams, separate deployments are not necessary since the ownership rests with

the stream-aligned team. The epistemological practice of splitting is particularly important for large

systems which deploy great amounts of inventory, by making it possible to audit the relations between

teams in a scale-free way, as Chapter 5 explains further.

In its topological sense, a stream establishes a continuity between a specific aspect of a business domain

and an organisational capability that the stream defines: a user journey or a user persona, a service or

a set of features. While there can be a case when a stream addresses one product or one feature, the

conceptual disentangling of the stream from whichever content it deals with creates an abstraction of a

continuous initiative. This abstraction makes the production processes available for symbolic manipu-

lation, making it possible for DevOps to strategically engage with services, feedback, failure and learn-

ing. Dealing with such matters may otherwise be difficult to do, since the abstractions of functional to-

pology, such as a product or a feature become too fuzzy in the context of stream-aligned production,

and may be difficult to rely on.193 Furthermore, based on the stream continuities, the team relationship

shifts from reporting based on products or features to x-as-a-service, a term which refers to the service

nature of the team unspecific to what the team does. This maintains the rigidity of the team boundar-

ies, but in contrast to functional teams, enjoys a higher bandwidth for circulation of knowledge by sup-

plying each team with an ‘interface’, or a standardised way of exchanging the outputs of their work.

This further contributes to the abstraction of the production process and creates the conditions in

which the relations between teams can be addressed separately from the teams themselves, for technic-

al troubleshooting, customer experience, audit, or other mechanisms of governance. In terms of team

interactions, besides the x-as-a-service kind which uses one-to-many relationships, with matters of ser-

vice strictly owned by service providers, the stream-aligned paradigm also offers collaboration and fa-

cilitation interactions. These two are defined through the different ownership character. Collaboration

is preferable in one-to-one relations and shared ownership, and facilitation is possible between a

stream-aligned team and a small number of facilitators, with ownership retained by the stream-aligned

team.

The team topology approach could be considered in epistemological terms because it provides the

tools for creating, organising and warranting knowledge. Such a position is common to much of the

operations research, which tends to focus thinking on how things are done, rather than on the content.

The outcome is that content becomes one matter of analysis among many others, including infrastruc-

	193	 Skelton and Pais, 2019: Ch.5.

123

ture and delivery themselves. Through decoupling of teams, and providing different types of interac-

tions, the topological approach opens the alleys for more detailed critiques of the continuities that may

exist within the organisations and the validity of epistemological claims that may arise within the

streams and between aligned and non-aligned teams. Moreover, through its nuanced approach to the

organisation design, it opens access to the design of the software system the organisation works on, and

for the comparisons between the organisation and the system design. There are at least two major be-

nefits of the topological approach for the present study. One is the ability to implement the delivery

pipeline to handle the contingent complexity of relations between the components to be deployed.

This also means that the stream-alignment paradigm generally supports and even assumes the adher-

ence to Farley’s Continuous Delivery method. The other benefit is that the topological approach is well

suited for understanding the parsimony principle of agent’s behaviour, which Chapter 5 will look at in

more detail, and which implies accessing the individual agents in terms of their neighbourhoods, situ-

ated knowledge and involvement with their proximities.

Circulation of knowledge within the production system
The design lifecycle comes into being through a particular way the knowledge circulates within the

production system, which this section aims at explaining in more detail. Getting back to the design life-

cycle diagram (Fig. 13), it is now a good moment to provide commentary on the process of knowledge

inventory circulation between the epistemic infrastructure and the problem space that sets the whole of

the design process in motion. On the one hand, the epistemic infrastructure creates the possibility for

the action, through creating a blueprint of the problem space via the components. The problem space

of production, on the other hand, is where the negotiation of the system’s criteria takes place. The

three groups of stakeholders, through negotiations, excite and disturb the equilibrium of the system

and appear as the axis around which the inventory circulates. To use the terms of compositional meth-

odology, the epistemic infrastructure serves the givens, by providing the next step of problem definition

with each new deployment iteration. The goals come through the problem space criteria as they re-

ceive new requirements from the business, or the changes in production dynamics because of the

change in technology, or new incoming user demands reflected in the customer values. The stakehold-

er groups, such as production teams, business headquarters and users occupy the middle place as oper-

ators, being responsible for defining actions and methods.

To further explain the process of circulation of knowledge within the production lifecycle, this section

starts by explaining why the infrastructure as code is always identical to the structure of the organisa-

tion, and vice versa. The coincidence is achieved through constructing a more thorough understanding

of the differences between the notions of network and infrastructure. Then the section turns to the

124

ideas of process and product, which throughout the Continuous Delivery acquire a more fuzzy charac-

ter and tend to blend or collapse into one another. Lastly, the section examines why software systems

tend to disintegrate with time. The section results in an important observation that, due to the coincid-

ence between the code and the business value stream, the tendency of such code to disintegrate

presents great risks to the organisations, adjacent communities of practice and wider society. The Dev-

Ops-oriented study of production should therefore be considered a top priority for software studies

and other critical scholarship that deals with operations.

 

Fig. 13. Production design lifecycle.

The structural coincidence of the organisation and its code

There is a close relation between the terms network, infrastructure and system, and while the term network

usually stands close to the matters of knowledge management and complexity, going too far into its ex-

ploration is beyond the limits of this study. It is necessary, however, to understand the relationship that

the phenomenon of the network has with the systematic approaches and the infrastructural attributes

of knowledge. In the definition provided by one of the key thinkers of networks, the sociologist

Manuel Castells, a network is a set of interconnected nodes, where the node is something that is

defined in terms of the network itself. The prominent feature of the network for current analysis is its

topological quality, which is relevant to the present research in its three manifestations. In the first in-

stance, the network topology relates the distance between nodes to the intensity and frequency of their

interactions, with the nodes belonging to the same network having a more immediate relation to each

125

other.194 Second, the power relations within a network also display topological characteristics. The de-

centralised principle of resource distribution in the network is based on node clustering that generates

situated knowledge. Therefore, the power relations are focused on the access rights applied at the

nodes because the node switchers and the inter-network relay operators have the most influence on the

process that takes place.195

Third, network topology sees the non-uniform dissemination of information across the network. Bey-

ond the team configurations we saw above, the other important impact on the properties of the net-

work comes from the associated communities. As discussed by the organisation scholars John Seely

Brown and Paul Duguid, communities act to create areas in the network which have their own distinct

identity and coordinated practice.196 Lastly, the networks are not limited by organisations, such as, for

example, communities of practice around large technological initiatives of Linux, Salesforce or the

DevOps movement in general. This suggests that notions such as organisational culture are not as uni-

form as they are usually perceived – ‘the way we do things around here’ might differ in various parts of

one organisation, and perhaps relate these parts to the wider cross-organisational communities en-

gaged with the same practices, creating a matrix when overlayed with the organisation’s internal struc-

ture.197

With such a view of the network, the infrastructure is a network where the nodes are the institutions,

people, buildings and information resources that generate, share and maintain specific knowledge.198

Infrastructure in this sense differs from the system in that its aim is to create conditions for the activity,

rather than the activity itself. Given such a role of the infrastructure in the system, the system, in turn,

can be defined as a unity of goal-oriented social and technical principles and processes informed by

their infrastructure. There are two features of the infrastructure pertinent to the present discussion.

One is that the infrastructure is system-agnostic, that is, can be either applied to specific systems, or dif-

ferent systems simultaneously or in non-system environments. In any case, the infrastructure’s role is to

inform the strategic formation through a sort of standardised kind of access, a protocol, an API, or an-

other interface. The other feature of the infrastructure is that it does not presuppose its knowledge, as

well as the interpretations and understandings that it is derived from, as fixed. Instead, they are

	194	 Castells, 2010: 501.

	195	 Ibid.: 502.

	196	 Brown and Duguid, 2000: 144.

	197	 Ibid.: 161.

	198	 Lury, 2021: 207 citing Edwards and Bowker.

126

streamed based on the continuous feedback loop that delivers the new data derived from the applica-

tion of methods in the problem space of production.

Moving further to a more specific term of epistemic infrastructure, it should consider the meaning of

the term epistemic, which refers not to the content of knowledge but to how it works, enabling a discus-

sion around the regimes and modes of understanding, interpretation, belief, explanation or justifica-

tion. Approaching the content in terms of its epistemology allows for the analysis of the ways in which

the empirical findings are interpreted, alternative constructions of the objects of knowledge and know-

ing subjects. Adapting the term for the analysis of production, epistemic infrastructure can be seen as an

infrastructure that provides a comprehensive narrative about technical, strategic, business value and

other aspects required for effective production and maintenance. Moving further into DevOps, the epi-

stemic infrastructure as code (EIAC), which this chapter aims to develop, adds to the definition that

rather than a set of operational entities, the infrastructure is instead an executable instruction that

grants access to such a set, organised in a way that enables it to create from scratch a software system

as a whole.

Based on the above assumptions, it becomes clear why the present study needs to differentiate between

a system, a network and an infrastructure. The common feature of all three phenomena is that they

denote a limited set of artefacts and concepts which are connected in one way or another. While the

construction of the three is similar, the difference lies in their teleological causes, or in other words, the

rationale as to why these entities are gathered together. The system describes its components in terms

of their functional contribution to a common goal, the network in terms of their topological clustering,

and the infrastructure in terms of possibilities of knowing.

It is possible, the present argument goes, to think about EIAC because there is a close link between the

infrastructure of knowledge about a software system and the system’s configuration which is written,

executed and maintained as part of the production process. The link is maintained through the limita-

tion of organisation design, as Conway’s Law postulates, by the organisation’s ability to communicate

what is it that it can do. In other words, whichever pre-existing structure the organisation already has,

many of the design alternatives would not be accessible to it, due to the absence of the communication

links that could inform of the existence of such possibility. Turning to the epistemic infrastructures of

IT companies occupied by the production of a specific software product, the organisation’s communic-

ation structures would likely tend to become wholly synchronised with the structure of that software

product. This means that, on the one hand, all parts that the software needs for its successful operation

are written down in the infrastructure code. On the other hand, the organisation’s communication is

127

structured in a way that supports the production of all these parts. For the present study, the two infra-

structures can be equated because any part that can be referenced in one infrastructure can also be ref-

erenced in another.

Product becoming process

As we have seen, the Continuous Delivery pattern endorses a software system which is not a durable

copy or a model but is instead something streamed, that is, delivered from a clean slate, via the deploy-

ment pipeline, every time it is called for, along with its configuration, environment and documentation.

Such a technique ensures that the software system is always present in its most up-to-date form. While

such an ideal scenario is prescribed as the best practice, the emphasis here is on the possibility for it to

work this way, without the assumption that this is how it would necessarily be done at all times because

the circumstances can prescribe different deployment patterns for different software systems. The con-

tinuity of the process, however, causes some confusion in terminology, specifically between the notion

of the product and the process, which bears an impact on identifying which authority decides on the

meaning. This is particularly hard to define when the epistemological conditions are produced and

made available as part of the software system, removed from the purview of knowing subjects and into

the components and access permission schemes.

In this sense, the circulation of knowledge can be seen as happening not between the models and an

equivalent of a physical copy of an artefact, but more directly between the epistemic infrastructure and

the problem space. The focus is shifted because there is no longer a notion of a product as a unique

player in epistemic circulation.199 Instead, there are components – code binary, configuration, environ-

ments and data, delivered as a service. In this scenario, the content is separated into the database and

the principles of understanding and interpretation are contained in the EIAC, maintained through

version control. This effectively disables any epistemic circulation among the environments which

come and go continuously, meaning that any knowledge that may have existed between them and

which was not reflected in the infrastructure script, documentation or database, gets overwritten with

the new release. This, however, does not preclude the sense of situatedness, since each environment

may be used through its own distribution schema. To draw from some of Farley’s examples, in A/B

testing some audiences are presented with a different version of the same product to obtain new usage

telemetry; in user acceptance (UAT) or other testing environments the users can be limited to groups

with specific access permissions for testing and approvals; in blue-green deployment method, the sys-

tem changes require switching from one database to the other without losing the changes made to the

	199	 Lury, 2021: 147.

128

database in the process.200 This way, situated knowledge is still constituted in circulation between the

application of methods and reproducible epistemological values, albeit remapped to the layer of con-

figuration scripts.

One of the distribution benefits of Continuous Delivery as discussed in the DevOps technical sources

is that the automated streaming of infrastructure delivers a personalised topology of user experience

based on the choices made through interactions, for example, displaying otherwise password-protected

areas or offering buying suggestions on an e-commerce website. At the same time, the experience is

scale-free, in the sense that it is delivered in a personalised way to each user without adding extra work,

which is partly realised via relational database lookup, and partly by a suite of automated tests that al-

leviate the audit practices. The experience is regulated and organised for data collection through test-

ing to be deployed again and again based on the uninterrupted stream of feedback coming from vari-

ous channels. For the current discussion, this is the problem space of distribution, which is hybrid in that it

is simultaneously common and not common, and is characterised by its continuities rather than by its

discreteness. Such a view, informed by operations research, stands in apparent opposition to the notion

taken for granted in a more reflexive style of software research, something which is often used in media

theory.

Such a media theory approach focuses on the critique of the events happening in runtime, where the

user experiences can be seen as highly differentiated and personalised. For example, algorithmic re-

commendations on film or e-commerce platforms can be different depending on which user account or

geolocation credentials are used. This fact can be drawn upon to substantiate the claim that recom-

mendations and data harvesting in general can be detrimental to the user experience of cyberspace as

the commons.201 The present research focuses on complexity in the deployment stage and thus is not

concerned with the events that happen after the binary has been delivered. Furthermore, the complex-

ity of the problem space of distribution, in terms of the present study, can be abstracted away through

the notion of the environment. As we saw, the environment is a configured set of resources, which encap-

sulates a specific user and works with the data related to user interactions. In this sense, the environ-

ment can be pointed out as a useful analytical tool for further research on software distribution, which

would provide a diffractive, rather than fixed, topological view, which is, however, out of the scope of

the present study.

	200	 Humble and Farley, 2010: 261.

	201	 Lury, 2021: 90 citing Cardon.

129

The tendency of systems to disintegrate

The implication of the equivalence of the infrastructure of the firm and the one of the production sys-

tem is that any organisation design initiative has to account for the communication needs of both entit-

ies. The present research is concerned primarily with the epistemological aspects of such communica-

tions, that is, in which way the knowledge of organisation is replicated in the infrastructure code. The

process of establishing an organisation’s communication channels, and concomitantly, the production

system’s epistemic infrastructure and problem space can be roughly split into two stages. The initial

stage aims at understanding the boundaries placed on the system by the stakeholders and the world’s

realities. Such boundaries can be negotiated on the level of the organisation’s value stream and come

in the form of a strategy that translates the value produced into the technological solution. The task of

the second stage, once the strategy is done in its either preliminary or more detailed shape, is to draw

up the tactical team topology. The final topological configuration depends on the design of the soft-

ware system it is required to produce, its streams and the amount of platform and complex subsystem

support the streams are going to require. The resulting pairing of strategy and tactics begins to be car-

ried out in practice once both stages are complete, which faces the organisation with the task of co-

ordination. The coordination is done within the design lifecycle and consists of such activities as main-

tenance of the boundaries and stream configurations, delegation of tasks and their coordination, and

integration of components into a whole. Testing activities in organisation design management are the

important consideration as they provide the means to mitigate the risks created by the scarce resource

of human attention.202

Testing is included in all production stages so that the errors are addressed not only via the formal test-

ing stage, through actively detecting errors, but throughout the production processes, by using such

procedures as Test-Driven Development (TDD). Commonly associated with Agile methodology, TDD

essentially implies that tests are written alongside the source code. Such a tactic, as Farley explains,

makes tests useful not only as executable specifications of the expected behaviour of the code but also

as regression tests and documentation later in the process.203 Dispersing the tests throughout the pro-

duction process, alongside the continuous dispatch of small but frequent updates avoids the bottleneck

of scarce attention since each error is still fresh in the memory and has not been around long enough

to create any dependencies that may add more workload to troubleshooting later on. The stream-

aligned paradigm sees integration as a risk and aims explicitly at reducing hand-offs between teams by

making sure that each team is equipped with team members with different functional orientations to

	202	 Simon, 1997: 241.

	203	 Humble and Farley, 2010: 71.

130

be as self-contained as appropriate for the continuous stream delivery. The efficacy of such a tactic can

be assessed through Conway’s three ways in which systems disintegrate.204 One deals with the frag-

mentation of communications and is reminiscent of Brooks’s Law discussed earlier in the present re-

search. While there is a general tendency for an increase in the staff assigned to the design effort, the

increase in potential communication paths increases exponentially with each new member. This may

mean that even moderately small organisations have to apply a considerable effort to restrict some

communication to make time for teams to actually perform their work duties.

The other disintegration dynamic is that the staff increase happens because system designers choose to

delegate tasks when the apparent complexity of the system approaches the limits of their comprehen-

sion. Such behaviour, however, goes against best practice, which prescribes that designers either direct

all their efforts at reducing complexity or risk giving up control over the system altogether. Real-life

situations, however, add time and budget pressures, which confront the system designers with the

choice of losing their reputations over mismanagement or deferring the complexity to a later moment

in time. This means that complexity is being deferred by expanding delegation, where the tasks are be-

ing reassigned without having adequate resources to address the underlying systemic flaws that gener-

ate more tasks. Furthermore, the budgets are getting overblown due to the management logic of reli-

ability: if less budget is spent and the effort fails, the administration will be seen as incompetent. Con-

versely, in the case of a larger budget expenditure, the failure will come as evidence that a problem is

indeed a difficult one.205 In other words, as long as the managers’ prestige and power are tied to the

size of their budget, they will be motivated to expand the organisation. As a result, this situation makes

Conway call for a change in system design management thinking that is not based on the assumption

that adding manpower simply adds to productivity.

Lastly, another disintegration antipattern derives from the primary observation that the communica-

tion structure of the software system coincides with the one of the organisation, which also means that

if disintegration is allowed in the organisation, the system will also lose its cohesion. Since the system’s

design is not directly accessible, it should be improved by the application of reverse Conway’s Law –

designing an organisation’s communications alongside the natural seams of its software system. Such a

requirement comes hand in hand with the call for increased attention to change management because

the requirements for software systems may create unpredictable consequences to team compositions

and organisation structures. As we have seen, this pressure is rather effectively addressed by the stream-

	204	 Conway, 1968: 31.

	205	 Ibid.: 31.

131

aligned team topology comprised of longer-term members with broadly applicable sets of skills, who

are supported by the ad hoc teams to target more specialised tasks. In systems organised as such, some

institutional memory can be retained for smooth incorporation of new cultural features associated with

learning and other types of change. At the same time, stream-alignment makes systems better pre-

pared for radical innovation than the more ossified large technological systems Chapter 1 saw theor-

ised by the historian Thomas P. Hughes.

Are any of the three disintegration trends addressed by the Continuous Delivery and stream-aligned

workflow? From what the study has learned about these methods so far, it is clear that they have proven

to be very effective in streamlining the path from business value priorities to customer value, which

seems to resolve the large portions of what is seen as the second and third facets of disintegration. The

fragmentation of communications is reduced by organising the teams along the fracture plane patterns

so that everyone who has to communicate often has the highest bandwidth – and this configuration is

constantly revised so that those team members who communicate the most always stay close as team

compositions are adjusted. The coincidence disintegration problem is mitigated indirectly by reversing

Conway’s Law to design an organisation to coincide with its software system. Despite all of this, how-

ever, the first problem of overpopulated design efforts remains largely unaddressed.

The evidence for that is the traces of waste and hardship which are frequently referred to in DevOps

professional sources and can be described as the symptoms of complexity which appear in places

where epistemic infrastructure and problem space are not aligned. These can relate to either a prob-

lem within one or the other, or the relationship between the two. The signs of problems within epis-

temic infrastructure can be things like technical debt – accumulation of work related to the temporary

fixes made earlier – partially done work, missing or unclear information or commissioning of extra fea-

tures which do not necessarily relate to the value stream. The problems of misalignment between the

two production categories lead to ineffective behaviours such as extra or manual work, extra processes,

waiting or heroics, meaning that teams spend time doing things a hard way.

The argument that the present thesis tends to agree with is that such symptoms are related to the fact

that the overpopulation of design efforts cannot be solved if the organisation is approached in its en-

tirety in a centralised way. Yet, the centralised kind of administration should not be entirely disquali-

fied, since, as we saw in Thomas P. Hughes earlier, it is indispensable for the identification of the large-

scale patterns and analysis of the important systemic features such as style, momentum and reverse

salient. Furthermore, in the case of Frederick Brooks, theorising conceptual integrity led to important

practical decisions in terms of high-level planning and repetitive day-to-day operations, leading to im-

132

provements in performance in a large software firm. This demonstrates that systems thinking is appro-

priate when designing repetitive interactions for the results that are known in advance. This is, howev-

er, rarely the case with software systems, which, as also shown earlier in this study, meant that a system-

atic approach had led software production from one crisis to another. In the chapters that follow, my

study will therefore turn to organisational formations of a different type, referred to in various sources

as either distributed or complex adaptive systems. In my research, taking inspiration from Arash

Azadegan and Kevin Dooley, the terms are seen as referring to the same phenomenon but for different

reasons. Referring to the system as distributed expresses its relation to the outsides, for audit and other

procedures of governance. Alternatively, describing a system as a complex adaptive formation speaks to its

internal organisation in terms of its constituent parts, for example, the self-organisation of its agents.206

In this interpretation, the system is complex due to the multiplicity of local communications, and it is

also adaptive because the shared meanings are being negotiated in conversations that presuppose mutu-

al adjustment of agents throughout the negotiations.

The section should be concluded by mentioning that the structural coincidence of code and organisa-

tion combined with the tendency of software systems to disintegrate result in a dangerous trend where

the failures in epistemology inevitably lead to critical failures in the business. This trend is of great ur-

gency and has to be prioritised across the whole domain of software scholarship, equally involving in-

dustrial research and cultural studies. The reason is that the impact of operations on software systems, firms,

and, as a result, society as a whole, can be of great scale. The problematics of epistemic circulation are not a

matter of abstract theorising that can safely rest in tech blogs or in ‘geeky’ communities of practice. It

is, on the contrary, a matter of critical importance that directly impacts the organisation’s value stream

because this stream is immediately linked to the organisation’s deployment pipeline. As mentioned ear-

lier in the present thesis, the discipline of software studies has so far been mostly promoted by those in-

terested in software engineering and thus largely dealt with the problematics connected to the creation

of source code, leaving the issues of complexity in DevOps somewhat unattended. However, it cannot

be stressed enough that in the production model described so far, errors in source code would usually

only lead to failures in specific layers of deployment. On the other hand, errors in operations can lead

to failures across the business as a whole because they are tangential to the organisation’s technology

value stream, and its failures are directly linked to failures in operations and can rapidly escalate to en-

danger the existence of entire organisations and software systems, not to mention the harm done to

end users. As an example, one of the most prominent high-profile incidents in recent history was the

failure in the deployment of Knight Capital, one of the high-street investment firms. As the DevOps

	206	 Azadegan and Dooley in Allen et al., 2011: 419.

133

practitioner John Allspaw describes, a $440 million trading loss was caused by a 15-minute-long de-

ployment error – a period of time during which the engineering team was not able to disable or roll

back the production service. This led consequently to rapid company closure, however nothing beyond

a policy that would advise to ‘appropriately control the risks associated with market access, so as not to

jeopardise their own financial condition … and the stability of the financial system’ could be of-

fered.207

Chapter conclusion
This chapter has sought to clarify the deployment process of the software system as part of the pro-

duction lifecycle, and the additional organisational and technical mechanisms that make such deploy-

ments possible. The overall framework of Continuous Delivery appears as the synoptic controlling pro-

tocol that demands all of the system’s components and procedures to exist in a versioned and fully

auditable shape. This is made possible by the falling computation costs that enable continuous stream-

ing of the software system. The streaming blurs the distinction between product and service, yet makes

the system more transparent for the practices of audit through automation and repeatability. The

streamed components are deployed in layers and include the system environments, all of their config-

urations, the source code and the databases. The streaming happens between the two waypoints. It ori-

ginates from the epistemic infrastructure as code, which contains all of the system’s confirmed evid-

ence, and completes in the problem space of production, through which the system is made available

to the stakeholders. Confronted with the delivered content, the stakeholders negotiate its meaning with

the aim to confirm the new knowledge. Once verified vis-à-vis the problem space criteria, the know-

ledge is assimilated back into the epistemic infrastructure, at which point the lifecycle repeats. The

chapter has found that the depreciating computation bears such benefits as the ability to deliver the

components in large interrelated clusters of microservices and streaming of updates continuously,

rather than through risky larger updates. These advantages come at the expense of an exponential in-

crease in complexity, which makes it necessary to constantly balance the ability to audit with the pres-

sure to valorise complex processes.

In such a situation, a stream-aligned team topology makes it possible to absorb the complexity spikes

by rapidly scaling the architecture of the organisation to match the demand for services. The coincid-

ence has to work from both sides: when the system has to expand due to increasing demand, this needs

to happen in a scale-free manner without placing increased demand on the maintenance teams. Re-

versely, when the team has to scale to address a highly complex aspect of the system, it needs to hap-

	207	 Allspaw, 2013.

134

pen by way of abstraction, without causing an avalanche of complexity effects across the rest of the

system. Furthermore, the governance model remains largely responsible for the complexity increases,

due to the reversal of Conway’s Law. According to the Law, as the chapter has found, the changes

made in the organisational structure tend to seep into the design of the software system, often to unfa-

vourable effect. The complexity risks thus introduced by the multiplicity of interrelations between the

organisation, the market and the technological system are the reason why the present thesis emphasises

the role of governance in software production studies. While it might not be possible, I argue, to avoid

software crises entirely for the reasons discussed so far, the system’s complexity can be addressed in

large part by thinking about its governance. It is therefore important at this moment to focus on the

controlling protocols, and more specifically on the practice of audit, to which the next chapter now

turns.

135

Chapter 4. Audit and the problem space of
production

The chapter aims to establish the idea of the problem space in the soft capitalist production model as

the place articulated with and through the practice of distributed audit. The demand for distributed

audit is present in software capitalism institutions, I argue, due to the high technological complexity of

their operations. The operations, in turn, are complex because they inherit complexity from the soft-

ware systems which they produce or use. For example, the operations of a factory where the sole con-

cern seemingly evolves around the manufacturing of physical objects of finite complexity are still ne-

cessarily entangled with the high complexity in its operations whenever they engage with computation-

based technology. Therefore, there is an urgency to understand how to control the regulatory mechan-

isms in complex production situations, or what this chapter refers to, following the accounting theory

of Michael Power, as audit.208 Discussing audit contributes a great deal to the understanding of the

complexity effects on the system as a whole and to how the production model should be constructed.

The chapter’s discussion consists of an interlude and three sections. The interlude presents the field-

work I did, over the four years alongside my PhD study, in my capacity as a digital product lead. It dis-

cusses the challenges of simultaneous involvement with the organisation and the software system, the

case-based approach to collecting and organising data, and the field implementation of abductive

modelling. Lessons learnt in the fieldwork instruct the discussion of audit via three main themes, which

are explained in the three sections that follow the interlude. The themes are the notion of collectivity,

the phenomenon of the continuity of dysfunction in the production system, and the necessity to think

of audit as a distributed practice.

The choice of these three themes in this chapter is underpinned by the key interest of understanding

in which way the critique of valorisation of complexity in software capitalism may be methodologic-

ally distinguished from other knowledge-based socio-economic critiques. First, the theme of collectivity

argues that software complexity can only be tackled by distributing it throughout the system, which, in

turn, means a specific balance of coordination protocols communicated via the organisation’s manage-

ment structure with community efforts of a decentralised nature. Second, the continuity of dysfunction

	208	 Power, 1999: 82.

136

is based on the observation that the problem space operates through many interruptions and discon-

tinuities, such as the conflicts of interest between the organisation and the market, or the technical

conflicts related to innovation or regression – the backward compatibility of components. The dys-

function here serves as the diffractive mechanism of breaking down the problems and partly address-

ing them, to be able to keep the system in the minimal deployable state.

Lastly, based on the decentralised character of collectivity and the disruptive workflow, I argue that the

practice of audit appears necessarily distributed. The distributed nature is exposed here through the

concept of a support ticket as a non-linear audit tool, which brings together the criteria of the problem

space for the requirements, the acceptance of results and the customer value. The outtake of the

chapter is that to be auditable, a complex production system has to be scale-free, or essentially self-sim-

ilar and based on cases which can be processed through the application of the same scheme, rather

than by developing a customised approach for every case. Such a form of system scalability is neces-

sary due to the specificity of the integration of new knowledge on its various levels, and the imperative

to grow in scale – the issue caused by the falling cost of computation, which is addressed in the next

chapter.

Interlude. Field application
The process of empirical research for this study was not straightforward for a few different reasons. In

the first year of my PhD, my involvement with the organisation, JX, had been purely a means of sup-

porting myself financially in the initial period of the study. Yet, the intense involvement with both the

organisation and my research over the years has gradually produced a shift in both areas to such an ex-

tent that eventually, it became possible to carry out case study research as part of my day-to-day work

within the organisation, de facto enacting a participant observation strategy. Over the years of my work-

ing with the team at JX, my role changed continuously according to my growing familiarity with the

institutional ecology, as well as the changes in strategy and staff. To begin with, I was employed as a

visual designer, but soon after I joined, the organisation’s strategy had been re-pivoted to digital pro-

duction of their online media outlet, and as part of the changing team, I became increasingly involved

in the capacity of creative product lead, managing the work with a rather particular and often abstruse

content management system (CMS).

The several infrastructure migrations that I led the system through while working at JX made me think

that the mitigation of software complexity should perhaps be seen as a phenomenon which reaches far

beyond any particular programming language or CMS, to the organisation that uses it to circulate

knowledge and the market that uses it to circulate capital. Since my start in 2018, the JX production

137

team was growing according to the work we were expected to turn around, and by 2020–21 consisted

of two front-end developers, a back-end engineer and two designers. The largest initial problem when

we began in 2018 was that the CMS was performing poorly due to the lack of maintenance over the

previous five years, and was ridden with bugs. Beyond technical issues, the production process often

suffered in the face of poor communication within the organisation, which led to either schedule over-

laps, or worse, the necessity to re-make the work that was already done, to different requirements.

Working on my PhD in parallel with work at JX, I have decided to focus on learning more about best

practices in software production and started a series of annual reports, of which two have been re-

leased before the unexpected company closure in early 2022.

In the annual reports, I laid out the main ideas derived from practical work and theory study in the

corresponding years. The reports described the data collection and evaluation efforts based on the

aims and objectives outlined in the beginning, dividing the work into projects accomplished that year.

This helped me to adhere to the model-based abductive logic portrayed in Fig. 7 in Chapter 2 through

three phases. In the first phase of research, I created the trial hypothesis based on the organisation’s

initial request, informed myself about the context and generated the proposal to discuss with the stake-

holders. The proposal would outline the rough requirements for development, marketing, editorial and

operations, and would contain the product map, wireframes for key functionality, and drafts for the

timeline and work breakdown structure. All of these materials would serve as the incoming data for ab-

ductive modelling. The next phase would involve negotiations with different groups, stakeholders as

well as design and development teams. Some of the major negotiation events that happened in the

early stages of my project were semi-structured staff interviews (2019, 2020) and a larger staff survey

in 2020. After that point, and as the office switched to remote operation in March 2020, my data col-

lection efforts became more systematic and ongoing. At the end of my employment at JX in March

2022, it consisted of keeping and circulating the minutes for the regular project and strategy meetings

with stakeholders, the editorial team and the digital production team, along with the maintenance of

existing documentation including e-mails, project-specific reports, wikis, roadmaps and spreadsheets.

The final phase of the model work would be the engagement with it during the process of actual pro-

duction. This phase would begin after the budget and milestones were confirmed with the organisation

and any contractors assigned to do the work. While the roadmap would have to reflect the real dead-

lines, and the project managers would have to submit the statements of work and breakdowns of the

work done, the hypothesis would remain a matter of adjustment based on the new evidence that would

arise throughout the work process.

A distinctive feature of the empirical work I did at JX as a whole is that it could not be seen as one pro-

ject because it did not have a clearly defined beginning and end. When I started working there, the

138

company had its operations going for several years, and when I stopped, the operations were also

stopped midway. Therefore, this work could be more appropriately described as a support initiative of

an ongoing nature, split into projects of various sizes, or a larger case with smaller nested cases as its

integral parts. The use of abductive modelling informed me of some of the differences between pro-

jects and cases. As discussed in Chapter 2, projects have a static report-based nature, while cases are

more elusive and flexible. The projects are best described in nouns, such as deliverables, metrics or

deadlines. The cases, on the contrary, use verbs, and proceed via negotiating, clarifying or investigating.

The presence of a project as an entity and casing as the process emphasises the latter’s methodological

essence. As the interdisciplinary methodology theorist Celia Lury observes, the methods are best ap-

proached as doings because then it becomes possible to understand how they are conducted and car-

ried out.209 While projects are indispensable for delivery and reports, the cases are equally necessary

for tracing the differences in how specific parts of work are done, or to be able to understand how the

problems are negotiated, and how the completion of projects changes the hypothesis in the organisa-

tion’s strategy.

Presenting the fieldwork as project-based but done through casing helped address the two challenges.

One is that throughout all of the modelling phases, the paucity or lack of user feedback made it diffi-

cult to formulate clear enough aims and objectives. Even though we could definitely see the changes in

the relations among the team members and the growth of team culture, little has been achieved in

terms of measurable business outcomes. For example, if we could produce new software features such

as a new version of the navigation interface or a better search tool, we were not able to tell whether

they had a positive or negative impact on the user experience (UX). To address this, I directed my ef-

forts at establishing a case for introducing the UX practices, which I was no expert on and was not in a

good place to initiate, as some of the case studies in the Appendix discuss.210 Nevertheless, casing the

UX was possible, and had to be done prior to any actual UX work. The other challenge was the lack

of documentation, which meant that there was no existing procedure for transforming tacit knowledge

into explicit form. For example, much of the research done before the first annual production report in

2020 was gone, apart from some of the unstructured data contained in Trello boards, a project man-

agement tool the organisation used for some of the production work. In the absence of documentation

procedure, production had enjoyed the faster delivery because of the tacit knowledge contained in the

practices of staff members – a mechanism discussed later in this chapter – at the cost of losing traction

when those members left the company. Some of the large changes that caused the loss of traction

	209	 Lury in Lury et al., 2018: 85.

	210	 See Appendix, CS4, CS7, CS12.

139

happened in the areas of the company’s operations (the gallery space was closed, and the work became

purely online), software architecture (move to public cloud hosting and change in development work-

flow as described in the 2020 report) and in organisation structure (new digital production depart-

ment). In this situation, I used project thinking for generating the hands-on documentation about the

work being done, simultaneously using casing, in conjunction with abductive reasoning to create the

continuous relationship between the existing strategy and the unknown events of the past.

Distributed collectivities
Having briefly looked at the case-based approach that underpins this study, it is now necessary to ad-

dress some of the issues it reveals. One of the pertinent issues is the phenomenon of the decentralisa-

tion of production efforts, which makes the organisation more resilient to the impact of complexity

fluctuations. If complexity is not distributed, it acts to dismantle the system. It makes sense, however, to

start by pointing out the benefits of centralisation, which may help to understand why it is difficult to

apply in high-complexity situations. Turning to the administration theory principles developed by or-

ganisational and behavioural theorist Herbert Simon, centralisation should be recognised as a gov-

ernance principle that limits the decision-making powers to specific parts of the organisation. This ne-

cessitates the creation of a hierarchy, in which the subordinate departments are not concerned with

comparing and evaluating the competing considerations, and accept the outcomes reached in the high-

er levels of the company.211 The benefits of centralisation lie in the increased effectiveness of coordina-

tion, expertise and responsibility.212 However, centralisation is costly and only pays off when the sys-

tem’s complexity has a limit, such as in material manufacture. In software production, however, the

high complexity turns centralisation into a liability, revealing such downsides as the duplication of

functions because of the limits to the spread of information throughout the organisation, and expo-

nentially rising communication costs.

This appears as a problem because in centrally-organised systems the information is insulated by the

hierarchy levels, and the effort needs to be applied to make general information accessible. This activ-

ity is not easily scaled and therefore becomes a problem when the general access information is com-

plex and contained in varied resources. Furthermore, there is a somewhat counterintuitive tendency in

situations of the scarcity of resources to refer the decision to the higher levels of administration, while

it may be obvious that these are less qualified to take decisions because they are further removed from

	211	 Simon, 1997: 317.

	212	 Ibid.

140

the world of fact.213 In terms of Azadegan and Dooley, centralised governance brings the most benefit

in the situation where the resources and connectivity are scarce and expensive.214 In software produc-

tion, however, neither the knowledge inventory resource, nor the connectivity has a limit in the same

sense as in material manufacture, which makes the advantages inapplicable, and the new complexity

factor renders the centralised control a hindrance. Yet, centralised systems usually neglect local de-

cisions due to the inability to effectively audit them, which results in the lesser ability of the system to

cope with uncertainty and rapid change in the problem space.215 In distributed systems, on the con-

trary, local negotiations can be prioritised and made operative as part of the overall production

strategy. This is possible because of a specific character of collectivity and the ways of negotiating

meanings, matters that this section addresses in more detail.

The problem space of production and the community of practice

A community of practice (CoP) is a notion theorised in depth by the educational theorist Étienne Wenger,

who sees it as a mutual interest group that is engaged in the negotiation of meanings through practice,

understood topologically as the complex social landscape of boundaries and peripheries, made operat-

ive by the interplay of participation and reification.216 On the one hand, participation presupposes that

only those who take part in practice can enter into a productive relationship with other practitioners.

Practice is only present in its concrete enactment, and therefore actual practising cannot be substituted

by a mere membership, an interpersonal relationship or geographical proximity.217 Reification, on the

other hand, is present in the sense of ‘making into a thing’, or treating abstract notions as materially

existing. This means that specific notions are introduced into the negotiation space so that they can, in

fact, be negotiated.218 In this sense, the support ticket which is discussed later in this chapter is a reifica-

tion of the item of work because creating the ticket enables the stakeholders to start the conversation

about the different aspects of the problem the ticket is dedicated to. The two processes are mutually

enabling, since no ticket can be discussed if there are no relevant participants, for example, developers

or users who would be engaged with the problem. Reversely, in the presence of users and developers

but without a ticket or other document at hand, there is little chance that any productive discussion of

the problem is going to take place.

	213	 Simon, 1997: 320.

	214	 Azadegan and Dooley in Allen et al., 2011: 428.

	215	 Ibid.: 426.

	216	 Wenger, 2000: 50.

	217	 Ibid.: 74.

	218	 Ibid.: 58.

141

Turning to the relationship between CoP and the organisation, the key consideration in clarifying its

character is that it is the practice that creates cultural continuity, making it possible for the CoP to go

beyond the borders of the institution. As Brown and Duguid note, the ability to extend beyond the

boundaries of organisations can be explained by the fact that the ‘connections are dense in some

places and thin in others,’219 – that is, organisational culture does not make organisations internally

uniform. Furthermore, the organisation may not deal with CoP as one entity, but also on a level of

participation of individual members, which suggests a one-to-many rather than one-to-one corres-

pondence, such as in the software-as-a-service (SaaS) model. This also includes cases where the indi-

vidual developers are employed by the organisation and interact with the software system according to

the organisation’s strategy and policies, but are at the same time present as the members of the CoP

for that software system alongside those developers who are not employed by the same organisation,

just as long as they satisfy the participation and reification criteria – that is, they practically engage with

the system and address its abstract aspects through the concrete problem-solving events.

Likewise, despite the repertoire of specific routines, words or symbols which a CoP may share with the

organisation, it may not always fully coincide with it in all of its activities. This case is made quite ex-

plicit in some of the more community-oriented SaaS platforms such as Salesforce, a customer relations

platform that pioneered the model, and by widely used open-source products, such as the Linux oper-

ating system. The community-building practices in such cases are robust enough to encompass all of

the user body of the system, regardless of their organisational affiliation. For example, the Linux CoP

interfaces with every organisation that engages with the operating system in different capacities. As

Wenger notes, there are CoPs comprised of specialists in one area of expertise who work in different

units but stay in close contact, or the interest group around an emergent technology which has enthusi-

astic followers in competing businesses.220 For example, in my fieldwork, the digital production team

was functioning as a self-contained unit separately from the editorial team. This divide was well-pro-

nounced and yet felt quite organic, having no negative impact on the integrity of the organisation as a

whole. The productive relationship within the organisation as the meeting place of different CoPs was

precisely, I contend, because of having to adhere to common organisational goals. This might suggest

that it is largely the presence of the organisation’s strategy and policy that acts as a trigger of the co-

ordination effort required to create the problem space of production, which would always emerge in

the intersection of CoP and the organisation.

	219	 Brown and Duguid, 2000: 144.

	220	 Wenger, 2000: 119.

142

Furthermore, the collectivity of production in software capitalism should not only be evaluated in

terms of the compliance of its work-related activities to the organisation’s regulatory mechanisms but

also in terms of its contribution to closing the gap between the technological and business value

streams. It is this latter dynamic which makes the collectivity create, through its interrelations, the prob-

lem space of production (Fig. 14). This happens, I argue because in this junction the collectivity is simulta-

neously accountable to the system’s technical functioning and the organisation’s audit. On the one

hand, the space includes business owners, production staff, users, and broadly everyone who uses the

software or contributes to the process of its production. This CoP is activated through professional

conferences, online social tools, or technical support platforms that link different stakeholder types to-

gether – for example, production teams link to users through support requests. On the other hand, the

CoP interactions in the problem space of production are limited due to the coordination efforts that

come from the organisation to answer specific organisational goals, which arise via the requirements,

acceptance criteria and customer value.

Such constraint makes it possible to use this space to focus the negotiations around the specific produc-

tion goals, converting the intersection into a problem space. The negotiations can be difficult due to

the earlier observation that the shared knowledge about the software system tends to align with the

software system’s own CoP and not with the organisation’s CoP. This can be made explicitly, as, for ex-

ample, is the case of Linux, which results in the cultural fabric of a specific organisation not fully coin-

ciding with the software system’s problem space. At the same time, the organisation cannot entirely rid

the problem space from CoP because beyond its participation, in Wenger’s terms, the community plays

an active role in the reification of the criteria, such as requirements or acceptance. This makes it neces-

sary for the negotiations in the problem space of production to continuously navigate the mixed

panoply of interests coming from both the community and organisational cultures.

143

 

Fig. 14. The problem space of production and the community of practice.

What follows from the presentation of the mutual involvement of the organisation and the CoP is that

there is a boundary that marks a part of the problems space which falls into the area of the operations

of capital, outlined by the ‘Market’ circle in Fig. 14, where the activities of the organisation and CoP

acquire specific dimensions in terms of their capacities as the forms of machinic and human labour. In

knowledge-based production, the positions of such kinds of labour differ from the Marxian capitalist

model: the machines are no longer uniquely dead labour, the artefacts of investment and the invariant

executioners, but the active participants in the organisation and processing of knowledge. Living la-

bour, in turn, delegates some of its cognitive duties to the machine, rather than merely acting as the

technical system’s appendage concerned with overseeing its functioning. The human and non-human

participants of production are grouped according to the current configuration of the problem space,

considering counteracting and supplementary tactics. What this means is that the collective no longer

benefits the workflow in the Marxian cooperative sense of a free gift to capital,221 or an extra benefit of

higher productivity. Instead, there is a capitalist tendency to institutionalise and valorise upon any dis-

continuities, as this chapter discusses further on. The discontinuities, in the form of the continuity of

dysfunction, originate in the problem space of production among the community’s goals, which are

linked to the process of learning, and the organisation’s primary aims are to achieve the clear and

transparent structure of outcomes available for audit. In this sense, the conflicts of interest in the or-

	221	 Marx, 1990: 451.

144

ganisation’s involvement with the CoP and the software system make the organisation’s pressure to

audit a more urgent and simultaneously a more difficult task. This calls for an important shift in the

way the work is carried out, which can be discussed in terms of differences between the cooperation

and coordination mechanisms.

Cooperation and coordination in distributed collectives

Operations treat the organisation’s notion of collectivity seriously because such a notion bears a great

impact on the wider strategic considerations. Having learnt the lesson of the tar pit of early software

production systems design, current DevOps thinking appreciates, as we saw in Skelton earlier, that

communication is costly and warns that any team collaborations that do not have any explicit business

value are to be avoided.222 The two notions that usually stand side by side, cooperation as the property

of collectivity and coordination as a kind of governance, may involve analogous interactions, yet reveal

different organisational patterns. Cooperation views the participants of a particular activity in terms of

their common goal. Coordination, in the description of organisation theorist Thomas W. Malone, is a

protocol that defines the flow of knowledge between the participants that reduces any friction that may

arise in cooperation, with an emphasis on managing dependencies.223 Without coordination, that is, in

the absence of strategic awareness of individuals about each other’s actions, no shared goal can be

reached.224 Furthermore, coordination is preferred over direct supervision by audit in high-complexity

production because the latter requires an increase in coordination and audit efforts whenever the num-

ber of tasks to supervise is increased. Conversely, whenever the activities of agents are isolated and the

workflow is split into the execution of tasks and their coordination, the reporting on the results of co-

ordination can be standard regardless of what kind of differences there might be between the actual

tasks it reports on. Once the unified reporting is achieved, the practice of audit becomes scalable – that

is, does not increase in volume when more tasks are added and can be distributed – that is, can be it-

self standardised, fragmented and carried out locally.

In terms of risk assessment of reporting compliance, Malone identifies the three main types of de-

pendencies that require coordination. Pooled dependencies present the least risk because they share a

common resource but are otherwise independent, therefore can be evaluated in bulk based on their

parent resources. Sequential dependencies are intermediately risky, since here the downstream activit-

ies cannot be executed prior to the upstream ones, and therefore some manual sorting and grouping

	222	 Skelton and Pais, 2019: Ch.8.

	223	 Malone and Crowston, 1994: 90.

	224	 Simon, 1997: 81.

145

might be required in cases where some activities are blocked while others have already been com-

pleted. Reciprocal dependencies are the highest risk because here the activities require inputs from one

another, and therefore a case-by-case assessment is inevitable. For situations where too many reciprocal

dependencies create a bottleneck, organisation theory proposes creating a custom coordination mech-

anism – for example, mutual adjustment, which gives up hierarchical control in favour of letting the

agents self-organise locally in order to get rapid responses. This reduces the risk from the complete ab-

sence of results to having to deal with potentially non-compliant results.225 Further challenges to co-

ordination and audit are related to the assumptions carried over to DevOps from operations in materi-

al manufacture and are addressed in more detail in Chapter 5.

Situated knowledge has a double role in collective practices. On the one hand, it may create great in-

creases in output, such as in the division of labour in the widely cited example of the pin maker which

the economist Adam Smith opens his foundational Wealth of Nations with. According to Smith’s es-

timations, working alone, the pin maker is only capable of producing twenty pins each day. When the

constituent processes are distributed to different workers, it becomes possible to produce over two hun-

dred times more pins.226 To Brown and Duguid, this happens because it is easier for individual workers

to develop new ways of implementing productive improvements to their respective parts of the work,

in other words, generating useful local knowledge, when they are no longer distracted by the constant

cognitive switches. On the other hand, however, situated knowledge may reinforce the divisions that

help create it if different agents or groups can continue to develop their ways of working within the

boundary of the components, as long as the components retain general compatibility with the work-

flow or the system as a whole.227

In the context of factory production, the workers are brought together by capital in labour relation as

executioners of clearly defined repeatable tasks and maintainers of machines. The function of co-

ordination is to plan and manage the scaling of the model, which can be done in a predictable way

since the addition of humans and machines does not change the equation and brings about the corres-

ponding increase in productivity. In other words, the Taylorist scientific management model with its

tendency to make all of the production knowledge explicit down to the recording of every minute de-

tail of every movement, tends to downplay the situated knowledge, which is something which is not al-

ways recorded. Knowledge-based production tends to re-introduce this tacit type of knowledge back

	225	 Malone and Crowston, 1994: 133–114.

	226	 Smith, 1976: 18–19.

	227	 Brown and Duguid, 2000: 153.

146

into production, which raises the degree of interaction and delegation between human and non-hu-

man agents and introduces a risk of unpredictable fluctuation of the production system’s complexity,

and with it the amounts of cognitive pressure on individual agents. This, in turn, makes scaling know-

ledge labour less of a straightforward task, and the function of coordination shifts its attention from

the individual movements to binding the collectives together with the web of local connections flexible

enough to be able to reshape in places where the complexity of the production situation becomes un-

bearable. Through notions such as cognitive load, which will be discussed in further detail in the next

chapter, it becomes possible to estimate the capacity of human minds to process information and to

decide on the system’s design. While the design of the system is possible, what is the mechanism that

supports the system in achieving this traction, different from the momentum of large technological sys-

tems described by Thomas P. Hughes? To understand the new sense of traction, a formation of a spe-

cific relationship within the production system needs to be distinguished, the transindividual which re-

creates the sense of cooperation lost in the dissolution of the individual.

Cooperation, the transindividual and traction

As the software production system meets the organisation and market domains, the increase in produc-

tion scope goes hand-in-hand with the increased pressure for research, learning and conversations.

These are cultural activities in the sense that they cannot be compressed in time by breaking down into

constituent parts, executed in parallel or optimised otherwise. Instead, such labour requires facilitation

by staff that contributes to value exchange only in the second order, with the primary objective being

the articulation of the problem space criteria and the creation of the problems to be addressed. Active

hiring of additional members of staff into production teams to carry out these functions is not there-

fore sunk costs, even though they do not create the software artefacts as the result of their labour. Dis-

continuity is no longer a benefit, as it is on the factory floor, where the break between the workers and

the managers is crystallised in the rigid workflow, designed to maximise the benefit of cooperation in

the form of increased output of standardised items.

The notion of the transindividual points to a moment of collectivity that enables the force of coopera-

tion in complex production contexts. It comes as a result of effective coordination within the problem

space of production and yields increased traction due to a more tight coupling of activities of team

members. This, in turn, increases team velocity. The transindividual is a product of a collective com-

ing-together of the pre-individual qualities, such as emotions and affects, that is not fully differentiated

or integrated into the shape of any concrete artefacts to become the matters of market exchanges.

Technology openly enters transindividual formations, since it does not merely offer itself as a tool, but

conditions the work process, enters the affective relations and is malleable to the requirements of the

147

users, which also includes production teams. Such openness within the transindividual creates sufficient

traction for triggering cooperation in complex production systems.

The transindividuation tendency in the problem space of production is more than the mere absence of

the conflict of interests and is characterised by the many overlaps with market relations of exchange.

For example, in market competition, a common goal may lead to something similar to cooperation,

even though no transindividual relation between the competitors is evoked. When a manufacturer and

a farmer have a common goal, a bargain can be struck, but the relation is still interindividual, evolving

around a single point of determining the quality of goods exchanged.228 And vice versa, inside the or-

ganisation a market-like relation can take place, as in the stream-aligned pattern of x-as-a-service. The

deciding factor here is the aims that the parties pursue: within the organisation, the services are

provided to achieve common goals that act to further develop transindividual collectivity, while in the

market the interindividual relation is more suitable for the event of coming together to exchange the

outcomes of independent productions with the goal of achieving monetary gain. In the third case, as

my fieldwork demonstrated, developing a long-term working relationship with contractors tends to

stack the market and organisation relations along the organisation’s communication seams. On the

level of communication within the production team, the relations were based primarily on affect and

bodily production. To use Barad’s terms, production was made possible via the ‘agential capacities for

imaginative, desiring, and affectively charged forms of bodily engagements’.229 On the level of cre-

ation of value, the outcomes of production served as evidence of the work done, and operated as mat-

ters of exchange and payment for the same contractors who otherwise were transindividual – that is,

not present on the market as the pre-constituted individuals providing a standalone service.

Due to these factors, the production of transindividuality may appear in the organisation in a contra-

dictory way, where on the one hand, the organisation needs the pre-individual components to produce

the cultural cohesion, while on the other hand, it necessarily rejects the tacit knowledge the transindi-

vidual relation is based on, as an impediment to control. DevOps clearly gains from the affective di-

mension of the relations of production which employs interpersonal connections to develop organisa-

tional cultures. Yet, the organisation as a whole may express resistance to transindividuation up to the

point of hostility. The reason is that the transindividual is a multifaceted more-than-human entangle-

ment of company staff and technology, which develops high velocity due to the activation of tacit

knowledge. The latter, as Chapter 5 explains in more detail, is the knowledge which is inchoate and

	228	 Simon, 1997: 156.

	229	 Barad, 2015: 388.

148

scarcely communicated, largely present within the production practices in a state which is uncodified

and unavailable for easy transfer. The presence of knowledge as tacit does not always mean that it is

intrinsically incommunicable, but rather that its custodians are interested in keeping it tacit out of self-

preservation. As software scholars Matthew Fuller and Andrew Goffey observe, if the knowledge is not

articulated, ‘it is because it can only be so at the cost of calling into question the social structures that it

supports.’ 230 Knowledge can also remain tacit because all the parties share the same context and

therefore no further explanations are necessary.

The consequence of the tacit knowledge risks to the organisation’s relation to the self-organised

transindividual formation is therefore two-fold. On the one hand, transindividuality makes it possible

to create momentum where otherwise Brooks’s Law prevents it from happening, being stifled by the

complexity of communications. On the other hand, despite the rise in momentum, the overall system

traction tends to fall, due to the transindividual autonomy which resists control and tends to conserve

and guard the knowledge it generates. This contradictory relation is addressed, to a variable degree, by

the specificity of production workflow, which the next section discusses as based on the continuity of

the system’s dysfunction. Such workflow tends to fragment the work into the smallest possible fractions

and therefore makes it possible to prevent transindividual relations from completely diverging from the

overall organisation strategy, while still being able to employ affect to mitigate the complexity that

arises from the dysfunction.

The continuity of dysfunction
Since the audit finds the dysfunction at the end of each of its events of self-reflection, it necessitates the

problem space as a space where the dysfunction can be described and processed. The problem space,

therefore, stands outside of the epistemic infrastructure, which is not intended to account for the sys-

tem’s errors and describes it in the assumed ideal state. The continuities between the particular charac-

teristics of the problem space and the epistemic infrastructure have to be maintained. On the one

hand, there are errors negotiated in the problem space by the stakeholders through the requirements

expressed in the support tickets. On the other hand, there is existing knowledge contained in the epi-

stemic infrastructure, which by its nature cannot be sufficient to inform the problem solutions, and re-

quires abductive reasoning about problems that would mitigate the scant knowledge resources.

Whichever tactic is used, the demands for audit grow progressively stringent, since complexity spikes

tend to aggravate the situation of uncertainty.

	230	 Fuller and Goffey, 2012: 128.

149

The compromise that the problem space offers is the fragmented workflow, which redistributes the ef-

forts across time,231 which alleviates the cognitive load by allowing to defer providing solutions to all as-

pects of the problem at once. This is achieved by abductive manipulation, frequently referred to as

model-based, which requires creating an external representation of a problem, which is followed up by

breaking the problems into smaller parts. Once the parts are created, the organisational administration

can follow a protocol to sequence and coordinate the dependencies between the parts. For the audit,

this is also a preferred way of treating complex problems, since it creates a stable and scale-free body

of records about the work done, that can be reviewed in a consistent and systematic way. The two re-

maining sections of this chapter are interested in examining more closely this process of treating com-

plexity. This section looks at the phenomenon of disruption-oriented workflow that accommodates the

continuity of dysfunction. The next section turns to the audit as a distributed practice of review and

control.

Production of software dysfunction

The phenomenon of the continuity of errors in the problem space of production largely builds on the

notion of a desiring-machine offered by the philosophers Deleuze and Guattari. To them, the desiring-ma-

chine is a defining component in the mode of capitalist production, which is present as a plane that ac-

commodates the forces and agents of the specific production context. Unlike technical social machines

described in Marx’s industrial capitalist model, desiring-machines are involved in production on a

wider scale and include both affective relations and the material aspects of the world – that is, produc-

tion is immanently present in all aspects of reality. The capitalist model is involved with the desiring-

machine as the key organising principle of its components and the consequent relations, and also as

the defining logic of the plane itself, which therefore becomes its plane of internal operations – or the

capitalist plane of immanence, to use the term of Deleuze and Guattari. Coming from the philosoph-

ers’ theorisation of desiring-production, I take note of the three principles that make such production

distinct from the preceding industrial manufacturing model: the surplus value, the movement of interi-

or limits and the antiproduction. Examining the conjunction of these three principles will help my

thesis to articulate the valorisation dynamic that ultimately leads to complexity spikes in software pro-

duction systems.

The first principle is that surplus value is not merely a difference in quantities between matters that are

otherwise equivalent in their commodity status, as in industrial manufacturing. Instead, the surplus of

desiring-production is created through the differences in heterogenous magnitudes, which come in hu-

	231	 Hutchins, 2000: 354.

150

man, monetary and machinic forms. The human surplus value is created in the fracture between the

flow of capital and the flow of living labour, the monetary surplus value arises from the divergence of

flows of financing and payment, while the machinic surplus comes from the lag between the market

flow and the innovation.232 Using this optic for the discussion of the high-complexity production situ-

ations makes it possible to recognise the aspects that make it distinct from the traditional accounts of

mass manufacturing. One aspect deals with the diminishing relevance of the class relation of labour

between workers and capitalists and the increasing role of valorisation on the complexity effects, which

create the fracture that has to be negotiated by the stakeholders in the problem space of production.

The other aspect is that the valorisation schema builds predominantly on circulation and distribution,

intensifying the monetary flows based on the various moments of the system’s disrepair. Lastly, there is

the pressure of keeping the system’s control in balance with the complexity of its technology, so that

the traction is not lost.

The second principle is the movement of interior limits, which is based on the notion that the plane of

immanence defines the contours of the terms on which the production problems are negotiated. If an

unprecedented problem arises, or a previously unfamiliar feature of an existing problem is en-

countered, the contours are adjusted correspondingly to include it and rebalance the relations across

the whole desiring-machine. This tendency of the sphere of capital circulation to expand is consistent

with the Marxian premise that any creation of surplus value at one point requires the creation of sur-

plus value elsewhere for which it could be exchanged. This, therefore, becomes a precondition of cap-

ital to either continue to seek direct expansion of production or to create more points of production

within the existing circulation chains: ‘every limit appears as a barrier to be overcome.’233 In desiring-

production, however, the flow is primary. Informed by the flow, capitalism employs the changes that

are introduced into the system, to define both the new categories and the materials for categorisation.

In the case of software capitalism, the present thesis generally sees the changes as new requirements,

acceptance criteria and customer values which have as one of their primary causes the falling cost of

computation. The changes create complexity spikes proportionate to the gaps of traction that they cre-

ate, where the administration model is becoming inconsistent with the new production capabilities.

The absorption of changes may appear in the form of new long-term and high-budgeted projects, re-

organisations or migrations to new infrastructures, depending on the magnitude of complexity and the

size of the firm. The creation of new branches in valorisation schemas in response to the changes al-

lows the firm’s production cycle to balance the production method and the business value stream.

	232	 Deleuze and Guattari, 1983: 372.

	233	 Marx, 1993: 408.

151

The third is a principle of antiproduction or production that bears no outcome beyond the reinforce-

ment of the capitalist production model and exists solely for the realisation or absorption of the sur-

plus. As a result, the way of negotiating problems operative in the desiring-machine is effective only in

its appearance, since it aims for no more than creating the schemas for valorisation which, once estab-

lished, are used to re-create the world in the image of the abstract value-form they reflect. Like the cir-

cuits printed by the high-precision plotting equipment on the surface of the Gordon Moore’s Intel mi-

crochip, the capitalist value schemas appear as patterns on the plane of immanence – and likewise, the

more tight and complex the pattern is, the more saturated with valorisation potential the schema be-

comes. The main outcome of the desiring-machine operation is therefore a production blueprint that

continuously seeks to increase in its complexity, with any associated products or subjectivities being its

mere side effects.234

Such an antiproduction dynamic may suggest that complexity comes about in the moments when the

system breaks down. The breakdowns rarely mean the break in all of the system components, but

rather that some of the components either prevent the rest of the system to run in production or dis-

able some of its parts, which do not affect the deployability of the system as a whole. The antiproduc-

tion circuit employs the disruptions in the circuit to create additions to the system design that bring the

system to the operational state, or a state of better repair, yet create more opportunities for dysfunc-

tion, since they make the system more complex. The dysfunction is therefore continuous, in the sense

that any system’s dysfunction is always linked to another one, which warrants that some part of the sys-

tem will break again. The dysfunction-oriented workflow is something that makes desiring-machine

different from mass manufacturing. To Marx, technical machines can only work and produce surplus

value when they are in a good state of repair. As Deleuze and Guattari explain, the machines stop

working not when they break down, but when they wear out.235 The machine will be purchased at the

specific cost at the beginning of its operation, then operates for as long as it is necessary to transfer its

value to the products, and stops the operation when no more of its value is left to transfer. If the ma-

chine stops because of the breakdown, its operation is not disrupted but merely deferred because the

associated maintenance efforts are assumed to be in place to ensure that it comes back to its operation-

al state and resumes the value transfer.

A desiring-machine, on the contrary, is expected to break down continuously as it runs. Deleuze and

Guattari observe that machines of this kind feed on the contradictions which are the inextricable part

	234	 Deleuze and Guattari, 1983: 31.

	235	 Ibid.

152

of their functioning since they ‘make a habit of feeding on the contradictions they give rise to, on the

crises they provoke, on the anxieties they engender … there can be no death by attrition. No one has

ever died from contradictions’236 In other words, having encountered the gap or rupture, a desiring-

machine relays the maintenance of it to a separate service or other organisational construction, which

creates an additional capital circulation loop and generates more of the heterogenous surplus value of

human, monetary and machinic means. The desiring-machine, therefore, is primarily concerned with

topological problematics, of connectivity and borders: it defines the connections between the parts it

creates and reinforces the lines of communication. By doing this, the desiring-machine, intentionally or

not, instructs the design of the organisation itself, since as per a reverse Conway’s Law, the organisa-

tion cannot break the limits or communication divisions set up by the software system it runs on.

The outcome of such an operation to software complexity is that it’s being deferred to and distributed

among the many parts of the system, which makes it possible to adsorb and survive its tremendous

thrust. While the system’s complexity introduces contradictions, such contradictions do not act to com-

pletely destroy the system but rather create the stumbling blocks or bottlenecks that deter the function-

ing of the system’s various aspects. The dysfunction means that the constituent parts of the system are

not entirely consistent with each other, and in fact, full consistency, as it is prescribed by the system’s

epistemic infrastructure, is not achievable in the problem space. This happens because, even though

the deployment is continuous, the definitions of the problems have to be negotiated all over again

every time the agents come together to review the system’s present state. The inconsistencies that cause

the dysfunction are continuous. Furthermore, fragmenting problems into smaller parts aids the negoti-

ations because the large problems may contain multiple internal dependencies that may cause conflicts

if a problem is approached as one task. Each constituent sub-task can be addressed in a focused way

via a support ticket, where the requirements, acceptance criteria and customer value are clear enough

and can be assessed side by side.

As I found in my empirical study, the discontinuity that necessitates the restarting of negotiations

sometimes means that parts of old production knowledge are easier to simply give up. Generating the

knowledge by looking at the support ticket archives and technical documentation yields knowledge

which may often be obsolete. Appendix case study CS15 gives an example of such a route organically

taken by the new developers in the absence of the previous members of the team. Learning by doing,

even though the previous knowledge was amply documented in the wiki pages and the support tickets,

	236	 Deleuze and Guattari, 1983: 151.

153

did not affect team velocity, and on the contrary, helped to identify the code inconsistencies and re-

duced the regression testing and refactoring efforts.237

Besides being a staple component in the topology of the problem space, the support ticket is also com-

patible with the system’s EIAC. As a part of the infrastructure, the ticket warrants that the problem

solutions can be integrated back into the system, subject to regression and other testing procedures. In

summary, the deployable system is never a fully working system upon closer examination: it inevitably

contains a backlog of bugs to be fixed, it comes with technical debt in various stages of servicing and

with refactoring procedures that address that debt. The system is therefore defined by its dysfunctional-

ity, is enacted by it – the system’s dysfunction is essential to its ability to function.238 Furthermore, the

very capability of the system to fail is one of the basic mechanisms of software capitalism, which uses

the attrition processes to build up the rationale for new cycles of production, and the contradictions

are precisely the places of opportunity where the sources of surplus value could be found. Given the

direct reliance on change to cause complexity, the continuity of dysfunction should be regarded as one

of the key valorisation mechanisms of software capitalism.

Distribution of complexity in disruption-based workflows

Discussion of the theory above brings the practical implementation of the software production system

close to the desiring-machine. It is necessary to view these two notions together because it would clarify

the meaning of the flows associated with the problem space of production, which lie at the core of

both the deployment pipeline and the integration processes. There are two incoming flows: one that

deploys the components, making them available to the users, and the other that brings the stakeholder

requirements, results of acceptance testing and the evaluation of the generated customer value. The

outgoing flow consists of new knowledge, such as the results of problem negotiations and the outcomes

of applications of problem-solving methods which had resulted in any correctives to the problem

space. The acquired knowledge flows towards the system’s epistemic infrastructure, where it is appro-

priately categorised and stored. The other quality of the production system that puts it close to the de-

siring-machine is its capability for automatic topological production. This simultaneously computation-

al and spatial principle of production, summarised in Chapter 3 as the topological machine now needs to

be examined through the mode of its operation. The specificity of its operation lies in its ability to bal-

ance the dependencies between the smaller parts of larger errors in such a way that the system is main-

tained in just enough repair to qualify for deployment to a production environment.

	237	 See Appendix, CS15.

	238	 Deleuze and Guattari, 1983: 151.

154

Furthermore, the desiring-machine dysfunctional characteristic applies across the whole of the produc-

tion system, being equally present in the problem space of production in the same way as in the epi-

stemic infrastructure as code. The sociologist Susan Leigh Star, in her research on infrastructure,

provides some of the field findings pertinent to the present case. Because the infrastructure is complex

and consists of many layers, it has many different local interpretations and is not readily open to

changes from above. ‘Changes take time and negotiation, and adjustment with other aspects of the sys-

tems are involved … There simply was no magic wand to be waved over the development effort’,239

Star observes, acknowledging that the infrastructure can never be fixed by major global efforts, but

only locally and via small increments. Such a constant partial state of repair, I argue, could be thought

of as the minimum deployable product (MDP), a reverse side of the minimum viable product (MVP). MVP is

frequently assumed in DevOps sources as the system’s initial stable state that can be used in the pro-

duction environment by test-driven development. MDP, reversely, marks the product’s final stable state,

which only exists in production until the underlying errors or technical debt of the ideal version of the

system as it is present in the EIAC are dealt with. In other words, to maximise the effectiveness, which

it sees as the amount of social value relative to the limit of the available resources, DevOps has to necessar-

ily assure the system’s breakdown. Seen in the context of the disruption-oriented workflow, such a paradox-

ical way of achieving effectiveness is in fact nothing but the correct operation. Optimisation work that

is frequently discussed in the technical literature on DevOps is supported by the rationale of desiring-

production to generate the human, monetary and machinic surplus value, and therefore results in in-

troducing higher complexity.

In terms of cognitive disruption, the two key stress factors of DevOps practice are the uncertainty of

outcomes and the inability to audit. The problem of uncertainty implies that in complex production

situations, repeating the same process may not yield the same result.240 This leads DevOps to call for

abandoning the checklists and the other practices of repeatable audit procedures that aim to prevent

making errors. Instead, errors are embraced as the essential attribute of the complex environment, and

the focus is placed on the procedures that allow DevOps to address errors, rather than prevent them.

The causal mechanisms that make such environments operative trace their historical lineage from the

Toyota Product System, which had pioneered the approach through such principles as revealing the in-

consistencies in the workflow, creating focus groups for rapid knowledge acquisition around the prob-

lems to be formalised and company-wide broadcasting of solutions to common problems.241

	239	 Star, 1999: 382.

	240	 Kim et al., 2016: 28.

	241	 Ibid.

155

The second problem is related to audit and lies in the fact that no amount of effort spent on inspec-

tion, approvals and quality assurance can decrease the likelihood of future failures. In fact, according

to Gene Kim, the additional checks may increase it.242 In one case, the repetitive quality assurance

procedures were proven to create errors if not automated and instead carried out manually by human

staff. In another case, requiring approvals from too many team members from different positions in the

organisation had created additional work for most of the approvers, since they were not always familiar

with what they were being asked to approve. In yet another Kim’s case and also in my fieldwork, creat-

ing excessive documentation only made understanding the system harder, since it added to the work-

load of those using it.243 Furthermore, my empirical study has confirmed one of Simon’s observations

that performance reviews are frequently absent where the actual production function is difficult to de-

termine, particularly in not-for-profit organisations.244 In my cases, the difficulty could have been ex-

plained by the lack of sales data, since the organisation was not dealing with any sales, which, however,

meant that most of the decisions were largely taken without evidence necessary to validate them, and

thus at risk of being inconsistent or arbitrary.

The role of representation in abduction

Production of complex artefacts requires compound abductive manipulation, which is too complex to

be done without the support of external representations. The abduction that employs such representa-

tion is sometimes referred to as model-based and is frequently practised through various forms of visu-

alisation. This section looks at the method of story mapping as it emerges in software production, and

plays a two-fold role in the production process. On the one hand, it is a type of diagram which is ap-

propriate for the collective manipulation of the various aspects of multiple complex problems by

mixed groups of different stakeholders pursuing different aims. Using the diagram as a mediating

device productively breaks down the problems and formalises the support tickets, which are used

throughout consecutive production efforts. On the other hand, the story map is also a communication

device which works by creating conversations that otherwise might not have been possible. The idea of

a story behind the story map implies that each of the parts of the software system has a user story,

which, if told right by the production team, is going to be appropriately enacted by the user. In this

way, the story becomes an important building block of the production system that sees the teams and

users interacting to achieve specific organisational goals. As Étienne Wenger contends, the story works

for the recipients through its ability to offer meanings that the recipients appropriate. The story, in an

	242	 Kim et al., 2016: 32.

	243	 Ibid.: 33 and Appendix: CS10.

	244	 Simon, 1997: 265.

156

abductive leap, lands the listeners in a new sphere of embodied knowledge, experienced prior to ac-

tion, allowing them to inhabit the affective dimensions of the characters and the events. To Wenger,

’stories can transport our experience into the situations they relate and involve us in producing the

meanings of those events as though we were participants’.245 This results in the assimilation of the ex-

periences acquired through narratives as the recipient’s own lived experiences, and not merely some-

thing imagined. More specifically, in the case of a story map, the ability of the narrative about the yet

non-existent aspects of the software system to be assimilated as lived experience tackles the complexity

effects before the actual effects take place. At the moment of negotiation, the system’s features may not

yet have been created and otherwise only present for stakeholders as general and often vague descrip-

tions. Yet, with the aid of story maps it becomes possible to introduce them into the field of negoti-

ations, using visualisation as the tool for clarifying the narrative in all the necessary levels of detail.

In a practical sense, story maps are usually done on a wall with a series of sticky notes of different col-

ours, bigger stories are negotiated and assembled in larger sequences as the knowledge around the sys-

tem grows. The records are written down on sticky notes and arranged horizontally on a whiteboard

or a wall to define the main steps. Each step is then broken down into constituent parts, which are po-

sitioned one below the other down from the main point. This creates a map of the body of a larger

story, which serves as a description of the work that needs to be done. The constituent parts of story

maps, the sticky notes called user stories, are the early drafts for the support tickets and have the same

benefit of flexible movement and adjustment. The team can flexibly reorganise the stories and cut

them together-apart, to use Barad’s term, either by grouping the sticky notes, adding new ones as sub-

tasks, or splitting some parts of work into later releases.

In the diagram of Fig. 15, the high-level user stories at the top are arranged left to right, pointing to

the key steps of the particular user journey. For example, these could be the steps in the user’s purchase

on an e-commerce platform, in which case there will be steps such as searching for the item, adding

the item to the basket, logging in to the user account, checking out, and so on. Each of the larger steps

is broken into smaller sub-tasks, which are positioned under the main steps. Since the larger tasks can

span multiple domains, the sub-tasks can be addressed to different teams, for example, searching for

products in the shop catalogue may involve some tasks done by back-end engineers, and other tasks by

sales and marketing teams. The attribution of smaller tasks to larger ones and their priority are easily

identifiable due to their positioning underneath the user story. Where some steps require much more

work than others, the delivery is usually split into releases, with higher priority tasks placed in the first

	245	 Wenger, 2000: 203–204.

157

release. When defining priorities, the business owners negotiate with production teams to estimate the

business value of each item.

 

Fig. 15. The story map.

In its sense as a tool for model-based abductive reasoning, the story map as a type of diagram can be

approached in terms theorised by C.S. Peirce as the visual stimulus, or a model, that helps the recipient

to impose the order on the otherwise habitual and diffuse matters of perception.246 By its quality of be-

ing present as an external referent, to Peirce, the diagram becomes a hypothesis which can be either

accepted or submitted for further evaluation. Here it should be noted that the disruption-oriented

workflow can, in fact, address the problem of accidental complexity raised by Frederick Brooks. As we

saw, to Brooks, the software is too complex to be represented by a diagram because it consists of many

moving parts that cannot be positioned on one plane for effective representation. The story map, how-

ever, achieves exactly that through making use of a few key attributes, which can be devised from the

explanation provided by the philosopher of science Lorenzo Magnani on the role of visualisation in

unveiling mathematical structures.

One such attribute is that the diagram enables an intuitive explanation of the concepts which are ob-

scure, hidden, unjustified within the existing structure of knowledge, or otherwise too difficult to grasp

within the capacity of the recipient’s internal cognition. Furthermore, by enabling abductive manipu-

lation, the diagram creates new concepts, where the constitutive parts or the strategy for organising

	246	 Magnani, 2009: 35–36 citing Peirce.

158

them are yet unknown. Lastly, the diagram acts as an epistemic mediator and rather than bearing an

explanatory function as is the case in its other two aspects, it reinforces the construction of what has

been learnt and negotiated about the production system so far.247 The use of the diagram for abduct-

ive modelling is therefore a reversal of what has been envisioned by Brooks. In Brooks’s view, the dia-

gram merely represents what is already there. In the abductive sense, the diagram is a creative way of

engaging with the uncertain outcome, which can be constructed without exhaustive knowledge about

the premises or methods.

The support ticket as a tool for the distributed practice of
audit
The practices of audit specific to software capitalism are the self-observation techniques carried out

throughout the production lifecycle by such means as version control tracking, code reviews and assess-

ing documentation, requirements and inventory. The audit practices are understood from the stand-

point of the general problematic of knowledge culture, in which knowledge acquisition presents a con-

tradiction. On the one hand, if something is already known, no acquisition is required. On the other,

as Karin Knorr-Cetina notes, if something is unknown, it is difficult to evaluate its quality, validity and

adequacy.248 Audit, thus, is seen as the epistemic practice aimed at addressing this problem, as well as

the problem of review, which extends to assume that even if the knowledge itself is not new, it has

either a new context or a new relationship with other previously known or unknown facts. For ex-

ample, there may be new requirements about a certain component of software system that risk making

it incompatible with existing component relations – in which case it requires a specific audit activity, re-

ferred to as regression analysis, to find out about it. Understanding audit as an epistemic event entails

discussing it through and by comparison with the epistemic functions of observation, verification and

validation.

A core attribute of audit is its strong sense of self-referentiality. The ability to self-reflect and comment

is made possible through the implementation of standards. In its essence, audit can be defined as a

practice of self-observation that occurs within a system in the shape of a formal ‘loop’ that evaluates

the current data acquired in the field against the existing body of standards and the results of previous

reviews.249 Examples of audit activities in software production systems are the activities defined in

Scrum methodology, among many others, as retrospectives and backlog grooming. The former is a group

	247	 Magnani, 2009: 60.

	248	 Knorr-Cetina, 2007: 367 with reference to Arrow.

	249	 Lury, 2021: 69 citing Strathern.

159

discussion of work progress at the end of the significant delivery milestone, the latter is an activity of

reviewing the issues that are not a part of the active rotation to either close them as no longer relevant

or to schedule them for taking in. In both cases, the body of standards is present in the form of

product requirements, business policies, and engineering best practices.

The contradictory situation is in that on the one hand, an organisation’s operations necessarily create

complexity, yet on the other hand, they have to continuously limit and reduce it. The former move is

required because complexity is, as seen in the definitions provided earlier, something that comes as a

by-product of the increasing density of communications between the growing number of agents and

their assemblages within the system – such as among the company’s employees, technical protocols or

organisation’s regulatory policies. Internal cross-communication is something that the organisation

tends to promote because the increase in knowledge exchange leads to innovation, something that

gives the organisation a competitive advantage. Nevertheless, such a move necessarily increases the

complexity of both the organisation and, as a result, the production model it works with. In the other,

reverse move, the organisation needs to pursue its goal of auditability, which implies that complexity is

to be reduced, via team topology discussed in the previous chapter or scale-free architecture discussed

in the next chapter, which would ensure its effective inspection. The section considers audit practices

that counter the forces of complexity through non-synchronous task tracking that can be later gathered

together in one place and reviewed. Once all the pieces are put together – in the general manager’s of-

fice or on the Jira board or the Scrum master during the sprint review – it becomes possible to correl-

ate sequences of actions with their results. In such a process of review, this chapter finds a novelty of

the new practices of audit.

Defining tickets and tasks

Technical support activity has to be broken into the smallest possible parts that could be put down

when there is no more time to work on them and picked up again when the next opportunity arises.

This is the same argument for modularity that is used to optimise the organisation’s performance, in

the form Herbert Simon tells in his often-cited parable of the watchmakers. The first watchmaker as-

sembles the watch out of individual pieces. The second one performs the task based on the ten assem-

blies, each consisting of ten subassemblies, each consisting of ten individual pieces. Every time the

work of the first watchmaker is interrupted, she loses the progress done on the whole component and

has to start on it all over again. When the second watchmaker has to interrupt, she only loses a small

fraction of a subassembly.250 Simon argues that modularity warrants the emergence of complex sys-

	250	 Simon, 2019: 188.

160

tems out of simple ones, despite the absence of purpose that the watchmakers doubtlessly had. Eco-

nomist and complexity scientist Brian Arthur draws the parallel between the parable and the division

of labour principle of Adam Smith we saw earlier. Smith notes the benefits of splitting the workers

into different specialisations, but only where the workload is sufficient. Arthur adds that the modularity

of the watchmakers’ division of work gives an advantage to the technological economy similar to the

division of labour in manufacturing.251 The advantage is the increase in utilisation of technology, and

the ability of the workers to dedicate their undivided attention to a specific part of work, which lets

them think creatively about better ways of carrying it out. Both features are crucial properties of the

technical support workflow, where thorough partitioning means more work done in the long run, as it

facilitates interrupting and resuming work as required without losing progress. Furthermore, the dis-

ruption-based workflow necessitated by the context of dysfunction as seen above, is established as the

best practice of the support tickets, which can be found in one form or the other in most of the in-

dustry-grade project management software. The support ticket, in this case, appears as a perfect tool

for handling the problem, which is not given but emerges through the sequences of actions. In its sym-

bolic sense, the ticket stands for a specific aspect of a problem and therefore can be flexibly adjusted,

split or merged with any number of other tickets, without losing the history of the interactions that it

was a part of.

In the present context, a ticket, which is, in its essence, a written down work item, should rather be

seen as the Agile tool for differentiation and integration of knowledge. In this capacity, the ticket links

the attributes of a specific aspect of the production problem to the stakeholders. In one form or anoth-

er, job tickets existed prior to Agile and in different contexts, such as lean manufacturing in Toyota’s

just-in-time production, where the tickets were arranged on the Kanban boards. Such boards are still

in use in software project management. In the same tradition, project boards in Agile have columns

which correspond to the stage of ticket completion, and the tickets are moved from one column to the

next as the work progresses.

What makes the phenomenon of the ticket important to the present discussion is its central role in the

integration process of the problem space of production. The reason for the ticket to play this role is

because of its ability, as a record, to capture all the criteria that create the bonds between the problem,

its problem space and the pertinent infrastructure of the knowledge around it. These are the criteria of

requirements, which describe the business case, the acceptance which tells the stakeholders when the

work can be considered finished, and the customer value, which instructs how to prioritise the ticket in

	251	 Arthur, 2009: Ch.2.

161

the overall terrain of production problems. The three criteria that the ticket reflects have continuous

relations with the specific types of stakeholders – one between requirements and production staff, the

other between acceptance criteria and business owners, and lastly between the customer value and the

users. The relations are achieved through making visible, tangible and manipulable, albeit quite expli-

citly made to change together with stories and conversations. Let me explain this by first giving a ra-

tionale for why the tickets should be seen as the best devices for such integrations, and then explaining

each of their three aspects.

A ticket is a promise or a contract based on trust because it is present merely as a record of an inten-

tion or a request, not an order or law, in other words, it has an ideographic and not a nomothetic func-

tion. While existing within the problem space of the organisation’s production system, it functions

based on the reification principle of the community of practice, as the concrete manifestation of the

abstract contradiction or error that in some cases of technical debt may not even be present in the pro-

duction environment. While the work tasks associated with the ticket can be completed, leading to tick-

et closure, the ticket itself, due to the absence of the nomothetic constituent, does not have the capacity

for being fulfilled. The requirements could be initially drafted on the ticket by the product manager,

then be marked up, with items added or crossed out by the developers who do additional research,

then comments would be added below, in the style of the blog or social media post, threading the dis-

cussion on any progress or further questions about the issue to other staff. Even after the ticket is finally

closed, it is not erased from the system. Rather, it continues to exist as a record of a problem solution

for any future reference, or even be available for reopening if the problem returns.

As the sociologist Michel Callon notes, such malleable and at the same time rigorously instructive char-

acteristics of the support ticket, coming from its nature as a writing device, has a defining impact on

the relations between the agents. The rewriting transforms the collective and individual participants as

they ’participate in their own reconfiguration in the process of writing…. In rewriting, both collective

and individual actors are reconfigured.’252 The importance of making sure that all the participants

know about what is being changed cannot be emphasised enough: in my fieldwork, I have come across

cases when developers carried out the work without knowing that the requirements in the tickets were

rewritten. After some frustration, we agreed as a team that any changes made to ticket descriptions

after the work had started would have to be made clearly noticeable and marked in a different colour.

	252	 Callon in Law and Mol, 2002: 204.

162

Using support tickets in production work

To describe the practical application of production software for tracing the circuit of epistemology and

the problem space of production, it would be useful to briefly describe the way I’ve been using the

tools in my day job as a product lead, where the software has allowed me to situate the work within the

four parameters of the problem space. On the one hand, it provided all the possible variants of ar-

rangement of job tickets that could be activated in different combinations to describe a specific prob-

lem. On the other hand, backlog administration had ensured a solid grounding in the form of a ma-

ture epistemic infrastructure that made problem space easy to navigate. Where the previous thesis

chapter saw the infrastructure deployed as code every time the system is called, the problem space can

now be seen as equally flexible, composed based on the problem at hand. The important prerequisite is

that each problem, whether a code bug, a feature or another piece of work, has to be anchored via the

three categories of the problem space of production: to be described in the requirements, to have a

definition of done and to be evaluated in terms of business value and the story point estimation. Once

the problem is established as such, it gets included in the mapping of the problem space, which is then

carried out based on these criteria in the manner of the existing production workflow. In my practice,

after some trial and error with various combinations of software tools, I have come to use the Atlassian

Jira bug-tracking system in conjunction with Smartsheet for project Gantt. Jira allowed me to create a

card-based catalogue of records, each containing a specific issue, and to sort, link and search through

them. Smartsheet is a spreadsheet software that became a useful complement to Jira because of its

ability to create Gantt charts, a distinct visual device I briefly introduced in Chapter 1, which is used by

project managers for time planning. Such charts are unique in that they combine the project’s tasks,

the task descriptions, the staff member doing it and the timeline for their completion – all within one

graphic representation. This enables working with either all these properties simultaneously or creating

more granular reports around specific attributes of a project or a stream. When used together, the two

tools afforded a thorough insight into the problem space, specifically due to their sophisticated mech-

anism for searching and filtering.

An important aspect that ties together this chapter’s discussion of cognitive load and the cognitive

shock described in the next chapter is the support ticket property that prohibits the ticket to be as-

signed to more than one person at any one time. This serves two purposes: on the one hand, it traces

the outer limit of each specific problem that the person involved with it needs to tackle, which helps

avoid the shock associated with excessive integration. On the other hand, it helps to avoid the confu-

sion of deciding authority, which in the cognitive sense is a problem of communication throughput: if

the ticket is assigned to more than one person, then neither of the assignees are going to do it because

none of them would be able to know, without further inquiries, whether another person is already

163

working on the ticket. No additional communication load is added if the assignee is kept to one work-

er.

In the closing of the discussion on tickets and the role they play in audit, it is necessary to emphasise

that despite all the benefits, support tickets have the same shortcoming as the other audit practices, in

that they cannot account for tacit and transindividual aspects of work. The distinction is explained by

Star as the production aspects of the work as opposed to articulation aspects. She contends that one is

unthinkable without the other. Production work is everything that is written in the tickets and ex-

pressed via the criteria of the problem space – acceptance, requirements and customer value. The flip

side is all the work that binds the criteria together into the assemblage, the complex entanglement of

organisational routines, strategy and motivation that makes the stakeholders participate in the negoti-

ations, to begin with. Only by taking into account both the explicit tasks of production and the hidden

work of articulation, it is possible to ‘come up with a good analysis of why some systems work and oth-

ers do not.’253 The motives of the agents, as the earlier discussion of agent behaviour in complex sys-

tems in Chapter 1 has demonstrated, differ in top-down organisations and self-organising agent co-

operatives. Pertinently to the present case, it could be concluded that there is another case where the

community of practice dynamic seeps through into the sphere of the organisation’s operation. This is

because the agents will not be motivated merely by the organisation’s goals and clearing of milestones

in the project’s Gantt, and, as Azadegan and Dooley remind us, seeking instead validation through the

alignment of their skills or reputation with the tasks they carry out.254

Chapter conclusion
This chapter has proposed the DevOps agenda of iterative development of an organisation and a soft-

ware production system in response to the complexity challenges which are introduced by their mutual

co-implication. The stress relation, on the one hand, discourages the organisation from adding too

many new staff members at once, and on the other hand precludes the state of correct functioning of

the system, replacing it instead with a minimal deployable state, which seeks to cut the spending of re-

sources on system’s repair to the bare minimum. There is an organisational tendency to absorb the

complexity effects by dispersing them into the distributed collectivities, such as communities of practice

(CoP) therefore displacing its function from addressing the dysfunctions to managing their continuities.

Besides absorption of complexity shocks, however, CoP also tends to solidify in its opinions and meth-

ods, often acting to stifle the individual initiatives of its members and inability to rapidly response to

	253	 Star, 1999: 387.

	254	 Azadegan and Dooley in Allen et al., 2011: 426.

164

change. The consequences of such momentum in distributed systems are not as harmful as in cent-

rally-organised hierarchies because the decisions do not require validation of any central authority and

are tried and tested locally. This enables a more organic response mechanism to the external stimuli, in

relation to the learning capacities of the individual agents – something which the next chapter dis-

cusses in more detail.

Furthermore, the chapter has demonstrated that the software production system’s distributed principle

in combination with its requisite dysfunction shifts the organisation’s main concern from production to

managing dependencies in such a way as to minimise the repair costs while meeting most of the prob-

lem space criteria. The workflow in this sense is better explained as disruption-oriented, that is, organ-

ised in such a way that permits stopping and re-starting at any moment. The chapter has described the

support ticket as the central vehicle of such workflow diffractively, or in terms of the multiplicity of its

appearances. It acts as an abstract tool for the symbolic manipulation of work, providing an ability to

split and re-organise any aspect of a problem to create a corresponding complexity of its epistemolo-

gical infrastructure. That is, the problem description can grow from one to numerous tickets in case its

complexity spikes, and yet just as easily can go back to one ticket again if the complexity reduces, or if

its aspects take independent trajectories within the problem space. Furthermore, the support ticket is

concrete enough to be present as a contract that binds together all the parties involved with the prob-

lem by creating evidence. This is made possible by the fact that each ticket adheres to the governance

protocol, discussed further in the next chapter, which enables it to be audited in a scale-free way.

So far, the discussion has approached the complexity avoidance in the software production lifecycle

model in terms of its more analytical tactics, which aim at splitting the larger problems into smaller

parts, either in the deployment pipeline or in the problem space negotiations. It is now necessary to

turn to the opposite move of integration, which brings the smaller parts together into a larger infra-

structural whole. The problematics of integration shed light on the complexity effects that prevent

large technological systems from responding to change rapidly and examine the internal systemic

mechanisms that allow them to realise the distributed practices of audit. In other words, I ask, how is it

possible that under such severe complexity conditions as described up to now, any software production

is possible at all.

165

Chapter 5. The governance and the falling cost
of computation

The systems theory approach, as described in this study up to now, views an organisation through its

temporal and spatial patterns of operation. In terms of temporal flow, the organisation generally pro-

cesses the inputs, such as resources and customer orders, into the outputs, such as products and ser-

vices. In terms of space, the organisation establishes itself topologically by splitting its internal proto-

cols from the ones of the external environment, as Mezzadra and Neilson observe, imposing the

boundary as the tool for legal ordering and enactment of market relations, and acts to maintain the

equilibrium between the two so that the boundary remains intact.255 It may be viable to suggest gov-

ernance here as an organisational practice that makes the conversion of inputs to outputs possible by

regulating the split between the organisation’s inside and outside. Along the same split, there are cor-

porate and business kinds of governance. The former deals with matters such as policy compliance

and consistency with the audit practice, while the latter is concerned with business performance and

the creation of value. The practical job of governance, to use David Farley’s formulation, is largely the

responsibility of the boards and executive staff which have the authority to provide the strategic direc-

tion and verify that the organisation’s resources are used responsibly.256 In this chapter, I am concerned

with the changes that governance needs to undergo in the face of the extreme complexity of things,

the production of which it has to regulate – a discussion, which is appropriate for the final chapter of

the thesis because its matters relate my research to the wider body of the digital humanities and cultur-

al studies more generally.

The chapter revolves around three main themes: the falling cost of computation, the problematics of

assimilation of knowledge and the coordination specificity in distributed governance, which I approach

by splitting the discussion into three sections. In the first section, I introduce the trend of the falling

cost of computation by establishing what computation means for production, why its costs tend to di-

minish, and what kind of benefits and risks the trend presents. I find that the falling cost of computa-

tion arises from the exponential increase in the computational capacity of hardware and tends to escal-

ate the complexity of the production system as the software capitalist tendency seeks to valorise the

	255	 Mezzadra and Neilson, 2019: 215.

	256	 Humble and Farley, 2010: 417.

166

computational surplus. The increasing computational capacity, as the second section discovers, has a

direct impact on the system assimilation of knowledge through increasing the agent’s cognitive load, or

the amount of mental effort they have to exert to support the production flow. In the situation where

the complexity pressure cannot be alleviated, the agents treat the incoming knowledge parsimoniously,

by codifying and abstracting it – that is, by applying the categorisation and other patterning rules to

the knowledge so that it becomes easier to navigate. The more successful rules and patterns tend to

propagate throughout the system and evolve to become operative on the levels of teams and organisa-

tions. In the third section, I treat the parsimony principle as the evidence of self-organisation that

makes the governance distributed, and concomitantly as the key effect that complexity has on adminis-

trations. The advantage of self-organisation is that it is more resilient in the face of change, as the new

methods get continuously promoted from the agent level upwards in case they appear to be more ad-

apted to the changes of the environment. The high adaptability explains why the systems that realise

the distributed governance model are often referred to in complexity management theory as complex ad-

aptive systems – their complexity refers to self-organisation, and adaptability points to their resilience.

The aim of presenting the organisation as a complex adaptive system is to verify that such presentation

makes it possible to think strategically about complexity avoidance in the context of the falling cost of

computation.

Computation in production
The ubiquitous use of computation in all the processes of software capitalism confronts the present

study with a necessity to account, however briefly, for the consequences that computation’s key tend-

ency – the disruptive diminishing of its cost – has on the production lifecycle and the complexity forces

therein. To summarise what we have learnt about computation so far, it makes sense to revisit its defin-

ition adopted for the present research, and the benefits traditionally ascribed to it, prior to delving into

a more detailed discussion of the associated risks. I define computation in terms of Brian Arthur’s ar-

gument of the counterposition between algebra and computation in economic theory. To Arthur, eco-

nomics had historically used algebraic statements and thus had evolved to be described with nouns, be-

coming largely equipped to think quantitatively, which supports exact and reliable explanations.257

Computation is a process of executing a set of instructions or operations, or an algorithm, within a sys-

tem. Unlike algebra, it lacks the certainty of interpretations but instead enables a focus on the domain

under investigation in terms of its processes.

	257	 Arthur, 2021: 9.

167

The key shift here is from a method that uses nouns to one that uses verbs, which is also present in

compositional methodology. As Lury notes, the present form of the verb in the description of method

emphasises the involvement of the event of the application of method into the matters of research,

and therefore activates the situation as a problem.258 And, as Arthur contends, the use of verbs can of-

fer a fuller description of complex systems through the heterogeneity of agent positions, through shift-

ing emphasis from objects to actions and describing the models in uncertain circumstances not only

with statements but also with processes and flows they are involved in. Computation operates with an

if–then boolean logic and is, therefore, something that is far more useful for negotiations in the problem

spaces of software production systems, which run simultaneously through the organisation’s lines of

communication, its deployment pipeline and its business value stream.

The benefits of depreciating computation

The professional DevOps literature the previous chapters looked at follows a path of a predominantly

technical discussion of software that focuses on the advantages of the expected ongoing increase in the

computational capacity of the hardware. It is usually implied that the existing issues of negotiations

within the problem space of production will be easier to solve as the drop in the costs of computation

continues, along with the associated upgrades to the production equipment and the new conceptual

approaches to production, such as Continuous Deployment and team topology, discussed in previous

chapters. The benefits thus offered can be split into two categories, occurring either on the individual

or on the group level. On the individual level, there are data processing payoffs, which see the increase in

efficiency of agents, whether human, non-human, organisational, or other types. Second, there are

data transmission benefits, which look at the improvements in exchanges between the agents. In the case

of hardware microprocessors as discussed by Intel’s Gordon Moore, the two categories are mutually

reinforcing because, as Max Boisot notes, the higher speed of processing also means higher throughput

in transmission.259

Furthermore, the higher rates in data processing and transmission result in corresponding increases in

knowledge diffusion and a higher bandwidth effect. On the one hand, the knowledge diffusion ratio in-

dicates how easy it is to access knowledge: the lower the cost of computation, the larger the number of

people to whom this knowledge is available. The high rate of diffusion may mean that the epistemic

infrastructure can be made accessible to all relevant members of the production event, subject to user

management policy. This, in turn, makes viable the continuously integrated production lifecycle model

	258	 Lury, 2021: 17.

	259	 Boisot and Li in Boisot et al., 2007: 129.

168

as simultaneously the carrier of the business value and the deployments of software stock produced.

On the other hand, the bandwidth effect, as theorised by Max Boisot, implies a more dense and rich

character of communication in general and digital media distribution in particular.260 Where previ-

ously the communication required more effort on the side of stakeholders and was constrained to spe-

cific formats, such as voice-only calls or print-outs of visual materials, the higher bandwidth allowed

negotiations using face-to-face video calls and screen sharing. Additionally, a higher bandwidth meant

that the problems that could previously only be solved by the means of non-digital delivery could now

be addressed via computation-based means. For example, the published media initially required the

physical distribution of printed materials to the audience. The increase in bandwidth has enabled a

gradual shift in solving the problem to the realm of the digital – starting with the use of electronic

communication and digital printing, then by switching to fully digital online production and distribu-

tion without any printing at all.

The traction crisis diagram from Chapter 1 (Fig. 1) can be revisited in this context to illustrate how

complexity appears in situations where processing and transmission are rising, depending on how the

organisation follows this up (Fig. 16). In the first instance, the governance stays fully or partially cen-

tralised, which means retaining some of the complexity effects because of the inability to keep up with

the increasing pressure to audit the increased knowledge traffic. The other choice is to go distributed,

which balances the complexity out through scalability of control, such as through designing the prob-

lem space architectures to be self-similar throughout the various abstraction levels.

	260	 Boisot in Boisot et al., 2007: 160.

169

 

Fig. 16. Traction balance using distributed administration.

The risks of depreciating computation

Despite such benefits of the tendency of the cost of computation to fall, the interest of this chapter lies

in going in the opposite direction and outlining any disadvantages and risks. Is it possible that low-cost

computation introduces complexity that could have otherwise been avoided? Keeping in mind Melvin

Conway’s observation that complexity in a software system tends to be reflected in the organisation’s

communications, locating the failures and understanding their causes should help shed light on the

risks cheap computation introduces to the organisation and market domains. Some of the more prom-

inent disruptive effects of the cheapening of computation that this study looks at are the software

crises. It should be noted that while the software crisis as a term is equally applicable to all the crises

which have occurred within the software production practices, this in no way implies that the sub-

stance of the crisis itself has never changed. Quite on the contrary, this is precisely because the crisis

always emerged in a different shape, which made it cause enough distress to be regarded as a crisis all

over again. The examples this thesis looks at are telling yet by no means aimed at providing an ex-

haustive list. In the ‘big iron’ era of mainframe computers such as the ones described by Frederick

Brooks, the software crisis was manifest in the organisational reverse salients that led to staff increases

and clogging of communication channels, ultimately causing the organisation to stumble in the alleg-

orical tar pit. At a later stage, once Agile thinking started becoming widespread, the software crisis shif-

ted to signify the impossibility of integration. There was no longer a shortage of code libraries and

other components, and the main stumbling block has become the maintaining of parts, keeping them

compatible and tracking the changes. This has become known as technical debt, similar both to real

financial debt and to the previous software crisis, threatening organisations to go bankrupt due to the

inability to maintain their own code. Once the disciplines of code reviews and refactoring were estab-

170

lished, it became possible for the organisation once again to position its efforts orthogonally to the

complexity forces and to avoid disintegration under their unbearable burden.

However, neither the Agile workflow nor the code review practice stopped the complexity effects from

emerging in a different form. As Chapter 1 aimed to explain, the systemic approach to production

comes together with a centralised model of governance enacted via the intra-organisational manage-

ment structure. As Chapter 4 discussed further, such structure is necessary for epistemological and eco-

nomical facilitation of audit. In other words, since the audit is only possible of something auditable,

the internal system’s management is implemented in such a way as to provide the organisational set-

ting in which the audit is possible. Review no longer has to deal with the full complexity of software

production systems, but only with the management tasked with reproducing the organisational struc-

ture all the way down with the auditability in mind. While being effective enough in dealing with

auditable matters, the downside of such an approach is that anything that falls outside of the audit

capabilities also cannot be accounted for when negotiating problems, and therefore is not a part of the

problem space of production. Meanwhile, there can never be a shortage of new factors of production

that cannot be accounted for, brought about by the new and more capacious hardware, in alignment

with Moore’s Law. This is, the chapter argues, where the further disruptions and software crises come

from. With this in mind, the chapter aims to analyse the disruptions along the axes established before

as the conditions for system cohesion – change, momentum and control.

The tendency of the cost of computation to fall is a reversal of Moore’s Law which puts an emphasis

on the value created by the hardware, as a tool of production, in relation to the cost of production of

said hardware. In other words, since the computational capacity of microchips is growing, it becomes

cheaper to produce a microchip with the same computational power, and the amount of computation

that in the era of 1950s mainframes required large-scale investments into operations and infrastructure

is now possible with the relatively low-cost solutions.261 To understand why the falling cost of computa-

tion is a risk, it is best to turn to the early problematisation of it by a pioneer computer scientist,

Douglas Engelbart. Widely credited as the inventor of the computer interface, throughout his career,

Engelbart was broadly engaged in developing a comprehensive framework that would tie together so-

cial and technical aspects of personal computing.

	261	 As the roboticist Rodney Brooks observes, ‘a week of computing time on a modern laptop would take longer

than the age of the universe on the 7090,‘ (Brooks, 2021) – which effectively suggests that the computation has

lost at least that much of its cost.

171

In the 1994 interview, Engelbart had warned that the real social danger of technology is its disruptive

expansion: ‘the rapidity with which really dramatic scale changes are occurring in what the capabilities

of technology are, are such that by the time that really gets integrated into the whole, our whole social

human system there’s a lot of adaptation to be made’262 In the current industry sources, this concern is

echoed by the business analyst Azeem Azhar, who argues that businesses that consider the falling com-

putation costs are better positioned to take advantage of its effects – with the primary benefit of not

being crushed under the mounting complexity of production. ’One primary input for a company is its

ability to process information. One of the main costs to processing that data is computation. And the

cost of computation didn’t rise each year, it declined rapidly…’263 For software capitalism, processing

of information is the key function of any business. The firms, Azhar observes, ‘are largely not cut out

to develop at an exponential pace, and in the face of rapid societal change.’264 Yet, as this study saw up

to this point, slow adaptation is, in fact, a part of an organisation’s survival tactics, since it promotes

the organisation’s healthy traction, or deployment-to-integration ratio between its EIAC and the prob-

lem space of production. Good traction lets the business model generate sufficient outputs while being

able to manage the inevitable incoming changes and stay internally coherent. The balancing of the

three aspects of traction – momentum, change and control, becomes increasingly challenging in the

face of the exponential fall of computation costs. The key challenge, as the next section uncovers,

comes from the cognition processes associated with the ways in which the agents treat the incoming

flow of new knowledge.

Data, information and assimilation of knowledge
To unpack the specificity of the assimilation of knowledge in its relation to complexity, it now is useful

to examine the principle of requisite variety, developed in early cybernetics and frequently employed in

organisation studies to describe the behaviour of agents in complex systems. Formulated by the pion-

eer cybernetician Ross Ashby, the so-called Ashby’s Law of requisite variety states that to survive, the

system needs to be able to develop a response mechanism which is capable of countering the full spec-

trum of stimuli coming from its environment – save for the noise.265 If the system does not produce

enough variety, it fails to secure the resources it needs to survive and eventually fossilises. If, on the con-

trary, it overreacts and spends excessive resources to produce more responses than the external stimuli

require, it risks disintegration. Once the system achieves the point of requisite variety, it is selective

	262	 Engelbart, 1994.

	263	 Azhar, 2021: 85.

	264	 Ibid.: 101.

	265	 Boisot and MacMillan in Boisot et al., 2007: 51.

172

enough and achieves sufficient parsimony to be able to allow for a response relevant to its environment.

What such a presentation reveals about the software production system, is that the interactions of

agents are necessarily mediated via the problem space of production and that in fact, two integration

processes take place – on the one hand, the knowledge is assimilated by the agents from the problem

space, and on the other hand, the results of the problem negotiations are integrated into the EIAC.

Such integrative processes allow the system to maintain the complexity requisite to its purpose.

In the agent-level integration (Fig. 17) developed by the complexity management scholar Max Boisot,

the agent acquires the stimuli inputs from the problem space of production and uses a range of per-

ceptual filters informed by the context of the organisational culture and the agent’s own expertise to

recognise the data from noise.266 In the next step, the agent’s conceptual filters are applied to detect the

patterns in the acquired data to filter the relevant items, which collectively become the information.

Lastly, the information gets assimilated as knowledge via the agent’s personal considerations based on

its stored mental models and organisation-specific values that have pre-existing relations with the in-

formation inputs. Even though the three types of production inputs – data, information and know-

ledge – may seem like the various stages of gradation from signal to noise, in fact, the distinction is

context-specific: what is noise in one moment of an agent’s cognition can be a relevant piece of in-

formation in a different context.

 

Fig. 17. Integration as the process of assimilation of knowledge inventory by the agent. Adapted from: Boisot and Canals in Boisot in Boisot et al.,
2007: 20.

The inputs therefore are best seen in terms of their utility and the impact they bear on the agent’s be-

haviour. The utility is different for each of the three inputs. The advantage of data is that it can carry

any sort of evidence without discrimination. The benefit of information is that it can inform the agent

	266	 Boisot and Canals in Boisot in Boisot et al., 2007: 20.

173

about what can be expected in terms of knowledge it may bring. The utility of knowledge itself is in its

ability to modify the agent’s actions in a way that makes it better adapt to the environment. As Boisot

finds out, knowledge is the set of beliefs held by an intelligent agent that can be modified by the recep-

tion of new information and on which the agent is disposed to act.267 It should be noted that in the

problem space, proximity is related to such behaviour modification. While Fig. 17 portrays the relation

between the individual agent and the whole of the problem space in an abstract way, the problem

space itself is not homogenous and the agents are more likely to receive most stimuli from the agents

located close to them, albeit through the mediation of the problem space.

As a second consideration, besides the integration process from the problem space by the agent, there

exists the integration that assimilates the negotiated knowledge from the problem space of production

to the EIAC. Such integration is widely discussed in professional DevOps literature under the general

rubric of Continuous Integration. In a move opposite to the Continuous Deployment discussed earlier,

Continuous Integration is seen as the operations’ best practice that requires the system code to be fre-

quently integrated into a shared repository. The difference between continuous approaches to deploy-

ment and integration, for the present discussion, is that Continuous Deployment makes the system

available for the stakeholders, while Continuous Integration deals with the maintenance of infrastruc-

ture and is aimed at making sure that EIAC is always up to speed with all the recent changes. In the

practical sense, Continuous Integration means that the whole of the system’s code is getting synchron-

ised once every few minutes to eliminate the risk of failure when merging big batches of code which

might not be compatible and carry the potential of breaking the system. Discussion of the epistemic

infrastructure in Chapter 3 may lead to thinking that once the infrastructure for knowledge is in place,

and the system for capturing and accessing the knowledge is established, the actual process of know-

ledge acquisition becomes a rather practical consideration. However, what organisations quickly realise

is that not only the infrastructure needs to be constantly realigned with the knowledge contained in the

organisation, as this thesis pointed out before, but the knowledge itself is not something that can in fact

be recorded into the provided framework. To understand this problem, some consideration has to be

given to the differences between knowledge and information, as it is discussed in Brown and

Duguid.268 First, information is more independent and resides outside of the space of action, that is,

has an infrastructural quality. Knowledge is more active, it needs to be associated with the knower, the

practitioner or other sort of agent – in the case of the problem space of production, they are stake-

holders, including users, business owners and production staff. Second, information, as more self-con-

	267	 Boisot and Li in Boisot et al., 2007: 117.

	268	 Brown and Duguid, 2000: 119.

174

tained, is easier to transfer. It can be written down in code, placed into the database, and can be refer-

enced. Knowledge, on the contrary, is something that cannot be pointed to directly – instead, the refer-

ral needs to be to the person who knows a particular thing. This makes the whole discussion about ac-

cess rights and permissions more complicated. Third, knowledge is something that requires assimila-

tion. For example, when a specific record is accessed in the company’s support wiki page by a member

of staff who accesses it to decide on a given case, it needs to become knowledge through the process of

understanding – to be achieved, knowledge requires a certain degree of commitment. For example, ‘I

have information, but I don’t understand it’ is possible, while ‘I know, but I don’t understand’ is not.269

Consideration of these properties of knowledge helps to clarify why epistemic infrastructure is not suf-

ficient on its own, as the repository of software system possibilities. Once organised and deployed, it

still remains, albeit informative, rigorously structured and topologically oriented. On the other hand,

the problem space, as the activities within it evolve, becomes increasingly dependent on infrastructure.

The organisation in software capitalism is primarily a learning initiative, which means that it depends

for its operations on human and intellectual capital circulation, manifest in the acquisition of know-

ledge.270 Therefore, it is imperative for it to see the assimilation of knowledge, or its integration, as the

primary function. In other words, if the deployment function is the essence of the EIAC, then the in-

tegration function is the essence of the problem space of production. Simultaneously, the software cap-

italist formation at stake here, which is also frequently referred to as knowledgeable or cognitive, makes

it quite prominent to the businesses that an employee’s mental capacity is a valuable company asset,

and that the knowledge is contained in the minds of the teams, rather than in the databases, since, as

we saw, knowledge is not something that exists outside of the knowing subject. Departing from the in-

dustrial mode of production that only viewed living labour as adding value in its capacity as a machine

operator and its maintenance, in the new form of production the value depends on the human ability

to learn. Two noticeable moves make the treatment of knowledge more explicit in IT production. On

the one hand, there is a practice of making the information relevant and easily accessible, which for

the present context is referred to as differentiation. On the other hand, there is the explicit incorpora-

tion of the practices of finding, organising and presenting information into the problem space of pro-

duction, which requires establishing a more thorough understanding of the process of integration. To

zoom in on the specificities of the differentiation and integration, it is necessary to start from a wider

discussion of the cognitive load metric, which both events could be accessed with.

	269	 Brown and Duguid, 2000: 120.

	270	 Lury, 2021: 180.

175

Cognitive load and governance of the knowable

The topological becoming of problems in problem spaces not only clarifies their mapping to epistemic

infrastructure but also activates the mechanisms of governance over access to what is known. The gov-

ernance regime implies a specific set of values based on the capacity to know, establishing a protocol

for knowability that operates within a specific imaginary. As Lury puts it, ‘problems always become to-

pologically, with-in and out-with problem spaces’ and there is ‘an imaginary of knowability, in which it

seems everywhere there is a capacity to know.’271 Thus, the imaginary sets up the common beliefs

about the construction of knowledge and the protocols of access. The problem with the implementa-

tion of such a control mechanism in the context of the radical collapse of the cost of computation,

however, is that any attempt is thwarted by information overload. This makes it important to consider

the limit to how much knowledge stakeholders are capable of acquiring and processing as they get

practically involved with negotiating the problems within the problem space of production – the cognit-

ive load.

Cognitive load is associated with the total amount of mental effort exerted by the individual’s short-

term memory while engaging in a problem-solving activity. As discussed in Chapter 2, the basic attrib-

utes of such activity are present in the problem space as the givens, the goals and the operators. During

problem-solving, as psychologist John Sweller observes, an individual creates an inferential mesh to

capture the available operators that promise coherence between givens and goals. The process de-

mands that the individual simultaneously considers many aspects of the process, such as the current

problem state, the goal state, the relation between the problem and the goal, the relation between any

operators involved, and if the problem consists of many sub-goals, any updates due to the goal stack as

the problem-solving goes along.272 Having to keep all this information in the short-term memory at the

same time increases cognitive load. Furthermore, problem-solving can involve additional steps. For ex-

ample, if the goal is unknown, the problem solver needs to make a series of abductive leaps into the

unknown, a process that involves an intense period of learning about the essential structural character-

istics of the problem space prior to any specific goal allocations. For this reason, while being creatively

stimulating, abduction can be a taller order on the solver’s attention than regular means-ends infer-

ences.273

	271	 Lury, 2021: 184 citing Thrift and Hayles.

	272	 Sweller, 1988: 261.

	273	 Ibid.: 260.

176

Some of the factors that increase the complexity of the problem space of production are, as Callon

observes, of the computational nature. They can involve software systems in the form of domain con-

flicts or the institution itself, in terms of its social dependencies. The former introduces new, disconnec-

ted bodies of knowledge, while the latter risks disrupting existing dependencies or creating new ones,

the result for the agents in both cases being an increase in computational load associated with building

new connections. Some examples of risk factors are tightening of competitive constraints, escalation of

changes in production outputs or services that would demand faster adaptation or the re-organisation

that brings new teams and specialisms that increase the heterogeneity of workflow processes or invent-

ory.274 Speaking more generally, the criteria of the problem space, which are split for the present study

into requirements, acceptance and customer value, can be more varied and specific to division or initi-

ative. Whichever the factors are, the change they introduce is complex because it moves simultaneously

along the two axes. It is also computational because it informs the procedural pattern of agent beha-

viour. On the one hand, the change increases the number of variables that have to be accounted for to

understand the behaviour of the system. On the other hand, it intensifies their nonlinear interac-

tions.275

In DevOps, cognitive load balancing is seen as the risk mitigation tactic which helps to avoid situations

where the excessive amount of responsibility makes the work of the team perforated as they switch

between increasing amounts of concurrent processes. It deals with the notion of the domain, which

implies that the team members are located within a specific set of situated knowledge, which helps to

prevent crisis events associated with the acquisition and processing of new knowledge, such as cognit-

ive shocks. A cognitive shock should be defined in light of the present thesis’ view of complexity as a pro-

duction failure caused by the disruption in either of the two aspects of routine cognition of the pro-

duction system circuit. On the one hand, there is a limit of communication throughput where multiple

individuals are involved, and on the other hand, there is a parallelism of individual activities, when

cognition is carried out within one mind. The latter aspect poses a limit to how much knowledge integ-

ration one human mind can carry out at any time. To draw an example from Sweller, since the human

short-term memory is limited, the cognitive load increases whenever problem-solving requires storing a

large number of items within the short-term memory.276 This limit is higher when the system consists

of many minds, however when multiple individuals are involved in problem-solving activity, there is a

limit on the communication bandwidth among the independent minds that cognition is distributed.

	274	 Callon in Law and Mol, 2002: 191.

	275	 Boisot in Boisot et al., 2007: 155.

	276	 Sweller, 1988: 265.

177

Cognitive shocks occur when the agents have to assimilate excessive knowledge inventory, such as when

switching between the domains, as indicated above. The disruption occurs whenever the knowledge

about the inputs that the agents need to transform the incoming data into the outputs do not have any

familiar or regular patterns. Patterns may be lacking, according to Matthew Skelton, because the

spheres of knowability between the domains vary, particularly in the production of such complex arte-

facts as software systems, which may deal with numerous domains containing little or no compatible

knowledge patterns that the agents can use for differentiation and integration.277 Skelton recognises in-

trinsic, extraneous and germane types of cognitive load agents usually deal with in software produc-

tion. Intrinsic load deals with the acquisition and processing within the immediate vicinity of the agent’s

location in the problem space: libraries, languages, classes or plugins. Extraneous load comes from envir-

onmental pressures, for example in component deployments or integration of components into the sys-

tem, or use of testing suites. Germane load pertains to the tasks which require new learning outside of

the agent’s immediate area of familiarity, for example, anything related to the business domain that the

components are delivered into, such as cross-service compatibility considerations.278 Load balancing

splits the different types of load to the duties of different teams, that either align with the technology

stream or with the domain. Intrinsic load deals with the internal issues of the domain. It has the least

impact on the overall topology of the problem space since all of the complexity is encapsulated within

it. The other two are related to cross-domain processes, which means that the boundaries have to be

carefully navigated to avoid cognitive shocks.

The key challenge in the situation of escalating change is that there is a demand for agents to con-

stantly switch between the different kinds of cognitive load, from intrinsic to extrinsic to germane, and

simultaneously update the whole knowledge stack to bring it back in sync with the new standards or

frameworks associated with the changed processing and transmission capacities. The change in context

requires re-indexing of the production system’s components to address the evolved set of external

stimuli, as per Ashby’s Law of requisite variety and mapping it to its existing EIAC – the appropriate

codification and abstraction processes. Such was the case in my empirical study at JX, the online pub-

lishing platform mentioned earlier. Following a critical security incident, it was decided to carry out the

system migration process to AWS public cloud. The migration meant an improvement in the system’s

traction because it provided better control over its resources and allowed it to deploy frequently, thus

maintaining a good rate of change. It, however, also meant a substantial upfront investment to be able

to ensure that new knowledge is compatible enough with the existing epistemology. This had occurred

	277	 Skelton and Pais, 2019: Ch.3.

	278	 Ibid.

178

in the JX production team during the switch to AWS, albeit with no considerable impact on the deliv-

ery, since the appropriate onboarding procedures were in place. Still, in the aftermath of the migra-

tion, the production routines had to be re-learnt because of the introduction of new tools such as Jen-

kins for the deployment pipeline management, and new approaches to organising branches and re-

leases in GitHub. It could be predicted that in cases where the change is more disruptive than the ad-

option of a new cloud service, it may not be possible to avoid, resist or predict the cross-domain cognit-

ive switches within teams, which may lead to escalating disruptions in delivery.

Beyond the complexity caused by the frictions between the domains, another aspect of the cognitive

pressure that the knowability governance needs to account for is the strong association between com-

putational and social dependencies within the problem space of production. Since knowledge is some-

thing that has to be assimilated in an explicit event of learning, any discontinuities in social interac-

tions may lead to spikes in cognitive load, which makes any collective endeavour within the organisa-

tions a computational as well as social occurrence. Such are the negotiations between stakeholders,

which can be considered computational events in that they follow specific protocols or routines. Any

computational event presupposes communication between the team members. More specifically, if one

part of the computation is the responsibility of one agent, another part can be the responsibility of a

different agent, depending on how the knowledge is diffused. Something that begins as a design job

can later become a development job, and later yet, an integration or testing job. Regardless of team to-

pology, teams and domains are closely interlinked, computationally as well as socially. As cognitive

scholar Edwin Hutchins observes, competent load balancing is linked to the effective managing of de-

pendencies because each part of any problem negotiated is not only a computational event, but is sim-

ultaneously a social message.279

This means that the resilience to complexity within the organisations, including the ones that employ

topological strategies to design their production lifecycle, depends, to a large extent, on the cohesion of

the social structure. The reliance on social dependencies can be so strong that it makes Hutchins ques-

tion whether it is more valid to say that car production is the primary outcome of the labour of the car

factory workers as a company department. For all they know, the primary role of the organisational

form could be to produce a specific social dependency schema, with cars being an additional benefit,

more relevant to the model of the market involvement of the business, rather than to the organisation

itself.280 This notion is also reflected in the value-based market relations, which, as Marx develops in

	279	 Hutchins, 2000: 224.

	280	 Hutchins, 2000: 225.

179

Volume One of Capital, result not only in the output of commodities but in further reinforcement of

the classes of the capitalist and the wage-labourer. Marx observes that the capital produces ‘not only

surplus-value, but it also produces and reproduces the capital-relation itself ’281 In other words, since

the capitalist mode of production cannot be interrupted in the interest of a continuing generation of

surplus value, the production of commodities always includes the production of the social misbalance

that makes it necessary to continue the production of commodities. Reproduction of social relations of

production in a software production system falls squarely in the purview of DevOps. This has to be the

case due to the requirement of auditability, which means that any relations that are not recorded in the

form of EIAC, and are not deployed and integrated continuously, are vulnerable to the complexity ef-

fects. This makes it necessary to address the auditability consideration of scalability.

Fractality and scale-free systems

According to the thesis’ earlier observation, whenever changes are introduced into the system, the sys-

tem tends to respond with the complexity increase. Such an increase presents a problem for planning

and review, bringing uncertainty into the audit practices, which in turn threatens to halt production ef-

forts. This means that keeping things auditable is a requirement which can be resolved by applying the

additional work aimed at continuously simplifying the system. Such a method, however, may appear

unsustainable in the face of exponential change, since, together with the expansion of the system, it

would require equal rapid expansion of review and refactoring efforts across the many of the system’s

components that suffer the complexity effects. As we saw earlier, the production method that is capable

of addressing the ruptures caused by expansion is thinking about teams in terms of their topology. The

related terms, a scale-free or fractal system, coined by the management theorist Bill McKelvey to de-

scribe the system’s self-preservation mechanism,282 can be used to draw a parallel between the pro-

cesses within complex systems understood more generally and the software production system beha-

viour in the context of continuous and unpredictable change introduced to it.

Following up on the fractality notion of post-ANT critique established in Chapter 2, the scale-free

principle works with complex phenomena, such as systems, in a similar way through the patterns of

self-equivalence across their various scales. Fractality, as Pierpaolo Andriani and Bill McKelvey ex-

plain, is the self-similarity of constituent parts that could be codified via the patterns that echo the

whole, thus making it possible to trace their attributions.283 Even though the agents have different tac-

	281	 Marx, 1990: 724.

	282	 McKelvey in Allen et al., 2011: 124.

	283	 Andriani and McKelvey in Allen et al., 2011: 259.

180

tics in response to the stimuli unique to their contexts, what appears important to the scale-free con-

struction is the matching strategic principle.

While Fig. 17 illustrates the assimilation of knowledge by the individual agent, Fig. 18 aims to clarify

that a general principle of how the organisations and their parts relate to the software system remains

unchanged in different levels of the production system. On the left of the diagram is the team level,

where all of the agents are co-located in relation to one another and to the software system through

the mediation of the problem space. Zooming out to the organisation level, the same pattern is present

in the arrangement and interrelation between the teams. On a larger cross-organisational scale, the

pattern is still unchanged, and all the organisations that use the same software system are linked in the

same way. Arguably, the problem space universally connects not only the agents, teams and organisa-

tions but also all of these entities across the boundaries of organisations, as Chapter 4 deliberates in

the discussion of distributed collectivities.

 

Fig. 18. The fractality of relations across the different organisational levels.

Translated into the terms of the stream-alignment paradigm, the general strategy described by the

common organisation pattern is the key stream that the production team aligns to. Depending on the

fluctuation of complexity, the team construction changes on a sliding scale, not dissimilar to the anti-

fragile architecture of real-world buildings in the areas of seismic activity designed to absorb the im-

pact of earthquakes. In the moments where the stream-aligned team encounters issues which it cannot

address in its default shape, an incident is opened, and it gets rapidly associated with relevant non-

aligned teams, and correspondingly returned to its usual shape after the incident has been resolved. All

three types of non-aligned teams can be involved in different capacities – platform, subsystem and en-

abling teams.

181

The platform team works alongside the stream-aligned team and provides the supporting environment

in which the stream runs, rather than the stream itself. It thus joins forces with stream-aligned teams in

cases where the platform updates or other changes may interfere with the performance of the applica-

tion layer. Enabling teams provide research services to guide the aligned team through any middle-

scale complexity incidents. The subsystem team gets involved when the stream-aligned team encoun-

ters something that either was not a part of the system before, or something disruptively new that has

never existed altogether. In this case, the complexity presents a real threat to system performance and

thus the whole section of work is split out to be handled by a subsystem team that is focused on that

particular technology, leaving the stream-aligned team to continue providing the service to the stream

without interruption. Once the work on the complex component is done, it is either integrated into the

stream with some additional retraining or reconfiguration of the stream-aligned team, or via the API,

in which case the stream-aligned team never requires the new skills. In both cases, the complexity ef-

fects are exhausted before they have a chance to cause any stress in production. The scale-free ap-

proach circumvents complexity by limiting the agent involvement to simplifying the level of the ab-

stract schema, regardless of how much change the system has to go through. What is required of the

organisation is to develop a unified strategy and apply it throughout all levels, only focusing the main-

tenance efforts around the cases where the change dynamics cause inconsistent deviations. Just as long

as the principle is homogeneously applied throughout the system, it seems enough for the auditor to

use it to be able to review as many system parts as it is necessary, without an exponential increase in

time and effort.

The parsimony principle of agent knowledge acquisition

The important factor in keeping things simple within the production environment is a trend towards

parsimony that the agents undertake. Such a trend is related to the overarching reasoning informed by

Ashby’s requisite variety law discussed above and comes as a protective mechanism which aims to mit-

igate the risks of excessive data processing in cases when the problems present exponential computa-

tional demands.284 It implies that throughout their dealings with the outside environment, the agents

would always tend to find response tactics that would match as closely as possible the external impact.

This implies that those systems that overreact and expend too many resources on inadequate responses

head towards disintegration. Likewise, those systems that do not respond enough tend to gradually fos-

silise.285 Agents achieve balance through the two-fold tactics of differentiating and integrating know-

ledge. The logic behind differentiation is that agents treat knowledge as a low-energy resource, which

	284	 Boisot in Boisot et al., 2007: 156 citing Chaitin,Sipser.

	285	 Boisot and MacMillan in Boisot et al., 2007: 65.

182

means that they tend to prioritise accumulating and using data, rather than more scarce resources of

time, space and energy. Unlike the latter three, knowledge, once acquired, can be re-used without any

losses to its quality or additional investment as many times as required, for as long as the inventory it

pertains to continues to be relevant.

The use of knowledge, albeit less costly than more scarce resources, can be further optimised by differ-

entiation, which the agents achieve by codifying it. Codification is a process of creating categories that

classify the states of the world to better grasp the relationships between them. It aims to further drive

down the computation costs by identifying the patterns within the incoming data that would allow

splitting the information from noise. As Boisot observes, it works ‘by extracting relevant information

from data—that is, by exploiting and retaining whatever regularities are perceived to be present in the

latter that would help to distinguish relevant phenomena from each other’286 In other words, complex-

ity is reduced by creating structures, locating the patterns that make it possible to create any degree of

predictability. A well-codified knowledge inventory greatly reduces time spent looking for the required

materials, however, can require a considerable upfront time investment. Staple production housekeep-

ing practice such as writing technical documentation is a good example of codification that has to be

carefully weighed against its potential future use. Quite often, the effort of writing up a comprehensive

documentation can exceed its benefit, since much of what it describes can be learnt by using the func-

tionality. Furthermore, if the feature is highly perishable, documenting it can be a waste of time alto-

gether. In my fieldwork, I’ve come across a case where the documentation had been written for the li-

brary which later had been decommissioned in favour of a different one that had proven to be a better

fit for the system. The lesson learnt, however, was that upfront spending is nevertheless worth it in most

cases, for at least two reasons. On the one hand, it’s best to document early while the memory is fresh.

On the other hand, it is not entirely possible to predict if documentation might not be used, in any

case, and thus can be a lesser risk than keeping knowledge in the undifferentiated form which might

present a difficulty to make sense of later on.

The second parsimony move undertaken by the agents, integration, is based on abstraction, a term

which is used here in the sense of treating things that are different as if they were the same.

Thinking about abstraction as the treatment of difference, such as in the view offered by philosopher

and sociologist Alberto Toscano, may help to relate abstraction as a parsimonious move to Barad’s

	286	 Boisot and Li in Boisot et al., 2007: 88.

183

agential cut together-apart, which also thinks about the effects of difference.287 To Toscano, abstrac-

tion helps to treat the difference between the multiple views of the phenomenon of high internal com-

plexity by bringing together the effects of difference in the form of a unified determination.288 Further

adding Boisot’s optic, abstraction can be seen as acting upon the codified results to create a tighter set

of categories that pertain to a specific classification task at hand, and, as is the case with an abstraction

of any other kind, it can be of a higher or lower level of generality, depending on the classification

aims.289 In the integration move, the previously differentiated knowledge inventory is mapped to the

existing epistemic infrastructure. Where the knowledge and the infrastructure are incompatible, the in-

frastructure operates as a topological machine: it is viscous enough to be adjusted, but also able to con-

dition the incoming data on its deeper abstraction layers – this is best illustrated with an infrastructure

tool, such as Jira.

Atlassian Jira is versatile enough to provide a framework for opening support tickets and to set up the

many fields and workflow stages each ticket will be differentiated by, and this plays a crucial role in

both differentiation and integration processes. The main ticket types in Jira are stories and epics: epics

are used to group stories together into larger shipments. Each of those types will use different screens

to capture data. Similarly, workflows define which transition steps are appropriate for the story in con-

sideration. Most workflows will have basic stages like To Do, In Progress, Blocked and Done, which, in

turn, affects which screen and field configuration schemes are active. In the integration stage, the lower

abstraction details of Jira can be adjusted – for example, if some additional fields are required to log in

the project-specific information, they can be added via the Jira administrator interface. Some of the

more broad infrastructural considerations, for example, the fact that the task has an ‘Open’ status

when it is created and has to transition to ‘In Progress’ status to end in the ‘Closed’ status, is hardly a

matter for debate or adjustment.

There are three interested parties in ticket writing, usually appointed in the industrial research as the

firm, its employees, and its customers, and specified for the present study as production teams, business

owners and users.290 The Jira ticket is a contract that binds three types of parties together through the

acts of gathering requirements, setting up the acceptance criteria and definition of customer value.

Tickets as discrete entities also allow being grouped in different combinations, which may reveal vari-

ous patterns within the problem space, which informs staff on planning, as well as opening very specif-

	287	 Barad, 2010: 265.

	288	 Toscano, 2008: 276.

	289	 Boisot and Li in Boisot et al., 2007: 118.

	290	 Callon in Law and Mol, 2002: 206.

184

ic avenues for audit. To retrieve the relevant knowledge, Jira provides a search field which goes beyond

the usual graphic user interface (GUI) option and can be accessed through writing in Jira query lan-

guage (JQL), which uses regular expressions and boolean logic similar to MySQL and other popular

query languages.

The possibility of querying the problem space of production makes Jira a diffractive topological ma-

chine, in the sense that it provides conditions for automatic production of spatial orientation for prob-

lems described in JQL. To retrieve the topology of the problem space, a collection of support tickets

based on any field value, parameter, condition or any combination of field values, parameters or con-

ditions is stitched together as a continuous plane – or to use Barad’s terms, the symbolic-material be-

coming of the problem is diffracted by cutting together-apart as a unified move. To begin with, the

tickets are separated from the infrastructure that catalogues them, and then stitched back together ac-

cording to the rules of their engagement and appear as search results. For example, the following

query will return a list of bug-related tickets that Jira has records of, where the work either has or has

not been started, arranged by their creation date:

issuetype in (Bug) and status in (Open, In Progress) order by Created DESC

The filtering, however, is only as good as its user experience and the attributes of the filtered content it-

self. Research using Jira has proven to be easier over the years of my fieldwork than any of its ana-

logues, due to the accessibility of all the attributes, such as labels, statuses, component and cross-refer-

ence links, dates of creation and completion. All of them can be addressed in JQL, and thus, it is only

a matter of Jira users’ ability to log the issues with relevant input parameters that ensure the accessibil-

ity of the archives. With all of these parameters to consider, rigorous coordination between Jira and

the negotiation channels of the problem space of production is paramount. For example, it is good

practice to agree on Initiatives, Epics, Components and Labels on an organisation-wide level, so that

JQL queries would return consistent results throughout the different organisation’s departments. In

other popular systems such as Notion or Trello the filtering is rudimentary to the point of frustration –

for example, it is only possible to search the recently created tickets or by ticket name through the

graphic user interface (GUI) with no option for regular expressions, which makes them much less ac-

cessible and therefore riskier to use in the situation of complex negotiations around the architectural

and the political categories of the problem space composition.

Complexity and distributed governance
In correspondence to the previous section’s assumption that organisations cannot evolve as quickly as

the technology they utilise, this section aims to understand why, and what are the implications for gov-

185

ernance. To do that, the section starts by revisiting the notions of systemic change and momentum as

the two counteracting organisational processes. Change and momentum, the two dynamics at the core

of the production system in software capitalism, are taken here together as the two opposing forces

that adaptive governance has to keep in balance to be able to maintain the system’s traction. While

change is something that enables the organisation to adapt to its competitive environment by introdu-

cing new parts to the production process, momentum is something that keeps the cohesion of its exist-

ing constituent parts. Upon further examination, it becomes clear that beyond the vested interests of

stakeholders involved in the production, there are specific material conditions that resist rapid change.

Adding on to the discussion of momentum in Chapter 1, the two factors help elucidate its strategic

meaning within the organisation. On the one hand, any decision that an organisation takes also nar-

rows down its future strategic choices. Decisions are seen as long-lived assets, designed to bring value

over a long period of time. After having taken a decision, the organisation tends to commit to it, fur-

ther implicating it into its cultural and governance fabric. On the other hand, decisions have con-

sequences for the regime of governance. Understanding those consequences may help clarify why the

adoption of distributed management or self-organisation-based control models appears to be appropri-

ate for creating auditable organisational environments and does not act instead to dismantle the pro-

duction system altogether.

Momentum as resistance to change

In terms of decision-making, momentum is manifest as the tendency of commitments that the organ-

isation takes upon itself to become a part of the protocol, which comes to shape its future strategy. The

change dynamic is not necessarily the problem in itself; however, as Max Boisot observes, it contains a

risk because the change is often path-dependent and irreversible.291 What this means is that every de-

cision that the system takes acts to close off the possibilities for some of the alternative scenarios, as

they become too costly or come into conflict with the effects of the previous change. Herbert Simon

describes such commitments as sunk costs, in view of which any rapid adjustments are not as profitable

as staying with one decision, which usually promises long-term gains.292 The fallacy of sunk costs, to

Simon, makes the investments made in the past a background that the new decisions have to be evalu-

ated against,293 or, in other words, under the increasing weight of past decisions, the system proceeds

along a certain path that makes it further determined in a specific direction. Furthermore, often

	291	 Boisot and Li in Boisot et al., 2007: 77.

	292	 Simon, 1997: 148.

	293	 Simon, 1997: 148.

186

changes cannot be reversed, which may cause a problem in production when the changes cause system

failure, or on the side of management, who anticipate the failure and are reluctant to make the

change, preferring to postpone the decision instead. Putting the decision off to a later moment usually

assumes that the decision can lead to good outcomes under favourable conditions, and to poor out-

comes when the conditions are not that supportive.294 In the context of rapid and radical change, how-

ever, no easy assumption can be made as to whether the environment will grow more hostile or more

favourable in the future, and therefore is no lesser risk, particularly if there is no wider environment

forecasting programme.

In the second place, there are real-life factors that make formal architecture more resistant to change

as compared to strategy. This kind of resistance accounts for the time and effort it takes to actually im-

plement the change – for example, any practical human resource dealings with staff hired on various

contracts, but also the time it takes for the staff ’s personal beliefs, including shared organisational val-

ues, to accommodate the policy updates. Even after any changes to the strategy are written down, the

cultural trends take time to adopt them. Simon comments on this that during its operation, each or-

ganisation acquires sunk assets, which can come in the form of specific know-how – ‘the way we do

things around here’, which comes together with goodwill – community-like relations between staff that

aids communication, and is not easily transferable into a different activity.295 The combination of these

factors creates a particular implied notion of momentum, which might not be made explicit in the or-

ganisation’s policies or technical documentation, but instead tacitly accumulates over time to create a

shared understanding that any change in objectives would entail a decrease in efficiency associated

with loss in some of the sunk costs or assets, as well as a potential erosion of goodwill. Such under-

standing of an organisation’s inertia gives a new meaning to the interpretation discussed in Chapter 1

because, rather than thinking about how technology shapes society, or in this case, the organisation’s

production lifecycle, it aims to understand in which way the inability to communicate the knowledge is

treated by the organisation, and what kind of risk it presents. Such knowledge is often referred to as ta-

cit, and a more detailed description of this notion at this point will help clarify the character of the or-

ganisation’s treatment of it.

Momentum and tacit knowledge

Within the production lifecycle, information is located explicitly in the form of documentation, which

is meant to reflect the epistemic infrastructure but may have gaps depending on how much priority the

	294	 Ibid.: 137.

	295	 Ibid.: 148.

187

organisation gives to documentation work. Information implicitly embedded in the components of the

infrastructure itself can be more reliable. Agents apply conceptual filters, such as specific context in-

formed by the support ticket, when using the information found in the organisation of the system’s en-

vironments, in its configurations, in the source code comments or in anything contained in the code re-

pository. In their engagements with the epistemic infrastructure, the agents accumulate or adjust the

expectations they may have about the kinds of knowledge they gain about the system. Lastly, as the

agents form a specific relationship with the kinds of data and information they usually encounter in

the system, they acquire a mental model that enables them to create the situated knowledge, based on

the expectations.

Faced with a change that comes from outside of the organisation’s sphere of control causes a loss in

momentum because the culturally constituted ways of doing things with the specific combination of

the organisation’s skills and technology are no longer seen as viable in the new production context. As

we saw previously, momentum is instructed, on the one hand by the business requirement of getting

the software product out into the market as soon as possible, and on the other hand by the efforts of

corporate governance to pull the controlling protocols together so that it continues to be possible to

manage the risks and ensure that no regulations are violated or that no quality issues lead to the loss in

sales. The key issue is with maintaining the balance between the parts, whichever condition they are in.

An important factor to momentum is that it is something that the whole organisation works hard to

build up, often, as the case study CS15 shows, as part of establishing the basic initial communication

patterns. Thomas P. Hughes emphasises that at any given point in the project, the degree of its success

is informed by the degree that the various parties are invested in its different aspects. This means that

any organisational initiative is underpinned by the web of interests, including funding bureaucracies,

engineering leads, and any executive or trustee boards that are going to be affected by the changes in

production. Therefore, it is only natural that where a certain existing momentum already warrants pre-

dictable outcomes, the disruption in the way of things can be met with resistance. While the momen-

tum may offer rapid execution along the well-trodden paths, the path dependency is precisely what

presents a problem when dominant logic is confronted with ongoing change. As Max Boisot demon-

strates, such logic introduces friction that makes the cognitive switches harder to achieve, and while the

persistence of inertia may look like a benefit from a neoclassical economic standpoint, in the face of

emergent qualities of the problem space it is, in fact, a non-equilibrium phenomenon.296

	296	 Boisot and Li in Boisot et al., 2007: 97.

188

The innovation proposals that the existing institutional framework is capable of resisting are something

that can enter the organisational imagination in some form – there could be cost estimates, roadmaps

or architectural blueprints. The extreme organisational rupture is caused by more serious tectonic

shifts that are not proposed or charted at the inter-organisational level, simply because the construction

of the problem space does not account for something that lies outside of the problems it had been used

to negotiate up to the present moment. There are no prior givens, goals and operators that can be

utilised to tackle radically new problems, and therefore the activities of problem space of production

become entangled with the abductive leaps that are taken as the last resort of bridging the gaps of in-

sufficient knowledge. However, as this chapter’s earlier discussion of cognitive load demonstrates, de-

pending on how large the unknown terrain is, abductive leaps may take considerable time to investi-

gate the new contours of problem space. The issue is, that in situations of extreme complexity, the

scales of innovation can be so vast that the search time takes long enough for the system to lose trac-

tion where it previously had it. In this case, extreme organisational rupture occurs, leading to the in-

ability to move forward without a substantial re-organisation.

While the situated knowledge factor accounts for the topological quality of knowledge, its tacit quality

points to the degree of its entanglement in production practices. To the philosopher and economist

Michael Polanyi, who closely engaged with the notion, tacit knowledge always involves more than any-

one can say and is to a greater or lesser degree enmeshed in skills and know-how. It is central to the

problem to have an element of discovery, ‘the intimation of something hidden.’297 In other words, tacit

knowledge benefits the affective side of communication between individuals involved in production in

the same way as explicit knowledge benefits effective business operation. Since tacit knowledge is per-

sonal, context-specific and derived from direct experience, it is inseparable from communication,

which is often an integral part of practice rather than verbal or expressible by other external means.

The association with practice makes the notion of tacit knowledge important for my argument since

implied property means there is no associated effort of making it external for production, which, in

turn, means that the use of tacit knowledge adds a great deal of momentum. The knowledge which is

tacitly present as part of daily production practice does not require meetings, onboarding, emails or

technical documentation. It is simultaneously a part of the organisation’s design and its culture.

For this reason, tacit knowledge enables the parsimony tendency within the agent’s behaviour, in the

sense discussed in the previous section, as something that does not require integration efforts. In some

instances, tacit knowledge does not have to be something that cannot be communicated – for example,

	297	 Polanyi, 1983: 22.

189

where participants are placed within the same context, the knowledge that could otherwise be written

down in the company wiki or sent via chat or email, under the circumstances can remain unsaid at all.

The knowledge that remains unsaid, however, also presents a potential business risk since the inability

to communicate, which is a benefit in the existing context, may appear as a bottleneck if the workflow

is changed, or people are no longer involved with the business. This means that such momentum of Si-

mon’s sunk asset of goodwill should, as we saw in the description of Fuller and Goffey, be met with re-

sistance by the organisation, as a hindrance to the circulation of knowledge assets and adds to the ex-

penses of differentiation and codification.298 This additional benefit of tacit knowledge to operations is

not always recognised on the executive level, which may have a hiring strategy that does not account

for it. The case study CS15 – an archival project case study in the Appendix – illustrates the extreme

rupture of the problem space of production that was caused by another reason, the change in geopoli-

tics, which, however, has had a similarly disruptive effect on the production process, and therefore can

be looked at in this context.299

The case study looks at the situation that occurred in the aftermath of the abrupt halt of the produc-

tion process of the publication (JX) in early 2022. The stop press had been made necessary by the

changes in the company’s strategy which were caused by the Russian invasion of Ukraine in that year

and the rapid severance of international economic and cultural links across the region. Six months af-

ter ceasing publication, JX came up with the requirement to redesign the system for the new purpose

and re-launch what used to be a media channel in the form of a digital archive. I was involved as the

project lead both with some of the old team and new staff hired for the production of the archive

project. One of the challenges, in this case, was that when a part of the old team was gone, a good

deal of the production momentum was lost. Even in the presence of documentation and the continu-

ing support from myself as the bearer of much of the previous production knowledge, the new team

members had to begin by applying conventional thinking to the system which to them was completely

new. This has led to some frustration and misunderstanding, initially from my side, since when writing

the briefs and commissioning designs, the idea was to save the effort and to re-utilise the existing sys-

tem components. The lack of momentum in the new team, however, meant that it was not possible to

simply start building where the old production team left off. Instead, lots of seemingly ready-to-use

components, such as the top navigation, appeared easier to recreate from scratch, due to the now lost

situatedness of the knowledge about how this component was embedded in the overall structure of the

system. Having to recreate the components from scratch led to increases in the initial phases of the

	298	 Fuller and Goffey, 2012: 127.

	299	 See Appendix CS15.

190

project, however as the system-specific mental model began to take shape in the minds of the new

team members, the momentum had noticeably built up.

Empirical cases as above have instructed me on the field uses of abductive modelling as it develops in

conjunction with creating the body of tacit knowledge. In situations of extreme organisational rupture,

the agents have no other option but to go beyond the available evidence and start by generating hy-

potheses. To Magnani, whenever the stable ontological grounds of reasoning are shaken, the hypothe-

ses tend to transcend the existing agreements between the paradigms, as in the scientific discoveries

during the transition from classical to quantum mechanics, which were made through the use of ab-

ductive reasoning.300 In the realm of production, the abductive mechanisms are used in teams as a rule

of thumb without much theorising, but rather with the aim to reach the point at which the hypotheses

are developed enough to start the testing iterations. To maintain traction, the abduction needs to take

into account any existing components, such as databases or environments. Databases are usually robust

enough to survive complexity spikes and are expected to be highly regular, subject to the efforts of the

system’s database architects, however, can be highly opinionated. In one of the field cases, I learnt that

the out-of-the-box CMS, including the one used at JX, are usually not fit for most production environ-

ments not native to them, since they came with pre-designed databases that fit their original needs, and

are usually incompatible for other users whose needs might differ. In other words, every production

system comes with its own assumptions about the format in which the data comes in. While the com-

plexities of such kind are accidental, they may allow making a case that the accidental complexity is

where the most crucial complexity cases may often be found.

Concluding the section on change and resistance, it should be noted that while every change may meet

resistance within the existing organisational structure, it is particularly important to account for the

changes that the system is not prepared for, due to the inability to account for them, since such changes

have more potential to bring the system into misbalance. An organisation may find itself under pres-

sure to change in response to the changes that occur outside of the production context under consider-

ation, and therefore without any coordination with the organisation’s own governance or audit plan-

ning. For example, change may occur in the wider ecology of the production system, such as updates

to the operating system or third-party or open-source libraries, or changes may occur in the market do-

main caused by the adoption of the new technology by the competitors.

	300	 Magnani, 2009: 33.

191

Returning to the two examples we saw earlier in this chapter, the AWS migration project and the Ar-

chive project carried out by the new team after the project was officially closed, can be seen in this con-

text in terms of their responses to the radical external changes. In the former case, because the migra-

tion was performed as part of the crisis mitigation measures, it was carried out without particular re-

gard to the organisation’s overall internal planning. This had placed the additional complexity stress on

its production system because the utilisation of the CloudFormation, the infrastructure as code service

which comes as part of the AWS offering, is generally associated with a more specialised DevOps

treatment compared to the system JX used before. This, in turn, implied an additional cost considera-

tion, which in this case could not have been done in advance, and therefore caused tensions in the or-

ganisation’s production budget planning.301 In the latter case, where the team cohesion was ruptured in

relation to the major and long-lasting geopolitical trend, the primary focus has been on building the

body of tacit knowledge based on technical documentation and gaining enough traction to deliver the

required updates to the product while trying to abstract, circumvent or delay any further complexity

dealings, such as code review, refactoring and regression testing to a later stage.302

Specifics of coordination in adaptive complex processes

As the discussion of the cognitive load suggested earlier, due to the limits of their capacity to assimilate

new knowledge, the agents seek to position themselves out of harm’s way of complexity. Beyond the

tactics of differentiation and integration, the agents tend to further reduce the complexity effects by

employing the distributed principle in their processing efforts. As Max Boisot explains, the distributed

character of processing means that the agents, otherwise scattered within the boundaries of the same

problem space or the same domain, come together to participate in the event of problem negotiation

on a case-by-case basis. Furthermore, distributed cognition works equally well both in homogenous

and heterogenous epistemic environments, meaning that it is not uniquely linked to the common

knowledge that the agents may have, but also to the differences in their knowledge – the inconsistencies

here facilitate self-organisation since the diversity of understanding of the issue at hand may lead to

faster problem-solving.303 The activity of abstraction that the agents carry out is differential, meaning

that it is not intended to express any generic objects suspended from differences, and is close to Marx’s

real abstraction, which, as we saw in Toscano earlier, arises from the varied determinations of agents in

the historically specific relation of production.304 The agent coordination that is based on their differ-

	301	 See Appendix, CS12.

	302	 See Appendix, CS15.

	303	 Boisot and Li in Boisot et al., 2007: 101 citing Hayek.

	304	 Toscano, 2008: 275, 277.

192

ences makes it imperative that the agents discern the patterns within each other’s behaviours to main-

tain the group cohesion, as well as the patterns of their environment. The regime of coordination that

enacts the rules for such mutual adaptation should therefore be more precisely defined as adaptive gov-

ernance. Such governance is characteristically non-centralised and scale-free.

The rules enacted by adaptive governance comprise something that can be defined as protocol, a set of

soft regulatory principles that do not imply administrative compliance, but rather define a manage-

ment style and bear cultural value as something which is shared across the organisation and on a wider

scale of a community of practice. The protocol’s relaxed applicability is necessary for it to be relevant

in the uncertainty of complex production situations. More specifically, the advantage of the protocol is

that it can be applied to both the practice and process. The practice is viewed by the administration as

the enactment of situated knowledge accumulated in a specific community, where its members contin-

ue searching for new solutions within the boundaries of their domain. The process, in contrast, is the

vertical spread of knowledge, which cuts through the various levels of situated knowledges. To illus-

trate the difference, it is worth evoking Adam Smith’s rich example of a pin factory one more time, al-

beit for a different insight. As we saw previously, the protocol of the factory breaks down the produc-

tion of a single pin into the activities of separate workers, such as drawing out the wire, straightening

it, cutting it, and so forth. The benefit of the division to practice is that each individual worker, once

relieved from having to switch between different activities, can creatively explore and optimise the spe-

cific activity assigned to them. In terms of process, the pin as a result of collective effort is present as

the guiding principle for all the subordinate production events and as a tool for quality assurance. In

complexity management scholarship, it is usually acknowledged that away from the traditional cent-

rally controlled manufacturing operations, most systems today, including the ones involved in complex

production scenarios, are managed in a distributed way as clusters of local practices, while remaining

auditable as processes through the main guiding principles.

More specifically, distributed governance becomes possible when three factors pointed out by Maguire,

Allen and McKelvey are present: readiness for organisations to enter into a coordinated relationship,

their sufficient connectivity that makes the mutual coordination possible, and abundant resources.305

The distributed system can thus be defined, via Azadegan and Dooley, as a system where there is no

one source of ultimate authority, or even in the presence of a protocol it is the agent body that bears

the most responsibility for decisions: ‘in a distributed control system a number of agents are respons-

	305	 Maguire, Allen and McKelvey in Allen et al., 2011: 15.

193

ible for sensing, interpreting, and controlling actions.’306 In real-world production, for example, as I dis-

covered in my fieldwork, the scenarios were mostly mixed, with main strategic decisions coming from

the key stakeholder, which was then met with resistance from the self-organised agent groups who may

have found the decisions incompatible with the accumulated local knowledges. As the production pro-

cess continued, the outcomes were further evaluated against the strategy, and the strategy would be ad-

justed, resulting in negotiated solutions that would allow effective delivery for everyone involved.

Chapter conclusion
This closing chapter of the thesis has looked at the governance implications for complex responsive

production systems. The governance here appeared as distributed and operating not through any fixed

hierarchy, but via the audit applied throughout the product system in a scale-free way. Such audit is ne-

cessary, in the context of complexity’s fluctuations, due to its ability to circumvent them by limiting its

inspection to the organisation’s internal managerial structures, which, in turn, report on the perform-

ance of the self-organised agents’ associations. The chapter has explained such fluctuations as a neces-

sary feature of software capitalism that comes from its fundamental tendency for the cost of computa-

tion to fall. Complex adaptive systems avoid internal hierarchy by maintaining instead a protocol, or a

unified set of principles, for codification and abstraction. The protocol is cultural in that it springs from

the beliefs shared by agents throughout the organisations and communities of practice about the ways

in which the knowledge should be classified so that it could be searched, sorted and filtered by others

later. The shared codification and abstraction beliefs, paradoxically, preclude the integration of know-

ledge due to the inevitable fact that some of the knowledge is present in its tacit form.

Therefore, the more complexity the distributed governance is presented with, the more non-transfer-

rable tacit knowledge is generated by the agents locally, and, concomitantly, the more resistance to

audit there is. While in this case, there might seem like a semblance between the centralised and dis-

tributed systems, it occurs for different reasons. In the centralised hierarchies, the inability to audit

happens due to the presence of real-world limits on how much information the system can process and

transmit. In the complex adaptive system, conversely, there is no problem with overflows and the

stifling of reporting capacity here is intentional and, to use the Marxian term, appears as a feature of

real subsumption of labour, that is, fully conformed and appropriated by the software capitalism pro-

duction process. Tacit knowledge is produced as a means of creating scarcity within the system that

otherwise wouldn’t have it due to its fractal character. While in its tacit form, the knowledge is difficult

to scale across the system in the event of a complexity spike, it provides a great return on investment in

	306	 Azadegan and Dooley in Allen et al., 2011: 421 citing Tunalv, Radner, Deshmukh et al.

194

terms of efficiency increase warranted by the momentum. When the agent’s abilities to codify and ab-

stract are overwhelmed, they suffer cognitive shocks, causing losses in efficiency. At this moment, the

knowledge is converted to its explicit form, making it possible for the organisation to create new busi-

ness divisions and address any complexity effects. The capitalist valorisation mechanism, in turn,

propagates to the team and organisation levels by increasing capital circulation in those new divisions.

As the discussion throughout the chapters of this thesis as a whole has aimed to demonstrate, the new

divisions may not have been required without the situation of artificial scarcity created for capital cir-

culation.

195

General conclusion

In conclusion, the study looks back at the argument as a whole to discuss in which ways the theory that

I engage with can be seen differently in terms of the present discussion. The sources this research deals

with can be generally split into three types: background, data and focal theory. In terms of the back-

ground theory, the research generally assumes, in its interpretation of the socio-political conjunction,

that the software capitalist production system finds itself in, the fundamental categories of the labour

theory of value theorised by Karl Marx. The other resource is the systems theory thinking of Thomas

P. Hughes, which provides the context for understanding some of the characteristics of technological

systems, such as momentum and the specificity of the system’s audit. Next, Melvin Conway’s organisa-

tion design paper plays an important role in current DevOps thinking and in this sense is an important

background source that creates a link to the industry, which the next category of sources looks at.

The data sources in this thesis are the DevOps professional literature and other associated references

that I use for deriving the industry data for this study. The source that underpinned the initial phase of

my research is the writing of Frederick Brooks, in which I find historical evidence on the pre-Agile era

strategies for mitigating the software crisis. Since a lot has changed from the time of Brooks’s original

writing, I use some of his claims, such as invisibility or conceptual integrity, as the questions to approach the

more recent industry research. In terms of present-day sources, I clarify the Continuous Delivery and

deployment pipeline using the work of David Farley, the author of these production concepts. Next is

Matthew Skelton’s proposition of a stream-aligned production pattern, which applies some of Con-

way’s findings in the practical operations work. During the research, my view has shifted to under-

standing the term team topology as a more general analytical model, while referring to Skelton’s team topo-

logy more specifically as the stream-aligned paradigm. Lastly, Gene Kim’s nuanced account of current

DevOps standards helped to articulate the concept of the coincidence of business value and an organ-

isation’s technology stream. Beyond the description of practice found in theory, I’m also motivated to

include the case studies I carried out in the field as additional sources of data theory. The empirical en-

gagements have established the links between the abstract definitions of practice and the concrete

practices as they take place within the organisation.

The focal theory of this study reflects its main interest in infrastructural qualities of epistemology, with

the aim of understanding how knowledge is mobilised in a productive assemblage for control and

196

planning in situations of exponential complexity increases. Such a goal steers the overall strategic dir-

ection of this thesis towards the inquiry into method, and, symptomatically, the focal theory sources

are predominantly methodological. The key reference here is Celia Lury’s compositional methodology

framework – the epistemic infrastructure and the problem space – are used for thinking about software

production systems. They are compatible due to their focus on the negotiation of problems in an incre-

mental way, which applies to the production of complex systems, and has, in fact, been used in soft-

ware production since early Agile. The other focal source is the agential realism philosophy of Karen

Barad, which relates to the production of software systems as a process of negotiation of meanings

and extends the understanding of such negotiation through a diffractive view of the problem space of

production that implicates it with materiality, agency, discursive practices and causality. Despite the

strong ontological orientation of Barad’s work, such as in her theorisation of the agential realism

framework, a relational ontology which focuses on the mutual becoming of material-discursive forma-

tions, I find that methodologically the framework of Barad is compatible with my epistemological in-

quiry. It specifically instructs me on the possibility of applying diffraction in software studies as a way

of queering the DevOps treatment of the knowable and the knowing matters by looking at it through

the optics of embodied practice and affect. Lastly, I engage with the abductive modelling method pro-

posed by Lorenzo Magnani to create, quite literally, the production lifecycle model as a blueprint for

my research, employing abduction as an operative principle of iterative composition of the system

alongside the knowledge about the system. The model, however, necessarily borrows from the fourth

focal theory source, Max Boisot’s assimilation of knowledge as strategic cognition, which is required to

understand the limits of traction and how momentum is made possible on the level of agents.

Focusing specifically on the two groups of sources, background and focal theory, this Conclusion is split

into two corresponding sections. Each of these sections looks back to the theory the thesis engages with

and summarises the insights that could be derived from the discussions contained throughout the thesis

chapters. The purpose of such a cursory overview is not so much to describe the work that has been

done, but rather to activate the content, terminology and lessons learnt for future research.

Background theories
Scalability of means of production and distribution

Turning to the background theories of the present study, several considerations have had to be taken

into account when thinking of the distribution and production mechanisms through the optics of the

labour theory of value and the management studies informed by complexity thinking. The most prom-

inent characteristic here is that the capitalist model tends to valorise the complexity through scaling,

which is made possible by the benefit of the reuse of virtual inventory. Despite its tendency to rapidly

197

become obsolete, the inventory in the context of software capitalism, does not perish in the same sense

as in material logistics, through reducing or losing any of its qualities in transit or repeated use.

Moreover, the distribution of virtual inventory may come at a considerably lower cost compared to the

distribution via the material channels. The inventory itself is not limited to the outcomes of produc-

tion, but is also present in the form of databases, environments or configurations, which are more often

used as means of production or distribution, yet are also re-used indefinitely without perishing or ex-

piring because of how often or intensively they are utilised. To business owners, in other words, there is

a scalability benefit, which does not only apply to the outcomes of production but extends to the

means of production and distribution. This implies a wider potential for scaling through inventory re-

use, which is only limited by the compatibility between the systems, their components and the hard-

ware they run on. For example, the material infrastructures of the internet are susceptible to deteriora-

tion, and in that sense can be compared, by way of Nadia Eghbal’s allegory, to real-world roads and

bridges.307 On the contrary, code-based technologies such as Apache or NGINX web servers, which

carry out the work comparable to substations of the electricity networks, do not suffer wear and tear in

quite the same way as their material counterparts.

Requisite variety effects in organisation design and the practices of audit

Turning to the issues of production system scalability, I find that these involve production practices as

well as the practices of audit, due to the tendency of the capitalist mode of production to reproduce

and enforce its constitutive social conditions. The two forces amplify and promote this tendency in the

context of software capitalism: the cybernetic principle of requisite variety and the depreciating com-

putation costs. The former makes it imperative to respond to the environment in an equally complex

way, while the latter makes it possible to scale rapidly while doing so. As a result, the market tends to

intensify the capital circulation by instructing the software system to become more complex and the or-

ganisation responds by adapting its structure to replicate these components. Such replication, however,

becomes increasingly difficult in systems of high complexity, since the software system is capable of

scaling faster than the organisation and can present its agents with overwhelming amounts of stimuli

across many of its abstraction layers simultaneously.

For production teams, this means that cooperation no longer brings free gifts to capital in terms of ad-

ded effectiveness or faster production. The effectiveness does not come for granted because adding

staff members, in agreement with Brooks’s Law, provokes a tar pit phenomenon – an exponential increase

in the efforts of communication and learning. Since these are not scalable, they create, at best, un-

	307	 Eghbal, 2016: 8.

198

resolvable bottlenecks in production throughput. The situation is aggravated by the various industry

antipatterns which assume that the tar pit phenomenon can be overcome through high utilisation,

large batches, forward planning or adding new features. As Chapter 4 illustrated, however, the commu-

nication bottlenecks largely concern the centrally-controlled production configurations and can be

avoided by more flexible organisation designs, such as stream-aligned team topology. Concomitantly,

there is an equally important paradigm shift in the audit, which is understood as the formal practice of

self-observation that, unlike the production events, are a part of the production system itself and are

therefore reproduced as part of the conditions of production. This presents the auditors with a unique

set of challenges, discussed in Chapter 4, to reconsider audit as a distributed practice.

Valorisation of complexity during the integration of knowledge

The third aspect deals with the capitalist valorisation of complexity that emerges around the event of

integration of knowledge. The valorisation here is connected to the additional possibility of qualitative

systemic change that the software system is open to since each instance of change causes complexity

which has to be mitigated. As the chapters throughout the present study aimed to demonstrate, there is

more potential for complexity in the production of digital knowledge-based artefacts than there is in

the manufacture of material goods. The reason is that, however complex the material artefacts may be,

they will always be constituted by a finite number of parts, which in turn puts a limit on how much

quantitative or qualitative change can be made at the factory in any time period. In contrast, in soft-

ware production systems, the radical changes with ensuing spikes of complexity are a risk which is con-

stantly present. Quantitatively, the system may experience an increase in the incoming user traffic, for

any external reason that has nothing to do with the system itself, which risks overwhelming its capacity

for performing repeated operations. Depending on the system’s architecture, the quantitative spike

could result in either system response timeouts or an increase in compute bills from the provider who

has to serve more requests. Qualitatively, the system risks facing changes in any of its abstraction lay-

ers, where some of these changes may occur outside of the organisation’s control. For example, the

fact that most software products rely on external libraries or plugins may present a risk, since any com-

ponents located outside of the organisation can introduce changes without being able to consider the

conflict in all the downstream components and services that use them. Such qualitative change, due to

the likelihood of complexity arising from the inchoate, uncertain and unprecedented events that are

not yet comprehended enough to be articulated, tends to inhabit the sphere of the organisation’s tacit

knowledge. Quantitative knowledge tends more towards an explicit kind.

Each integration event triggered by change is a knowledge transaction that presents an opportunity to

extract circulation profits. Because of the above, this can be done in two general ways. On the one

199

hand, it is by preventing the knowledge from being made explicit, and on the other hand, once it does

become explicit, using it to scale the production to expand the circulation of knowledge. The reason

why the latter does not happen in all cases is that scalability is only possible based on the knowledge

that can be circulated universally through the infrastructure, code or technical documentation, and not

the knowledge which is only present in its tacit form, such as embedded in the human practices. Tacit

knowledge is a product of the system’s momentum and therefore always abundantly exists within the

system, bearing the benefit of increasing the production speed in the local context when the agents

have been working together for a long time and therefore have a lot of shared knowledge which has no

reason to be integrated into the explicit form. Simultaneously, this means that tacit knowledge is a

scarce resource since it cannot be effortlessly communicated to new teams in the event of scaling. The

valorisation of tacit knowledge in this sense implies that the levels of tacit knowledge are always kept

up to the level of agents’ breakdown from cognitive shocks, at which point it gets integrated into expli-

cit knowledge which is higher in scalability, albeit slower in production.

Focal theories
Presenting the categories of compositional methodology in DevOps

The present thesis proposes to present the two key categories of compositional methodology, the epi-

stemic infrastructure and problem space in relation to the Continuous Deployment paradigm, to be

categorically compatible with the audit carried out in the production context informed by DevOps.

The former term, therefore, appears as the epistemic infrastructure as code, and the latter as the problem space

of production. In their adjusted definitions, the terms similarly assume the respective roles of the two do-

mains in the process of negotiation of meanings within the production lifecycle. What makes them

more suited to the study of operations is that they become closer to dealing with the software capital-

ism formation, characterised by the equivalence of the business value stream to the technology value

stream. On the one hand, the identification of the problem space as the necessary attribute of the pro-

duction process positions it in the boundary between the market, where the outcomes of the software

capitalist mode of production are realised, and the problem space of organisational culture. Another

aspect of the problem space qua production space that the category reflects is its function as the meet-

ing place of the organisation and the community of practice in terms of their relation to the software

system. As Chapters 4 and 5 discuss, the problem space of production offers the opportunity to negoti-

ate the meanings of the system criteria, and it does so in a scale-free way due to its topological pres-

ence in all of the system’s abstraction layers. While the present study has examined predominantly the

stakeholder types of the agent layer, such as business owners, production staff and users, the negoti-

ations similarly occur on other scales between the teams and whole organisations.

200

On the other hand, epistemic infrastructure as code replicates the infrastructure of knowledge in the code in

the same way as DevOps replicates the infrastructure of the software production system in its version

control. This permits the epistemology of production to communicate with the process of knowledge

integration as a necessary reproductive dynamic of the business value stream and audit. The study of

knowledge infrastructure as code pursues similar aims to the creation of the deployable infrastructure

in the Continuous Deployment method in DevOps. Both phenomena allow tracking changes and to be

able to track when the changes were made and by which individual team members. Infrastructure,

through being traceable as any other application code, provides a set of rules that warrant the control

of other controlling mechanisms. In this sense, studying the infrastructure as code does not merely

contribute to the study of audit practices that pertain to that code – it is, in fact, the study of such

practices.

Conflicts in abductive models on different levels of abstraction

The abductive modelling interpretation of compositional method (CM) in the present study meant

that any models would have to deal with the problematics of the epistemic infrastructure and the prob-

lem space, as the two key categories of CM. The model itself became necessary given my hypothesis

that the knowledge that informs the production context, due to its parsimonious treatment, is continu-

ously undergoing the processes of codification and abstraction. Therefore, it must be using some sort

of epistemic mediator to keep the circulation coherent and within the bounds of a system. In the next

step, I have outlined a diagram for the epistemic mediation, featured in Fig. 4 in Chapter 2. This has

revealed the production system as an interface which creates, by internally circulating knowledge, a

possibility for material, performative and affective negotiations between the market and the organisa-

tion domains. During fieldwork, however, the theoretical moves of deployment and integration got en-

tangled in the empirical organisational context, which suggested that the abductive reasoning of more

than one vantage point has to be considered, which led to the creation of additional diagrams.

The production pipeline diagram, as per Fig. 2 in Chapter 1, deals with the activities of the individual

agents within the production team, making it possible to open up their cognitive processes for symbolic

analysis. Taken together with the integration process diagram in Fig. 17, and the data collection flow in

Fig. 21, it sheds light on the localisation tendency, which means that agents tend to avoid the over-

whelmingly complex production with its many aspects by prioritising the communications to their im-

mediate neighbours. This tactic provides some protection from cognitive shocks by limiting the inform-

ation to what is shared between the agents located close to one another. The local assimilation and in-

terpretation of knowledge, in turn, may create differences in meanings, since the agents negotiate to

take phenomena they encounter for what they are in specific production contexts, rather than through

201

the lens of any centrally instructed strategy. As Chapter 5 observes, this locality is usually seen as the

benefit of the adaptive construction of a system, which empowers the agents to specialise and diversify

their behaviours to find creative solutions.

Yet, once the scale is shifted as per Fig. 18 which shows the self-similarity of the relation schema on the

various scales, the diversification on the lower levels may mean conflicts in the higher levels – for ex-

ample, incompatibility of the locally constructed meanings with the audit protocol. The conflict may

suggest that abductive manipulation of production models happens differently at different levels of ab-

straction. As I have encountered in the field, the local decisions were prioritised due to the complexity

of production situations, but there was always a limit to how distributed the system was allowed to

grow before it started to interfere with the coherence of the organisation’s strategy. To echo the obser-

vation that Chapter 5 makes in this regard, where the abstraction level is high enough for the complex-

ity to be handled by the centralised form of governance, such a form would always take precedence

over self-organisation, and the local decisions would no longer be prioritised.

Queering the DevOps epistemology

While the reason for choosing software as the matter of present study is that it provides the appropri-

ately complex production context, the reason for prioritising the DevOps optic, over, for example, that

of programming languages, is that it provides unique access to the epistemology of the software pro-

duction system operations. Epistemology in DevOps, as something that contributes to the method by

informing the research not on the content of specific cases, but on how the content is created and or-

ganised, is a central concern to operations research as a place where the system integrates the effects of

its complexity. Furthermore, operations deal in equal measure with the market, and the organisational

aspects of the system. The multiple frictions between the two domains are being negotiated in produc-

tion, which appears for this purpose as the interface. This means that many production practices, of

which the present thesis takes an example of Continuous Deployment discussed in Chapter 3, are, in

fact, responsible for shaping the boundary between the market and the organisation, and being shaped

by it in return. For example, Continuous Deployment is simultaneously production, in that it creates

the value-bearing commodities ready for exchange, and yet it is also distribution, in that it makes the

outcomes of production available to the users.

In this situation of uncertainty, the use of diffraction when looking at production makes it possible to

simultaneously arrive at the same problem from multiple viewpoints. This would then allow engaging

in problem composition based on the effects of difference between these views. The support ticket, as

Chapter 4 aims to demonstrate, occupies a central methodological position in the queer view – that is,

202

a view which is capable of interpreting the system in terms of its dysfunctionality, and of tethering the

stakeholders to the relevant criteria of the problem space of production for the duration of the prob-

lem-specific application of method. Support tickets make the multiple readings of the problem avail-

able for queer DevOps manipulation, which is simultaneously symbolic and material because it deals

with representations and yet bears real effects in the world and lived experiences.

Some of the other important boundary categories that appear simultaneously in different capacities

are the categories of production participants, referred to in my research as the empirical and the epi-

stemic. As Chapter 5 notes, the participants are split into the owners of the means of production and

the wage-labourers, the categories that can be used to study their involvement in the relations of mar-

ket value exchanges. Yet, the groups are also simultaneously unified as the stakeholders of the agent-

based presentation of the production system, which pursues the goal of establishing a web of inter-or-

ganisational relations that operate through the functions of administration and therefore pursue com-

pliance, rather than the surplus value per se. The consequences of such simultaneous enactment of

different capacities are similar to the ones Anna Tsing arrives at in her concept of supply chain capital-

ism. Where the latter interprets cultural dimensions such as gender, race, ethnicity, religious identifica-

tion, age or citizenship as the niche banished from the economic, which is nevertheless used to vitalise

the class relation for mobilisation of labour,308 the diffractive view of class and stakeholder relations

similarly conceals the alienation and exploitation processes within the specific aspects of organisational

culture. While the market activates specific mechanisms that allow it to appropriate the cultural dimen-

sions of production, I argue, the organisational teleology acts as its subset and organises its audit and

other control mechanisms in alignment with the market consideration, albeit often in a non-obvious

way. For a more nuanced discussion of the interrelations between the epistemic and empirical categor-

ies of production participants, it is necessary to conduct a diffractive analysis of the relation of class,

which lies outside of the scope of the present study.

Another category that comes under the diffractive lens to consider the differences it deals with is audit.

What could be learnt from Chapter 4 is that in complex systems, audit can only be present in its local

form, being situated in a specific organisational context, and can only operate on the organisation’s in-

ternal managerial structure. Locality here means a way of conducting audit without the attempt to

control its every aspect from the administrative centre. The distribution of efforts throughout the mul-

tiplicity of localities allows positioning the control mechanisms orthogonally to the force of unbounded

system complexity, to be able to withstand its potentially infinite fluctuations in a scale-free way. The

	308	 Tsing, 2009: 158.

203

distributed form of audit escapes complexity by taking advantage of abstraction layering, which in

software capitalism depends in equal measure on the two kinds of abstraction. On the one hand, there

is software abstraction in its technical meaning used in computer science: the hiding of code. On the

other hand, there is Marx’s real abstraction which Alberto Toscano has arising from the real world of

the disparate agent determinations, which are interpreted in a strategic formation specific to the partic-

ular event of production.309 Audit evolves around the system’s abstract divisions to be able to limit its

operations to only reviewing the managerial structures which in turn audit their internal divisions,

which also have specific local forms of audit, and so forth, throughout the whole of the abstraction

stack. Provided the audit pattern is consistent enough to be able to use a unified approach through and

through, the audit is ensured to be completely scalable and will not provide any significant bottlenecks

by trying to absorb excessive resources on the same abstraction layer.

Knowledge validation mechanisms in epistemic infrastructure

The key principle of an epistemology of the production circuit is that the knowledge, once it has been

assimilated and organised into an infrastructure, can be effectively used to evaluate new knowledge.

This principle lies at the core of most of the production systems’ complexity avoidance tactic, which

splits the knowledge into one which is organised and culturally integrated – explicit knowledge – from

the one that is a matter of negotiation, or tacit knowledge. This tactic comes naturally as the system

proceeds with codification and abstraction routines of parsimonious cognitive behaviour. As most of

the other agent-based formations, including the ones composed of human, non-human or organisa-

tional entities, production systems tend to proceed in the direction of lesser effort, which means retain-

ing and re-using previously assimilated knowledge as much as possible. Existing knowledge, ordered

and made available as a resource repository saves the effort of either creating or searching for it, and

therefore the activity of integration, or converting knowledge to explicit state is one of the agent’s core

parsimony tactics. However, it is not always employed, particularly where it is possible to accumulate

knowledge in its tacit state within the enclosed agent groupings. The reason for that is that the activity

of integration – for example, creating a comprehensive body of technical documentation – can appear

as a considerable expenditure of time and resources. As demonstrated in Chapter 5, tacit knowledge is

also open to valorisation mechanisms owing to its added effectiveness due to the large momentum in

local situations. This usually means, as some of my field cases demonstrate, that the organisation is not

likely to allocate the resources to creating documentation, refactoring or addressing technical debt un-

less there is a critical system failure or another crisis situation.310

	309	 Cf. Toscano, 2008: 275, 277.

	310	 See Appendix, CS6, CS21.

204

Future research
Since the present thesis opens up a new way of thinking about such a broad sphere of professional IT

practice as DevOps, a few of the exciting research opportunities had to be left out for the sake of cre-

ating a balanced foundation for the argument as a whole. Some of the urgent next steps for developing

the present study lie in the areas of software distribution, the co-implication of software and hardware

production processes, the relation between momentum and traction, the valorisation of computation,

as well as a more nuanced exposition of the role of affect in high-complexity production.

Let me draw some examples that link back to the argument as it appears in the thesis. In terms of dis-

tribution, as mentioned in Chapter 3, the notion of a system environment as a set of resources that en-

capsulates the local user interactions has to be further developed as an analytical tool to be able to un-

pack the meaning of user-side situated knowledge that evolves in runtime. Another potentially fruitful

trajectory is the conjunction of hardware and software in terms of their production processes. For ex-

ample, how would the present research approach the production of a smartphone – should it be seen

as the result of the industrial mass manufacture conditioned by the software? Or if it appears simultan-

eously as a physical product and a software service, would it raise questions as to where the production

process stops, and whether the device itself should be approached diffractively, as a result of produc-

tion and the means of distribution? In terms of affect, only a cursory examination was possible within

the limits of this study, as Chapter 2 explained, and a more thorough investigation is required to evalu-

ate the involvement of affect as the means for reducing complexity. As another example, there needs to

be a more detailed account of the technological system mobility from momentum to traction-based

operative principle, to continue the discussion of the two notions started in relation to performativity

of labour in Chapter 1. Lastly, as mentioned in the discussion of the supply chain capitalism model,

there needs to be a further diffractive analysis of the roles of participants of production where their

class relations overlay their organisational stakeholder roles.

To conclude, I have to note how the aim of my dissertation has evolved during the process of my re-

search. As mentioned in the General Introduction, the research starts with the aim of finding out what

prevents organisations from developing their software in an easier way, so that they fully utilise the

power of technology that they have access to. Throughout the chapters, however, the problem reveals

itself to be not as trivial and shifts the interest of the research towards the issues of method, making it

necessary to clarify the key themes as summarised in this Conclusion. The question at the end of the

thesis sharpens to ask, how could the epistemology be mobilised as a productive assemblage for plan-

ning and control in situations of exponential complexity increases? Providing any informed answer un-

doubtedly requires further ongoing investigation, which falls outside of the scope of the present thesis.

205

The main result of this study, which is a sketch of topology that traces the problem space involving the

problematics from both DevOps research and software studies, comes, despite its preliminary nature,

as a benefit to both disciplines. It suggests that developing a more nuanced critical inquiry into Dev-

Ops of software capitalism demands further and urgent research for several reasons. One is that com-

plexity plays an important role in the growing interoperability of not only technical, but also human

and environmental factors of contemporary capitalist juncture, and therefore the study of complexity

has to be seen as a concern of the humanities scholars as much as their colleagues in the departments

of computer science or management. Furthermore, as the cultural sphere sees an increase in the active

involvement of more-than-human agents, their encounters require a further intensive investigation.

This is evident in the recent integration of artificial intelligence-based tools in cultural production, and

the growing computation-based links between the continuously deployed infrastructures of global sales

and logistics platforms, on the one hand, and climate crisis and organisational ethics, on the other. In

addition, there is a need to create a comprehensive exposition of complexity effects caused by depreci-

ating computation because they are likely to have long-term effects across the production, operations

and audit practices.

206

Appendix

The Appendix lists the case studies which I carried out both as part of my PhD research and my digi-

tal product lead employment at the organisation referred to throughout as JX. JX is an online media

outlet publishing daily briefings on a variety of cultural topics, focusing on young creatives. Each study

is meant as an illustration of a specific skill that I had to utilise to carry out the casework.

CS1. Planning and delivery

To illustrate my approach in this area, I can use a case study of the XY project that involved online

film screenings which JX had organised during the COVID-19 lockdown period between March and

October 2021 to increase the audience and visibility of the journal. Production requirements for XY

included creating a new website section to host the film screenings, implementation of a streaming

platform and design of the associated promotion materials.

I have approached the project as a series of the following tasks:

-	 To create a detailed requirements document based on stakeholder meetings.

-	 To do the research for the film streaming options.

-	 To coordinate the design and production of the XY landing pages, as well as film stream-

ing platform integration.

-	 To coordinate the delivery of marketing collateral.

207

 

Fig. 19. Production phases and releases.

The project workgroup consisted of the producer from the editorial side, two developers and two de-

signers. When building the roadmap, I have split the production efforts into three versions: open call,

film festival and awards. (Fig. 19) These corresponded to the JX landing pages which had to be re-

leased at three points: before the festival, at festival start and when the winners were announced. I

planned and coordinated the delivery phases according to the production best practice: discovery (in-

cluding opportunity, planning and estimation), design (including wireframes and production-ready

mock-ups), development and testing (Fig. 20). Such treatment had allowed me to effectively track the

tasks pertaining to each release.

 

Fig. 20. The production pipeline.

CS2. The use of tools to balance priorities and mitigate the risks

In the context of the XY project as described in CS1, I have balanced the priorities and mitigated the

risks with the three industry grade tools: Smartsheet, Jira and Confluence. While Smartsheet worked

208

well for stakeholders, Jira was ideal for development, and linking these two tools allowed me to create a

fluent conversation across the different organisation strata. Lastly, Confluence was used as a technical

documentation space available for all.

Smartsheet. The roadmap I created in this online Gantt suite had allowed stakeholders, producers

and marketing to estimate the efforts and evaluate the risks before taking any action. For XY, I used

Smartsheet to set the timeframes for the three releases, populated each with associated production, edi-

torial and marketing activities, and assigned tasks to relevant team members. This has allowed me to

report based on person, team, task type, or project stage. Where possible, I have linked the tasks to cor-

responding Jira issues.

Jira. As a tool for managing support tickets, Jira was a good fit for balancing priorities and dependen-

cies in delivery of XY, once the strategy was approved on the stakeholder level.

I have used Jira for the following tasks:

-	 Composing user stories for all aspects of development, for example: ‘produce video for

the banner’, ‘create an anchor link to festival passes’, ‘stabilise the open call page perfor-

mance’. Each user story contained the requirements, rationale, current context and any

additional information.

-	 Backlog grooming: organising the backlog stories in order of their priority, based on

the consensus within the organisation and the production team. Decommission or de-pri-

oritise the stories which were no longer relevant.

-	 Sprints. Opening, closing and reporting on sprints in two-week intervals. Constructing

upcoming sprints with stories from the top of the backlog, depending on team velocity

and story point estimates.

-	 Releases. Tethering Jira releases to pull requests in GitHub, which the developers used

for version control. Each release deployment was marked with the corresponding Jira re-

lease tag. After each release, I ran a retrospective with the XY workgroup to address any

issues, celebrate the achievements and discuss the work approaches.

Confluence. Creating pages for initial requirements, meeting minutes, feedback, retrospectives, and

supporting the developers in writing up the technical details, such as streaming platform integration.

CS3. Annual planning

In the first quarter of 2022 at JX, I was responsible for creating a draft high-level roadmap. This task

included:

209

1.	 Gathering what was already known about the projects planned for that year, compiling

draft requirement documents and creating wireframes which would show essential fea-

tures.

2.	 Compiling the draft roadmap while discussing the collected materials with the develop-

ers, who would advise on the rough time estimates.

3.	 Adjusting the roadmap draft so that all team members have a steady flow of work.

4.	 Stakeholder presentation, paying extra care to the responses in terms of the delivery pri-

orities and projected deadlines.

5.	 Revisiting the roadmap in view of the feedback and sharing across the team as the initial

version of the workable plan. The emphasis here was that the plan is in no way set in

stone and would be further adjusted as the projects take shape.

As a result, the team had an understanding of the composition of each project throughout the year,

which allowed them to organise their work accordingly.

CS4. User research

At JX, I have conducted user research as part of the main navigation redesign project, to understand

the goals and aims of such redesign. In this case, I was only tasked with surveying company employees

because a brief audience survey had been done shortly before. I carried out two group surveys of staff

in both company’s offices, and a series of face-to-face semi-structured interviews with stakeholders. In

the second stage, I have identified that these conversations were, in fact, not sufficient because the

group was already too familiar with the product, and a more thorough user testing and more audience

surveys were required. Knowing that JX lacked the resources to carry out such testing, I organised a

meeting of JX staff and a third-party business analyst consultancy, who came up with a proposal for

creating a viable user research programme. The approval of the initiative, however, was delayed for

reasons outside of my control, and given the project deadlines, we had to complete the initial version

of the new main navigation based solely on the audit results already at hand (see CS7 and CS12 for

more details). Given such limitations, we could still argue the successful translation of user needs into

tangible outcomes, since we have created a search function and a sidebar menu where none of those

existed before. Going forward, I had persisted in advocating a continuous user research protocol, to be

able to better instruct further UX improvements.

CS5. Discussions with technical teams

I structured communication within the production unit at JX around the weekly 30–40 minute meet-

ings, during which each team player reported on current progress. The weekly rather than daily ca-

dence made sense because most team members were working part-time. Moreover, some production

team members also attended the daily editorial stand-ups, and also had a chance to communicate

210

about particular projects in project-specific meetings. My tasks included hosting of meetings, creating

the backlog of Jira tickets, updating the roadmap and articulating the pain points for further discussion

beyond our team. I was also responsible for deciding on the optimal approach to the scope of the up-

coming week in terms of the task implications and trade-offs of maintenance vis-à-vis new feature de-

velopment. Such an approach to team discussions contributed to the confidence of each of our col-

leagues in their work and aided developing a sense of trust within the team as a whole.

CS6. Reliability and security

Following a website performance failure due to a suspected attack in October 2021, I had decided to

start an initiative to improve the platform security. I had then obtained approval to hire a freelance De-

vOps specialist, with whom we have formed an intensive working relationship over the period of the

following five months. Together, we have implemented a range of security measures across the several

key areas:

-	 Content delivery network (Cloudflare CDN): updates to security settings, firewall and

error pages.

-	 Amazon Web Services infrastructure hosting (AWS): updates to users, groups and permis-

sions.

-	 AWS: scaling down the infrastructure to optimise the costs.

-	 AWS: create a proposal and cost estimates for high availability architecture and auto-scal-

ing to increase product reliability.

-	 JX content management system: drafting the password rotation policy, updating

users, implementing captcha.

-	 Google Workspace: updating user groups and users, two-factor authentication, security

updates on user devices.

-	 Physical server: migration of data to the cloud storage (Google Drive). The migration

was supplemented by creating the automated backup suite, briefing the staff on the new

Drive usage and decommissioning of old equipment.

-	 Hardware support: revising the annual rolling contract with hardware support com-

pany to understand what we are paying for.

The benefits of the initiative were as follows:

-	 AWS optimisation brought a 65% reduction in monthly costs without any losses in service

quality.

-	 Using Drive and backups improved compliance with company data storage policy.

211

-	 More detailed analytics on Cloudflare; the rest of its optimisation required more time be-

fore verifying the results.

-	 Captcha reduced the number of failed login attempts to the company’s services (no specif-

ic KPIs), which suggested previous malicious attacks.

-	 Hardware support: we have found that we no longer required third-party support services

because the nature of JX operations had changed too much over the years – no physical

server, no physical location, etc. This meant further reduction in support costs.

CS7. UX

My approach does not include the formal handling of UX, and up to this point has been lightweight,

which can be demonstrated through the following example. In the navigation redesign case mentioned

in CS4, JX has worked with an external senior design consultant. The consultant provided the static

designs, videos that demonstrated animations and the key effects, along with the interactive prototypes.

My role was, often together with the project manager, to test the prototypes on the range of devices, to

make sure that the page transitions correspond to the approved user journeys, get the client approvals

and to give feedback to the designer. While this approach to UX was culturally appropriate to JX, I’m

interested in further developing my command of formal UX techniques.

CS8. Analytics

My job duties up to now did not include the in-depth data analytics as such, and was limited to using

the two tools:

AWS. I had created dashboards for CPU and memory load balancing trends to understand the capaci-

ty demands, had been monitoring the alarms and accessed the Cost Explorer to report on the details

of monthly billing. Overall, I have a basic familiarity with AWS reports.

Cloudflare. I mainly reviewed the dashboards for audience statistics, however my knowledge of this

platform so far is limited.

CS9. Quality Assurance (QA) and User Acceptance Testing (UAT)

In the JX migration process to the new version of the platform in 2018–2019, I was a primary point of

contact to the third-party IT suppliers who were commissioned to carry out the technical parts of the

job. In this project, I was involved with QA and UAT as follows:

QA. I assisted with managing the backlog of support tickets and handled the communication between

JX and external quality assurance contractors around the issues that required further details from JX.

212

UAT. I approached the UAT process for each round of testing in the following way: once the new re-

lease was ready for the UAT, it would be made available on the staging environment. I would then con-

firm the testing session times with the dedicated members of internal team at JX (the UAT team).

Next, they would log in and leave their comments in the shared spreadsheet. For more intensive ses-

sions, we sometimes found it easier to schedule a conference call, during which the UAT team would

test the product, and I would fill out the sheet. During the sessions, I also made sure that we tested

from different geographical locations and on different devices, using the testing emulation tools such as

Lambda where needed. After completing each round of feedback, I would have a call with the con-

tractors carrying out the work to discuss the test results.

CS10. Technical documentation

High-level documentation. During the JX platform migration to AWS as the new cloud infra-

structure in April 2020, I was, among other things, responsible for delivery of the project’s technical

documentation. I had personally authored the high-level documentation pages, while the developers

and DevOps were documenting the corresponding technical parts they were working on. This had res-

ulted in a section of the company’s Confluence wiki, detailing various aspects of migration and imple-

mentation of Continuous Integration: ELK stack creation, Jenkins pipelines, Git workflow, AWS envir-

onment schemas, how-to for Nginx and PHP configuration, and more.

Feature specifications. A case of ElasticSearch implementation, discussed in CS12, is an example

of me writing the feature specifications suitable for technical implementation. For the Search, after the

initial part of the work, including the discovery and visual concept was done, I had prepared a draft of

technical specifications and coordinated the follow-up discussions, approvals and the refinement of the

specs list. As a result, I would be able to produce a roadmap and the cost estimates, which would allow

me to create a viable project proposal stakeholder presentation.

Data to knowledge collection flow. The ongoing method for collecting and integrating the pro-

ject data has consisted of a few key stages, as demonstrated in Fig. 21. First, taking notes in meetings

and following up each meeting with an email stating the date, attendees and key takeaways. Second, to

create tickets based on the work items identified in the notes. The main purpose of the ticket is to gen-

erate a list of requirements. It has a list of decisions which were made and a list of actions to take, where

each action is linked to a specific individual to follow up with. Decisions, actions and requirements are

updated from meeting to meeting as the work progresses. Third, after each release or other milestone,

we run a retrospective that allows us to identify failures as well as successes. In the fourth step, after the

retrospective, all data is transferred from Jira to a more permanent storage, where it is systematised in a

213

way that would be easier to access later or by individuals who were not involved in the work previously.

Lastly, based on the resulting knowledge base, I submit an annual report at the end of each year.

 

Fig. 21. Data collection flow.

CS11. Stakeholder communication

When delivering the security suite described in CS6, I was reporting the progress in weekly manage-

ment meetings to the business owner, creative director, editor-in-chief, head of operations and head of

marketing. Here, the low degree of technical familiarity among the executive staff was a challenge that

I addressed by focusing not on the technology itself, but on budget and time considerations. I would

avoid using any technical jargon. As an example, for the old and failing server problem, I had presen-

ted a few different solutions and their associated costs. One option would be to replace the old server

with a new box, the other – less costly and more secure – would be to decommission and migrate the

data to cloud storage. This made it easy for the stakeholders to evaluate the trade-offs and take the de-

cision quickly.

CS12. Initiative

I have proactively identified the JX website search feature as underperforming in a few respects, both

search quality and UX, and came up with the updated requirements that included a more thorough

search plug-in (Elastic Search), a prominent search field in the top navigation and the ability to filter

search results by the category, location and content type. This proposal was supported by marketing,

214

who saw this initiative as an opportunity to increase the visibility of the JX’s rich archive database. The

staff designer was also inspired by the project and came up with a set of visual concepts, adding such

ideas as the visual search pop-up box and the results counters. Next, I had split the search delivery into

phases (Fig. 22), and have found an opportunity to hire a back-end engineer for the implementation of

Elastic Search plug-in after obtaining the approvals on the new navigation designs. As a result, despite

the missing protocol for KPI tracking, business owners had evaluated the overall accessibility of the

website content as improved and marketing had confirmed the boost in targeted promotions.

 

Fig. 22. A proposed roadmap for Elastic Search Phase 1.

CS13. Governance approvals

In my role at JX, I was not directly involved in governance approvals, and due to the small size of JX

itself, no navigation of complex structure was necessary. However, such negotiations is a direction that

I see myself shifting towards in the coming years.

CS14. Influencing

The 2018 YY project at JX presented a case where I used my influencing abilities to address the silos

issue. The project involved production of several short films, which meant that key members of the

team had to be away on site making the footage. However, the silo effect meant that little of the project

information had seeped into the production team, and we were faced with the dilemma of creating an

online presentation of the films on a short deadline and with no prior planning. Without having a dir-

ect authority to change the silo situation, I was, however, able to influence the wider company culture

over a period of time so that as we went along, the practice of using shared roadmaps and collective

discussions and planning of releases became a part of the usual approach. The tangible result were the

new weekly management meetings, which provided the opportunity for heads of all departments to

communicate and report on their progress.

215

CS15. The archive project

This case study stands apart from other activities in my fieldwork because it was conducted as a separ-

ate project after my empirical research was finished, and in fact after the official closure of JX as the

media channel in 2022, due to the geopolitical tensions between Russia and Ukraine, which were the

main sites of the journal’s content. The core stakeholder requirement for the project was to transform

JX to a digital archive, with an aim to preserve its legacy. As a former product lead for JX, I was in-

volved with the delivery of the archive with the new team, trying to bridge some of the major gaps in

knowledge to maintain the required traction. At the start of the project, I came up with the project

proposal that included a user story in the following form:

As [an academic institution user] interested in the history and culture of [this geopolitical region],

[I want to] have a versatile database search tool

[so that I can] easily find the collection of materials on the topic I’m interested in.

The user story formulated as such has largely instructed the project requirements, such as easy access-

ibility of required content and the three main user activities of searching, sorting and browsing the

archive entries. To facilitate them, I proposed to add three new features to the existing website. First, a

new home page that would no longer have recent publications and instead offer a prominent search

field. Second, the expanded Advanced Search landing page that would feature filtering by date and tag

in addition to existing category, location and content search.311 Lastly, the new Catalogue page, which

would act as the website’s table of contents and list all the JX categories, locations and tags. Following

from the proposal, I have created a product map (Fig. 23) that would help explain how these new fea-

tures would sit within the existing JX structure. On the map, the pages would be functionally divided

into Sort pages (Home page, Advanced search and Catalogue), Browse pages (such as Travel, Photo-

graphy and other Category pages) and Content pages containing the actual editorial content.

	311	 See CS12 for more details on original Elastic Search work.

216

 

Fig. 23. Digital archive product map.

After presenting the work scope to the stakeholders and the discussion about the timeline and budgets,

it was possible to come up with the project work breakdown structure in the form of the roadmap (Fig.

24). The roadmap would feature the two main types of work to carry out, design and development,

and have split the production efforts per feature in terms of their dependencies. For example, the home

page and updates to the navigation had to be done prior to the work on the Elastic Search or the Cata-

logue. At that point, stakeholders had also agreed to deliver the work in two phases so that we could

launch and test the new home page and navigation as a first step, and deliver the rest of the work in

the second step. It is important to note that this roadmap was only created as the initial indication of

which work was required, and was subsequently used by the IT suppliers who were assigned to do the

work, to create their own project documents, estimates and to allocate resources.

217

 

Fig. 24. The archive project roadmap in the proposal phase.

Production-wise, the key problem on this project was that we no longer had the previous team mem-

bers, the back-end and two front-end developers, which led to the inevitable loss of momentum. This

meant that the back-end engineer and webmaster freshly enlisted on the project could not simply start

building where the old production team left off, even though we had ensured that all the required sys-

tem access and product documentation were provided. Some of the features, such as top navigation,

had to be re-created from the ground up, and some of the content work that seemed easy to do, such

as re-assigning the tags and categories, had required extensive investigation and in the end had to be

excluded from the project scope due to required extensive redesign of the product database architec-

ture. The main outcome of the case study was that despite my concerns, the loss of momentum did

not seriously damage the overall team performance. The onboarding was quick and seamless, and

even though the new features created regression problems in places where they were not compatible

with the existing code base, most of them were addressed within the project scope.

CS16. Customer experience

At JX, the situation of issue reporting, prioritisation and troubleshooting can be illustrated through the

case of so-called ‘broken pages’. After the migration to the new version of the platform was completed

in the early stage of my employment at JX, we discovered that dozens of old pages had manually ad-

justed code which meant that the layouts appeared distorted, and there was no automated way of fix-

ing them. My task was to establish a routine that would enable the support staff to deal with the prob-

lem in a systematic, longitudinal manner. I have come up with the following protocol: the editorial

team, who did not work in Jira, would log in the faulty URL and the description of the issue in the

spreadsheet shared online. From there, developers would address the small fixes, and I would write up

218

the stories for larger ones – for example, where the slideshow gallery plug-in had to be changed for an

entirely new one. This way we covered a lot of ground in a short amount of time. After we had dealt

with the urgent matters, I moved on to address a larger issue – that the ‘broken pages’ were deployed

into production in the first place. This concern resulted in the implementation of the three environ-

ments: development, testing and production, which allowed capturing most bugs before publishing to

the live version of the website.

CS17. Workshops

For identifying opportunities, I primarily analysed the competition and the user research data avail-

able, such as described in CS4 and CS12. I have also delivered the workshops whenever a new tool or

practice was introduced in our workflow. For example, as the team was familiarising itself with the new

Continuous Delivery workflow, I have conducted a workshop on story mapping, a software production

method discussed in Chapter 4. This included creating a shared online whiteboard, a tool simple

enough to use by technical and non-technical staff. Once everyone was logged in, I would introduce

the concept of thinking about new features in terms of storytelling and the process of splitting com-

plex scenarios into releases. This explanation was followed by the practical part, during which the par-

ticipants would collectively create a story map of their morning routine, with different scenarios. The

outcome of the workshop had an effect that had a vast resonance in the team – people had a great

grasp of the concept of versioning after the workshop, and referred to the event later as a useful learn-

ing experience.

CS18. Advocating change

One case of a ‘disagree and commit’ situation I had encountered was during the security and reliabil-

ity initiative as described in CS6. As part of the initiative, our research had shown that the organisa-

tion had used considerably more CPU and memory than was needed because the generic infrastruc-

ture settings of the initial installation were not revisited and adjusted regularly. I have come up with a

proposal to optimise the infrastructure for present requirements. My proposal, however, was initially

rejected, due to the stakeholder’s engagement in other aspects of the business. I have met this decision

with an open mind, in the hope that a chance to come back to the proposal will present itself. And in-

deed, some time later, the business priorities have changed, and we had a new brief to reduce the costs,

which allowed us to proceed with the earlier proposal. This resulted in a 65% AWS cost reduction.

CS19. Backing up ideas with data

The data I had used to back up my arguments at JX usually concerned budgets and time required to

complete the work (as seen in CS11). In the case of XY as described in CS1, my task was to present

such data to editorial and marketing so that they could advise on which streaming platform to use. The

219

objectives included ability for ticket sales, setting up the film streaming times and accessibility of audi-

ence metrics. To achieve this, I have done a comparison of costs, between a bespoke streaming plat-

form vis-à-vis the out-of-the-box solutions. After a cursory investigation revealed that renting a ready-

made platform would incur considerably fewer costs, I conducted further comparison among the third-

party vendors, attending their demos and assessing the compatibility of their offers to our require-

ments. This process resulted with a decision on a specific service, backed up by the appropriate budget

and functionality, which had fully supported the organisations’ strategic objectives.

CS20. JX server migration

One such case of the proposal backed by the data had been the JX physical server migration, which

was undertaken in November and December 2021 and was carried out in the fashion close to the to-

pological case study explained in this chapter. The data and the organisation’s strategic objectives came

together during the server downtime incident in the last week of October 2021, which was followed by

the complaint from the JX staff that the IT maintenance contractors were late in responding to JX’s

queries and neglected their contractual obligations, which resulted in the server downtime that lasted

for over five days, even though the power blackout itself that caused the downtime was only a few

hours in duration. While the client requested to simply seek other suppliers, my first instinct was to col-

lect and organise the data by reconstructing the incident and examine the current IT support contract

to draft a more precise list of requirements. Without doing this, I wouldn’t have been able to tell which

services we needed to seek to replace, and whether we required those services at all. In addition, the

original complaint was raised after the incident was over, which meant that I was not aware of all the

details and had to begin by creating a timeline that would reflect the sequence of events that caused

the complaint. This was done by examining the emails and conducting the three brief interviews with

the finance manager, the operations manager who were engaged in the conversation with IT contract-

ors and the client’s web developer, who had travelled to the JX offices to switch the equipment off and

back on. At the end of this phase, I had the following Gantt chart (Fig. 25).

220

 

Fig. 25. The first reconstruction of the server incident.

This, however, only led me to believe that there was no fault of the suppliers, but instead the server

downtime had lasted for five days for the reason that no JX staff was available in specific moments,

and the communication was handled by different people, which led to inevitable delays. In addition, I

have learnt from the contract that we used IT services of three different kinds: server backups and

maintenance, software support and hardware support.

As the next step, which signalled the beginning of phase 2 of the case study research method (case-

based work), had a planning session with the DevOps specialist, during which it became clear that the

problem was not in the choice of a particular supplier. Rather, it was in the performance of the server

itself, which was low because it had been in operation for a long time and needed a replacement. In-

stead, we then proposed to migrate the server online, and create a Team Drive on Google, a web ser-

vice that members of JX staff were already familiar with, and thus would be happy to switch to. This

solution also solved the security problem, since it meant that staff would no longer seek to save their

files in an unregulated way, and have all the files stored via the company’s assets. This solution was wel-

comed by the JX staff, which had allowed the DevOps and me to proceed. The following steps were

included, as shown in Fig. 26 alongside the reconstruction of the initial incident: a trip to the office and

sorting out the access rights; remote server access, creating the required policies: cloud storage, backup

policy and the new folder hierarchy. Lastly, we had to create an exit strategy from the current IT sup-

port we currently had, which was the original requirement, however now we saw that there might be a

business risk in cancelling the contract with them completely, due to the possible unpredictable circum-

stances that no-one could deal with apart from them.

221

 

Fig. 26. JX physical server migration.

At this point, we could propose to amend the agreement, and take out the clauses that covered the

server maintenance and backups, since that was now moved to the cloud service, and we no longer

needed any software and hardware maintenance, since this was covered by the respective manufactur-

ers. Thus, the project reached its closing stage, which resulted in the following activities: workshops

with JX staff on using the new cloud-hosted server file system, and the proposal for new ad hoc IT

maintenance. In terms of topological continuities, we could observe that a more transparent relation

was now in place between the business and the organisational planes of the technological system, since

the role of the IT contractor was clarified and the unnecessary step of storing the files in the resource

that required additional maintenance and resources was eliminated.

Bibliography

Allen, Peter, Steve Maguire, and Bill McKelvey, eds. 2011. The SAGE Handbook of Complexity and

Management. London: SAGE.

Allspaw, John. 2013. “Kitchen Soap – Counterfactual Thinking, Rules, and The Knight Capital

Accident.” Kitchen Soap. October 29, 2013. https://www.kitchensoap.com/2013/10/29/

counterfactuals-knight-capital/.

Arthur, W. Brian. 2009. The Nature of Technology: What It Is and How It Evolves. London: Free Press.

———. 2021. “Economics in Nouns and Verbs.” Journal of Economic Behavior & Organization 205 (April):

pp. 638–47. https://doi.org/10.1016/j.jebo.2022.10.036.

Azhar, Azeem. 2021. Exponential: How Accelerating Technology Is Leaving Us Behind and What to Do About It.

London: Random House Business.

Barad, Karen. 1996. “Meeting the Universe Halfway: Realism and Social Constructivism without

Contradiction.” In Feminism, Science, and the Philosophy of Science, edited by Lynn Hankinson Nelson

and Jack Nelson, pp. 161–94. Dordrecht: Springer Netherlands.

https://doi.org/10.1007/978-94-009-1742-2_9.

———. 2003. “Posthumanist Performativity: Toward an Understanding of How Matter Comes to

Matter.” Signs 28 (3): pp. 801–31. https://doi.org/10.1086/345321.

———. 2007. Meeting the Universe Halfway: Quantum Physics and the Entanglement of Matter and Meaning.

Durham: Duke University Press.

———. 2010. “Quantum Entanglements and Hauntological Relations of Inheritance: Dis/

Continuities, SpaceTime Enfoldings, and Justice-to-Come.” Derrida Today 3 (2): pp. 240–68. https://

doi.org/10.3366/E1754850010000813.

———. 2011. “Nature’s Queer Performativity.” Qui Parle 19 (2): pp. 121–58. https://doi.org/10.5250/

quiparle.19.2.0121.

———. 2014. “Diffracting Diffraction: Cutting Together-Apart.” Parallax 20 (3): pp. 168–87. https://

doi.org/10.1080/13534645.2014.927623.

———. 2015. “TransMaterialities: Trans*/Matter/Realities and Queer Political Imaginings.” GLQ: A

Journal of Lesbian and Gay Studies 21 (2–3): pp. 387–422. https://doi.org/

10.1215/10642684-2843239.

Bateson, Gregory. (1972) 1987. Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry,

Evolution, and Epistemology. Northvale, N.J: Aronson.

222

Beniger, James Ralph. 1986. The Control Revolution: Technological and Economic Origins of the Information

Society. Harvard University Press.

Bijker, Wiebe E., Thomas Parke Hughes, and Trevor Pinch, eds. (1987) 2012. The Social Construction of

Technological Systems: New Directions in the Sociology and History of Technology. Anniversary ed. Cambridge,

Massachusets: MIT Press.

Boisot, Max, Ian C. MacMillan, and Kyeong Seok Han. 2007. Explorations in Information Space:

Knowledge, Agents, and Organization. Oxford ; New York: Oxford University Press.

Brooks, Frederick P. (1975) 1995. The Mythical Man-Month: Essays on Software Engineering. Anniversary ed.

Reading, Massachusets: Addison-Wesley Pub. Co.

Brooks, Rodney. 2021. “A Quadrillion Mainframes on Your Lap.” IEEE Spectrum. December 21,

2021. https://spectrum.ieee.org/ibm-mainframe.

Brown, John Seely, and Paul Duguid. 2000. The Social Life of Information. Boston: Harvard Business

School Press.

Bush, Vannevar. 1945. “As We May Think.” The Atlantic Monthly, July, pp. 101–8. https://

www.theatlantic.com/magazine/archive/1945/07/as-we-may-think/303881/.

Byrne, D. S., and Charles C. Ragin, eds. 2009. The SAGE Handbook of Case-Based Methods. Los Angeles ;

London: SAGE.

Campbell-Kelly, Martin, William Aspray, Nathan Ensmenger, Jeffrey R. Yost, and William Aspray.

2014. Computer: A History of the Information Machine. Third edition. Boulder, CO: Westview Press, A

Member of the Perseus Books Group.

Castells, Manuel. 2010. The Rise of the Network Society. 2nd ed. Vol. 1. Chichester, West Sussex; Malden,

MA: Wiley-Blackwell.

Clough, Patricia T. 2008. “The Affective Turn: Political Economy, Biomedia and Bodies.” Theory,

Culture & Society 25 (1): pp. 1–22. https://doi.org/10.1177/0263276407085156.

———, ed. 2018. The User Unconscious: On Affect, Media, and Measure. Minneapolis: University of

Minnesota Press.

Conway, Melvin E. 1968. “How Do Committees Invent?” Datamation, April, pp. 28–31. http://

www.melconway.com/research/committees.html.

Deleuze, Gilles, and Félix Guattari. 1983. Anti-Oedipus: Capitalism and Schizophrenia. Minneapolis:

University of Minnesota Press.

Dolphijn, Rick, and Iris van der Tuin. 2012. New Materialism: Interviews & Cartographies. Open

Humanities Press. https://doi.org/10.3998/ohp.11515701.0001.001.

Drucker, Peter F. 1993. Post-Capitalist Society. Oxford: Butterworth Heinemann.

Eghbal, Nadia. 2016. “Roads and Bridges: The Unseen Labor Behind Our Digital Infrastructure.”

https://www.fordfoundation.org/work/learning/research-reports/roads-and-bridges-the-unseen-

labor-behind-our-digital-infrastructure/.

223

Engelbart, Doug. 1994. “Interview with Douglas Engelbart: Transcript of a Video History Interview

with Mr. Doug Engelbart.” Division of Computers, Information, & Society National Museum of

American History, Smithsonian Institution. 1994. https://americanhistory.si.edu/comphist/

englebar.htm.

Èrdi, Peter. 2008. Complexity Explained. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/

10.1007/978-3-540-35778-0.

Fuller, Matthew, and Andrew Goffey. 2012. Evil Media. Cambridge, Massachusets: MIT Press.

Gad, Christopher, and Casper Bruun Jensen. 2010. “On the Consequences of Post-ANT.” Science,

Technology, & Human Values 35 (1): pp. 55–80. https://doi.org/10.1177/0162243908329567.

Gonzalez, Maya Andrea, and Jeanne Neton. 2013. “The Logic of Gender.” In Endnotes 3: Gender, Race,

Class and Other Misfortunes, 3: pp. 56–90. Endnotes. https://endnotes.org.uk/articles/the-logic-of-

gender.

Hanlon, Gerard. 2016. The Dark Side of Management: A Secret History of Management Theory. London; New

York: Routledge, Taylor & Francis Group.

Hughes, Thomas Parke. 2000. Rescuing Prometheus. New York, NY: Vintage Books.

Humble, Jez, and David Farley. 2010. Continuous Delivery: Reliable Software Releases through Build, Test, and

Deployment Automation. Upper Saddle River, NJ: Addison-Wesley.

Hutchins, Edwin. 2000. Cognition in the Wild. Cambridge, Massachusetts: MIT Press.

Kim, Gene, Patrick Debois, John Willis, Jez Humble, and John Allspaw. 2016. The DevOps Handbook:

How to Create World-Class Agility, Reliability, & Security in Technology Organizations. First edition. Portland,

OR: IT Revolution Press, LLC.

Knorr-Cetina, Karin. 1999. Epistemic Cultures: How the Sciences Make Knowledge. Cambridge,

Massachusets: Harvard University Press.

———. 2007. “Culture in Global Knowledge Societies: Knowledge Cultures and Epistemic Cultures”

32 (4): pp. 361–75. https://doi.org/10.1179/030801807X163571.

Law, John, and John Hassard, eds. 1999. Actor Network Theory and After. Oxford [England]; Malden,

MA: Blackwell/Sociological Review.

Law, John, and Annemarie Mol, eds. 2002. Complexities: Social Studies of Knowledge Practices. Durham:

Duke University Press.

Lury, Celia. 2021. Problem Spaces: How and Why Methodology Matters. Cambridge, UK; Medford, MA:

Polity Press.

Lury, Celia, Rachel Fensham, Alexandra Heller-Nicholas, Sybille Lammes, Angela Last, Mike

Michael, and Emma Uprichard, eds. 2018. Routledge Handbook of Interdisciplinary Research Methods. 1st

ed. Routledge. https://doi.org/10.4324/9781315714523.

224

Lury, Celia, Luciana Parisi, and Tiziana Terranova. 2012. “Introduction: The Becoming Topological

of Culture.” Theory, Culture & Society 29 (4–5): pp. 3–35. https://doi.org/

10.1177/0263276412454552.

Magnani, Lorenzo. 2009. Abductive Cognition: The Epistemological and Eco-Cognitive Dimensions of Hypothetical

Reasoning. Vol. 3. Cognitive Systems Monographs. Berlin, Heidelberg: Springer. https://doi.org/

10.1007/978-3-642-03631-6.

Malone, Thomas W., and Kevin Crowston. 1994. “The Interdisciplinary Study of Coordination.”

ACM Computing Surveys 26 (1): pp. 87–119. https://doi.org/10.1145/174666.174668.

Marx, Karl. (1867) 1990. Capital: A Critique of Political Economy. Translated by Ben Fowkes. Vol. 1.

London: Penguin Books.

———. (1885) 1992. Capital: A Critique of Political Economy. Vol. 2. London: Penguin books.

———. (1939) 1993. Grundrisse: Foundations of the Critique of Political Economy. London: Penguin books.

Massumi, Brian. 2002. Parables for the Virtual: Movement, Affect, Sensation. Durham, NC: Duke University

Press.

Mezzadra, Sandro, and Brett Neilson. 2019. The Politics of Operations: Excavating Contemporary Capitalism.

Durham: Duke University Press.

Mirowski, Philip. 2002. Machine Dreams: Economics Becomes a Cyborg Science. Cambridge; New York:

Cambridge University Press.

Mitchell, Melanie. 2009. Complexity: A Guided Tour. Oxford, England: Oxford University Press.

Mumford, Lewis. 1970. The Pentagon of Power. Vol. 2. The Myth of the Machine. New York: Harcourt

Brace Jovanovich.

Nagle, Frank, Jessica Wilkerson, James Dana, and Jennifer L Hoffman. 2022. “Preliminary Report and

Census II of Open Source Software,” 58. https://lish.harvard.edu/publications/census-ii-free-and-

open-source-software-%E2%80%94-application-libraries.

Nygard, Michael T. 2007. Release It! Design and Deploy Production-Ready Software. Raleigh, N.C: Pragmatic

Bookshelf.

Peirce, Charles Sanders. (1940) 1955. Philosophical Writings of Peirce. Edited by Justus Buchler. New York:

Dover Publications, Inc.

Polanyi, Michael. 1983. The Tacit Dimension. Gloucester, Massachusets: Peter Smith.

Power, Michael. 1999. The Audit Society. Oxford University Press. https://doi.org/10.1093/acprof:oso/

9780198296034.001.0001.

Randell, Brian. 1996. “NATO Software Engineering Conference 1968.” 1996. http://

homepages.cs.ncl.ac.uk/brian.randell/NATO/NATOReports/index.html.

Rubin, Kenneth S. 2012. Essential Scrum. A Practical Guide to the Most Popular Agile Process. Addison-Wesley

Professional.

Simon, Herbert A. (1947) 1997. Administrative Behavior. New York: Free Press.

225

———. (1969) 2019. The Sciences of the Artificial. Cambridge, Massachusetts: MIT Press.

Skelton, Matthew, and Manuel Pais. 2019. Team Topologies: Organizing Business and Technology Teams for Fast

Flow. First edition. Portland, OR: IT Revolution.

Smith, Adam. (1776) 1976. An Inquiry into the Nature and Causes of the Wealth of Nations. Chicago:

University of Chicago Press.

Spolsky, Joel. 2000. “Things You Should Never Do, Part I.” Joel on Software. April 6, 2000. https://

www.joelonsoftware.com/2000/04/06/things-you-should-never-do-part-i/.

Star, Susan Leigh. 1999. “The Ethnography of Infrastructure.” American Behavioral Scientist 43 (3): pp.

377–91. https://doi.org/10.1177/00027649921955326.

Sweller, John. 1988. “Cognitive Load During Problem Solving: Effects on Learning.” Cognitive Science

12 (2): pp. 257–85. https://doi.org/10.1207/s15516709cog1202_4.

Thomke, Stefan, and Donald Reinertsen. 2012. “Six Myths of Product Development.” Harvard Business

Review 90 (5): pp. 84–94. https://hbr.org/2012/05/six-myths-of-product-development.

Thrift, Nigel J. 2005. Knowing Capitalism. London: SAGE Publications.

———. 2008. Non-Representational Theory: Space, Politics, Affect. London: Routledge.

Toscano, Alberto. 2008. “The Open Secret of Real Abstraction.” Rethinking Marxism 20 (2): pp. 273–

87. https://doi.org/10.1080/08935690801917304.

Tsing, Anna. 2009. “Supply Chains and the Human Condition.” Rethinking Marxism 21 (2): pp. 148–76.

https://doi.org/10.1080/08935690902743088.

Virno, Paolo. (2003) 2004. A Grammar of the Multitude: For an Analysis of Contemporary Forms of Life.

Translated by Isabella Bertoletti, James Cascaito, and Andrea Casson. Los Angeles and New York:

Semiotext(e).

Wenger, Étienne. 2000. Communities of Practice: Learning, Meaning, and Identity. Cambridge: Cambridge

University Press.

Woolgar, Steve, ed. 1991. Knowledge and Reflexivity: New Frontiers in the Sociology of Knowledge. Vol. 20.

London: SAGE Publications.

226

