
 

1 

 

 

Searching for reachability property in complex software 

systems specified through graph transformations using deep 

reinforcement learning 
 

Mohammad Javad Mehrabi Vahid Rafe 

Department of Computer Engineering, Faculty of Engineering, Arak University, Arak 38156-8-8349, Iran 

mj.mehrabi96@gmail.com v-rafe@araku.ac.ir 

 

Abstract 

Today, model checking is one of the essential techniques in the verification of software systems. This 

technique can verify some properties such as reachability in which the entire state space is searched to find the 

desired state. However, model checking may lead to the state space explosion problem in which all states cannot 

be generated due to the exponential resource usage. Although the results of recent model checking approaches 

are promising, there is still room for improvement in terms of accuracy and the number of explored states. In 

this paper, using deep reinforcement learning and two neural networks, we propose an approach to increase the 

accuracy of the generated witnesses and reduce the use of hardware resources. In this approach, at first, an agent 

starts to explore the state space without any knowledge and gradually identifies the proper and improper actions 

by receiving different rewards/penalties from the environment to achieve the goal. Once the dataset is fulfilled 

with the agent's experiences, two neural networks evaluate the quality of each operation in each state, and 

afterwards, the best action is selected. The significant difficulties and challenges in the implementation are 

encoding the states, feature engineering, feature selection, reward engineering, handling invalid actions, and 

configuring the neural network. Finally, The proposed approach has been implemented in the Groove toolset, 

and as a result, in most of the case studies, it overcame the problem of state space explosion. Also, this approach 

outperforms the existing solutions in terms of generating shorter witnesses and exploring fewer states. On 

average, The proposed approach is nearly 400% better than other approaches in exploring fewer states and 

300% better than the others in generating shorter witnesses. Also, on average, the proposed approach is 37% 

more accurate than the others in terms of finding the goals state. 

Keywords: Reachability, Verification, Deep Reinforcement Learning, Model Checking, State, State Space Explosion, 

Graph, Graph Transformation System, Artificial Intelligence, State Space, Witness, Initial State, Goal State, Terminal State, 

Node, Edge, Rule, Transition, Exploration, Search, Deadlock 

mailto:mj.mehrabi96@gmail.com


 

2 

 

1. Introduction 

Model-checking is one of the formal approaches in the verification of software systems. This technique is 

used to verify (or refuse) a desired property, such as reachability in software systems. In order To verify a 

reachability property, the model checker should generate and check the entire state space to find the desired 

state. If the desired state (i.e. goal state) is found, a path from the initial state to the goal state will be shown to 

the user. Such a path is called a witness. One of the limitations of model checking is the state space explosion 

problem [1]. Due to the nature of model checking, it is needed to check all states to find the desired state. In 

complex systems which have a very large or infinite state space, the problem of state space explosion will occur 

in which the state space cannot be explored entirely [2]. In the past years, several methods such as Genetic 

Algorithm [3], A* [4], and Bayesian Optimization Algorithm [5] have been proposed to explore the state space 

intelligently to overcome the state space explosion problem. However, they have some limitations, and there is 

still room for improvement. For example, in some case studies, their accuracy is low. The length of the generated 

witnesses and the number of explored states is not optimized. This paper proposes an approach based on deep 

reinforcement learning to cover these limitations. 

Like supervised and unsupervised learning, reinforcement learning is one of the machine learning methods 

and is called real artificial intelligence. In the reinforcement learning method, an agent first enters the state 

space without any knowledge. After acquiring information about the environment, the agent learns how to 

behave to reach the goal. This information includes rewards and penalties that the environment will give to the 

agent along the way. 

The proposed approach combines deep reinforcement learning with model checking and uses the graph 

transformation system (GTS) [6] to model the system. In GTS based systems, after applying a rule, the system 

goes to another state and therefore, rules can be considered as an agent's actions. Here, the model checker that 

applies the rule plays the agent's role. After applying a rule, differences between the current state and the goal 

state can be calculated and then considered as a reward or penalty which is given to the agent. The agent 

remembers the applied rule and its results and stores them in the memory. When the number of experiences is 

exceeded from a threshold value, a batch of experiences randomly is selected and then is used to train the neural 

networks in which the main neural network chooses the next best rule, and the target neural network calculates 

the q value of the selected rule. Meanwhile, the main neural network predicts the next best rule, and the agent 

will apply it. The main contributions of the proposed approach are as follows: 

1) Finding shorter witnesses in comparison to existing approaches, 

2) Finding the goal states intelligently in terms of exploring fewer states than other approaches, 

3) Better performance in terms of accuracy in comparison with the existing approaches, 

4) Adopting the machine learning algorithms in search-based model checking 

In this paper, the GROOVE toolset [7] is used to implement the proposed approach. In the implementation 

phase, we overcame some major difficulties. First, overcame the challenge of feature engineering and feature 



 

3 

 

selection for encoding the states. Second, reward engineering for calculating the performance of the selected 

rule by calculating the difference between the current state and the goal state. Also, for each case study, we 

offer a dedicated reward function. Third, we overcame the challenge of invalid actions by limiting the number 

of applicable rules. Finally, we overcame the challenge of configuring the neural network to reach a responsible 

one for most case studies by testing multiple setups of neural networks. 

To evaluate the efficiency of the proposed approach, we compare the obtained results on different benchmarks 

with the existing state-of-the-art techniques. 

 

The rest of the paper is organized as follows: In Section 2, related works are presented. Section 3 briefly 

introduces the necessary background, such as reinforcement learning, model checking and GTS. In Section 4, 

it is presented that how deep reinforcement learning will be integrated with model checking. Experimental 

results are presented in Section 5. Also, at the end of this section, the advantages and limitations of the proposed 

approach have been discussed. Finally, we conclude the paper in Section 6 and propose directions for future 

works.  

2. Related Work 

In recent studies, some approaches have been proposed to explore a portion of the state space instead of 

the whole. By using these approaches, more states can be explored intelligently; therefore, the state space 

explosion problem can be delayed. These approaches can be divided into three categories described in the rest 

of the section. Also, the recent works in the field of integration of model checking and reinforcement learning 

will be discussed. 

2.1. Using simple heuristic search algorithms 

Some well-known search algorithms, such as A* and IDA*, are included in this category. In [4], A* 

algorithm is used on graph transformation system to solve the planning problems. Although one of the 

drawbacks of this method is defining the weights manually, this approach performs much better than a simple 

approach like DFS. In [8], an approach called Depth-first Heuristic Search is implemented inside Java Path 

Finder. This approach explores the state space just like the depth-first search but has some differences. Some 

paths that are not likely to satisfy the desired property will be ignored. 

Even though most of these approaches have a simple structure and run fast, their results are not very accurate. 

2.2. Using meta-heuristic and evolutionary algorithms 

Yousefian et al. [3] proposed a model checking technique based on the Genetic Algorithm. In this 

approach, every path is called a chromosome. In every level of exploration, the proposed algorithm detects 

which paths and states should be explored at the next level. 



 

4 

 

In [9], Greedy and BAPSO were proposed. The last one is the combination of the Bat and PSO algorithms. 

The authors concluded that BAPSO could handle the state space explosion and perform better than the BAT 

and PSO. 

In [10], the authors proposed an approach that is based on the ant colony optimization algorithm for 

analyzing reachability properties in systems specified formally through a graph transformation system. 

In [11], the authors first proposed an evolutionary algorithm to check reachability properties in software 

systems specified formally through graph transformations. Finally, to improve the accuracy and convergence 

speed of the proposed approach, the authors employed the Bayesian Optimization Algorithm (BOA) to propose 

another approach. 

2.3. Using knowledge discovery and machine learning techniques 

In [12], the authors proposed two approaches that are called Learning by Data Mining and Learning a 

Bayesian Network and both of them are used to satisfy the reachability property. In both approaches, at first, 

the BFS algorithm is used to explore a portion of state space to obtain a dataset of knowledge discovery. 

Afterwards, the rest of the state space will be explored efficiently with the help of the obtained dataset. 

In [5], Pira et al. proposed an approach based on Bayesian Optimization Algorithm to detect deadlock in 

graph transformation systems. This approach is based on the rule dependency graph. Rule r2 depends on r1 if r1 

adds/removes at least one node or one edge that its existence/absence in s is necessary for applying the rule r2. 

This approach generates better accuracy and depth of satisfied property results than the Genetic and PSO 

algorithms. However, the process of learning and saving the table of conditional probabilities is one of the 

limitations in this approach. Moreover, if there is no dependency between rules, this approach will not work 

properly. 

Pira has proposed an AI planning approach [13] that is called plnBOA and is based on refinement 

technique and Bayesian optimization algorithm. In this approach, the author removes the defined percentage of 

nodes from each grouped goal state goal to make a refined goal state. After that, the author deploys the BOA 

algorithm to solve the planning problem for the refined goal state. Eventually, the author uses the last BN 

learned in BOA to solve the planning problem for the main goal state. The advantages of this approach are 

faster execution speed, shorter length of generated plans, fewer explored states, and higher accuracy in 

comparison with the others. However, plnBOA has some limitations such as requiring a type graph while other 

approaches do not need that. Also, it takes much time to generate the refined goal state, and the learning of BNs 

is time-consuming. 

Pira et al. [14] have proposed the EMCDM approach that uses data mining to explore effectively in the 

state space. In fact, in the beginning, the desired property is checked on a smaller model. Afterwards, the 

knowledge is extracted. This approach has the benefit in terms of speed than other approaches. However, 

generating a proper smaller model is challenging for complex systems. 



 

5 

 

Partabian et al. [15] have proposed an approach that generates a small model consistent with the main 

model. Then it explores the state space entirely to find the goal states and labels the paths which start from the 

initial state and lead to a goal state. Then using the ensemble classification technique, the necessary knowledge 

is extracted from these paths to explore the state space of the bigger model intelligently. 

In [16], the authors present a method that employs machine learning techniques without exploring the 

whole state space to predict temporal properties of trajectories in systems based on graph transmission system. 

The proposed method is implemented in Groove. 

Pira in [17] proposed a two-phase approach. In the first phase, the beam-search algorithm explores the 

state space to a specific number of states. In case of failure of the phase, the second phase starts. In the second 

phase, a Markov chain (MC) is estimated to capture dependencies between the sequence of applied rules in the 

state space explored by the beam-search algorithm. The MC is then employed to intelligently explore the 

remainder of the state space. 

2.4. Integration of reinforcement learning and complex systems 

In [18], the authors proposed an approach to detect safety property that guarantees the excellent behaviour 

of the agent in the environment using a technique called Shield. In this approach, to limit the agent's behaviour, 

the time limitation is applied. 

In [19], an approach has been proposed, which combines model checking with reinforcement learning. 

This approach increases the accuracy with the help of learning and guarantees the safety of decisions made by 

reinforcement learning with the help of model checking. In all of the above approaches, model checking is just 

used to monitor the agent and detect safety property. Also, these approaches are not based on graph 

transformation systems. 

Liu et al. [20] proposed an approach for complex system control called parallel reinforcement 

learning. This approach addresses some issues like data inefficiency, data dependency and 

distribution and lack of generalization capability to new goals. The authors also proposed a 

bidirectional long short-term memory based deep reinforcement network (BiLSTM-DRN) to 

approximate the action-value function to train data in the large action and state space. 

3. Background 

In this section, required background such as model checking, GTS, reinforcement learning and Double 

Deep Q-Network are reviewed briefly. 

3.1. Model Checking 

Model-checking is one of the formal verification techniques based on system modelling and is generally 

used to ensure the system's reliability. By using model checking, we can determine if there is an error in the 

software system. While giving complete confidence and trust to the developers, model checking has its 



 

6 

 

drawbacks. Due to checking all states in model checking to find the desired property, in large or infinite state 

space, a technical limitation occurs that is called state space explosion. Several properties, like reachability, can 

be checked using model checking. In Reachability property, it will be checked if something special is going to 

happen. Reachability property determines whether or not the existence of a user-desired state is called the goal 

state in the whole system. 

Assuming that a property g is a particular configuration of the system, it is reachable if a state exists in the 

model state space in which the property g occurs (Fig. 1). In this paper, GTS formalism is used to model the 

systems. Hence, each state in the model state space is a graph that is typed over the type graph of the large 

model. Also, the property g is a graph by which a desirable and specific configuration of the given system is 

described. 

 

Fig. 1. Reachability property. 

3.2. Graph Transformation System 

Graph Transformation System (GTS) is a language for formal modelling that describes states and 

dynamics of a software system using graphs and graph transitions [6]. GTS has several benefits. The most 

important of these benefits is to display the states as a graph. Because graphs are visual and explicit, it removes 

useless details [21]. The states of a system are displayed as graphs, and changes can be applied to them by using 

rules. A GTS is a triple (R, HG, TG) in which R a is a set of graph transformation rules, HG is a Host Graph, 

and TG is a Type Graph. A Type graph is a graph that represents the entities of the system and the relationship 

among them. In this graph, every entity is specified using a type node, and the relationships between them are 

represented by an edge. Type graph is a combination of nodes(N), edges(E), src: E → N and tgt: E → N for 

declarations of any type of edges. src means source and tgt means the target of edges. Host graph shows the 

initial state of a system and should be an instance of the type graph. 

Generally, rules are triple (RHS, LHS, NAC). LHS (left-hand side) contains preconditions to apply a rule, 

RHS (right-hand side) is the result of applying the rule on LHS and NAC is negative application conditions. 

Nodes and edges that are present in LHS but not in RHS will be removed from the new state after applying a 

rule. Also, nodes and edges that are present in RHS but not in LHS will be added to the new state after applying 

the rule. 
There are several toolsets, such as AGG [22], ATOM3 [23], VIATRA3 [24] and GROOVE [7]. This paper 

uses the GROOVE toolset because it performs model checking by producing the model's state space. We use 

the dining philosopher problem as an example of a system modelled by GTS in the GROOVE toolset. In this 

problem, there are several philosophers, and also there is a fork between each pair of them. In the beginning, 



 

7 

 

the philosophers are thinking, and after a while, they get hungry. A hungry philosopher should take left and 

right forks, respectively, to eat. Finally, after eating, they release the forks and go again to the thinking state. 

The type graph of this problem is presented in Fig. 2(a). As it is shown, philosopher (n0) can have two forks as 

a maximum (i.e., n1 and n2). The left fork (n1) with edge (e1) and the right fork with edge (e2) is connected to 

the n0. 

Moreover, the state of philosopher (n0) can be one of these states: eating (eat), taking the left fork 

(hasLeft), taking the right fork (hasRight), going hungry (hungry) and thinking (think). Host graph (start state) 

with two philosophers are shown in Fig. 2(b). As it is shown, two philosophers are labelled with n0 and n1. The 

philosopher (n0) is connected to his right fork n2 and left fork n3 with e0 and e1 edges, respectively. Also, 

philosopher n1 is connected to his left and right fork (n2, n3) with e2 and e3 edges. As mentioned above, one 

of the rules in this problem is to take the right fork (e.g., taking fork n2 by philosopher n0). LHS of this rule is 

equal to the state in which philosopher n0 took the left fork. NAC, in this rule, is a state in which the right fork 

is not taken by another philosopher (e.g., n1). Finally, RHS (final graph) is equal to taking the right fork by 

philosopher n0 and after that going to eat state (Fig. 2(c)). As it is shown, the black edges are the edge that 

should remain in RHS after applying the rule. Green edges are the edges that will be added to RHS.  Red edges 

are NACs, and blue dashed edges are the edges that exist in LHS but should remove in RHS. 

Definition 1 (explored states): The states that are generated in state space and stored in memory. Finding the 

goal state with fewer states exploration cause to save the memory and also reveal the accuracy of proposed 

approach exploration. 

Definition 2 (witness): A witness specifies an initial and finite path S0R0S1R1S2R2…SG such that the desired 

property is satisfied in the state SG (e.g. goal state). S and R are states and applied rules, respectively. S0 is the 

initial state. GTS generates a witness if the goal state is found in the state space. In fact, An algorithm that finds 

shorter witnesses is managed to find the goals in lower depth than other approaches. It means the algorithm can 

solve the problem with less action than other algorithms. 



 

8 

 

 

Fig. 2. A GTS-based model of the dining philosophers problem designed in the GROOVE toolset. 

 

3.3. Reinforcement Learning 

Reinforcement learning, along with supervised and unsupervised learning, is one of the subsets of machine 

learning. Also, this learning method is called real artificial intelligence because, at first, the agent does not have 

any knowledge about the environment, and after getting some information, it learns how to act to achieve the 

goal. This learning is the result of getting rewards and penalties by the agent after performing any action in the 

environment. To learn how to achieve the goal, the agent needs to interact with the domain of the problem. In 

this way, the dynamics and statics of the system can be learned to find which actions are the best ones to achieve 

the goal [25]. A conceptual model for reinforcement learning is shown in Fig. 3. In this figure, the agent receives 

a state from the environment in each timestamp and performs an available action. In the next timestamp, 

according to the agent's action, it will receive the reward from the environment and take one step into the new 

state. 

a b

c



 

9 

 

Environment

Agent

Rt 1

St 1

At

Action

R t

RewardSt

State

 

Fig. 3. A conceptual model for reinforcement learning [25]. 

In classic reinforcement learning algorithms like Q-Leaning [25] and SARSA [25], tables are used to save 

the knowledge about the environment. This way, one row and one column for every action and state are 

allocated. 

Definition 3 (experience): The (S, A, S′, R) tuple is known as an experience for the agent [26] in which: 

 S: Current state in which the agent is placed. 

 A: Selected action (i.e., the selected rule in model checking). 

 S′: A state that the agent goes to by selecting action A. 

 R: A reward or penalty that the agent receives after going from state S to state S′ through action A. 

3.4. Deep Reinforcement Learning Using Double Deep Q-Network  

In simple reinforcement learning, due to the table's overhead, especially in large state spaces, it is 

impossible to store all actions and states in a table. Also, at the beginning of the exploration, many unknown 

actions and states will be missed in the initial table. To overcome this problem, with the help of a neural network, 

older experiences of the agent are used to predict the output of the value function [27]. In this way, the Q-values 

table is removed, and the neural network is used to predict the Q-values. Double Deep Q-Network (DDQN) 

[28] is the combination of Q-Learning and neural networks. In this algorithm, It just needs to give the current 

state to the system and predict the Q-value for each available action in that state. After this prediction, the action 

with that highest Q-Value is selected, and the agent performs that. 

In this approach, two neural networks are used to overcome the overestimation problem. The main neural 

network is used to choose the best action with the highest Q-Value, and after that, with the usage of the target 

network, the target value of the selected action will be calculated. The rules are considered as actions in the 

GTS, and the Q-Values are calculated for each rule. The rule with the highest Q-Value will be applied to the 

current state. 

Definition 4 (experience replay memory): If the agent only uses its previous experience to learn, an unstable 

system will emerge in which the agent will always forget its experience. As a result, the agent's experiences 

need to be stored in a memory that is called experience replay memory [26]. 



 

10 

 

Definition 5 (episodes): the sequence of an agent's movement that starts from the initial state and finishes in 

the last movement of the agent (i.e., the number of iterations in which an agent stops its movement and starts 

from the initial state). 

Definition 6 (steps): Each movement of an agent. In other words, each time a rule is applied and immediately 

after that, the current state is changed. 

Definition 7 (Epsilon-greedy policy): An exploration policy in which the agent picks the current best option 

(greedy) most of the time and picks a random option with a small (epsilon) probability sometimes. 

4. Our Proposed Approach 

In this section, we propose an approach based on Deep Reinforcement Learning to detect reachability in 

systems specified through GTS. The proposed approach uses the double deep q-network method. The main goal 

in this section is integrating reinforcement learning with model checking. As it is shown in Error! Reference 

source not found., at every step, the agent should choose a rule. According to the agent's experiences, the main 

neural networks helps the agent to choose the next best action. After choosing a rule, the selected rule is applied, 

and the agent moves to the next state. If the next state is a goal state, then a path from the initial state leading to 

the goal state will be shown to the user. Otherwise, step 1 will be repeated. 

The main challenges are encoding the states, feature engineering, feature selection, reward engineering, 

handling invalid actions and configuring the neural network to reach a responsible one for most case studies. 

Also, the number of explored states, length of witness, and time of detection should be optimal in the detection 

of reachability property. 

GROOVE toolset is used to implement the proposed approach (source code is available at 

https://github.com/mjmehrabi/Groove-RL). 

https://github.com/mjmehrabi/Groove-RL


 

11 

 

 

Fig. 4. The general architecture of the proposed approaches. 

 

4.1. Neural Network Configuration 

Due to the various parameters in neural networks, an attempt has been made to select a general neural 

network to solve most problems without any additional configurations. The neural network that is used in this 

paper is a Multi-Layer Perceptron with one hidden layer with 100 neurons that will be discussed in the next 

section. The activation layers of the hidden layer and the output layer are a type of ReLU and IDENTITY 

(linear), respectively. The learning rate of the neural network is adjustable as a hint to the user; 0.1, 0.001 and 

  

1 

2 

Assume that 

there are two 

applicable rule 

in all states 

No 

Show a 

witness 

Yes 



 

12 

 

0.00001 value is suggested. It should be noted that for high learning rates, a point may be missed when updating 

the error in the neural network, and the algorithm converges to a local minimum. Also, for low learning rates, 

the converging may be slow. Thus, the value of 0.001 is set as the default value for the learning rate. Rmsprop 

is the selected optimizer because it will adapt the learning rate during the operation and adjust it for each 

parameter. 

Due to the variable number of actions that can be performed in the state space and the variability of the 

size of the state space in different problems, it is not possible to suggest an exact value for the neural network's 

output. Because the number of outputs in the neural network equals the number of rules that the agent must 

choose among them, a high constant value of 400 is assumed by default. However, this value is entirely 

adjustable, and the user can change it according to the number of actions in the model. The input and output 

details of the neural network are described in detail. 

4.2. Reward Engineering 

Given that the reinforcement learning algorithm is based on the reward and penalty, the reward function 

plays a vital role in this system. That is why rewards designing for AI-based systems has become one of the 

essential topics in this field today. The rewards determine how valuable is this action, and rewards can vary 

depending on the system. In this paper, two different reward functions are used. 

 Dedicated reward function 

One of the benefits of reinforcement learning is that by only changing the reward function, the agent's 

behaviour is changed in the environment. In this method, due to the graphical structure of the states, which 

includes different edges and nodes, the current state must be encoded, and entities in the problem must be 

identified. The heuristic function must then be written according to the specified entities and the goal state. The 

term DDQN* refers to the type of implementation of reinforcement learning that uses a specific reward function 

for each problem. 

In Algorithm 1, an example of designing a dedicated reward for blocks world problem is presented. The 

problem of blocks world is modelled in which there are some red, green, or blue blocks, and the goal is to place 

the same colour blocks on top of each other. One node is considered as a table block and should be placed under 

all blocks. In line 1, the algorithm receives two inputs: (1) edges and nodes of the current state, (2) the node 

that is modelled as a table. The output of this algorithm is the cost value of being in that state, which is, the 

closer it is to 0, the closer it will be to the goal state. In lines 3 to 9, the blocks will be added to their dedicated 

lists according to their colours. In lines 10 to 23, if there is at least one block of any colour on the table, it will 

be considered as the floor block. Otherwise, if there is more than one block on the table, the block that is placed 

under the most same colour blocks will be chosen as the floor block, and if there are no blocks on the table, the 

block that is placed under the least number of non-homogeneous blocks, is considered as the floor block. In the 

last condition, the state's cost is calculated from formula (1). 



 

13 

 

𝐶𝑜𝑠𝑡 = 1 +  n + 5 (1) 

 1: The cost of moving the block itself 

 n: The number of non-homogeneous blocks 

 5: emphasize the badness of this situation 

According to line 25, if there is a block on the arm, one point will be added to the cost. Lines 26 to 29 

calculate the cost using formula (2) if a block is not placed on the floor block. 

𝐶𝑜𝑠𝑡 = 𝑎 +  b + 2 (2) 

 a: number of all blocks placed on the block 

 b: number of non-homogeneous blocks on the floor block 

 2: emphasize the badness of this situation 

 

Algorithm 1 The dedicated reward function for the blocks world problem. 
1:     Input: edgeset = edge set of state, table = the node that is table 

2:     Output: H = heuristic 

3:     foreach edge in edgeset 

4:         if 𝒍𝒂𝒃𝒆𝒍 = 𝒐𝒏  and target = table then 

5:             if label = blue then add to tablesBlueList 

6:             else if label = red then add to tablesRedList 

7:             else if label = green then add to tablesGreenList 

8:         end if 

9:     end for 

10:   foreach colour in Colours 

11:         if tablesBlueList.size = 1 then set that as tableBlue 

12:         else if tablesBlueList.size > 1 then set tableBlue = that block which has the most same colour on 

top 

13:         else set tableBlue = that block which has the fewer different colours on top and set H += different 

colour blocks on top + 1 + 5 

14:         end if 

15:         if tablesRedList.size = 1 then set that as tableRed 

16:         else if tablesRedList.size > 1 then set tableRed = that block which has the most same colour on 

top 

17:         else set tableRed = that block which has the fewer different colours on top and set H += different 

colour blocks on top + 1 + 5 

18:         end if 

19:         if tablesGreenList.size = 1 then set that as tableGreen 

20:         else if tablesGreenList.size > 1 then set tableGreen = that block which has the most same colour 

on top 

21:         else set tableGreen = that block which has the fewer different colours on top and set H += 

different colour blocks on top + 1 + 5 

22:         end if 

23:     end for 

24:     foreach edge in edgeset 

25:             if 𝒍𝒂𝒃𝒆𝒍 = 𝒉𝒐𝒍𝒅𝒊𝒏𝒈  then H += 1 

26:             if soure has a blue colour and was not on tableBlue then H = allblockonsource + not the same 

colour block on table block + 2 



 

14 

 

27:             if soure has red colour and was not on redBlue then H = allblockonsource + not the same 

colour block on table block + 2 

28:             if soure has red colour and was not on tableBlue then H = allblockonsource + not the same 

colour block on table block + 2 

29:     end for 
 

 General Reward Function 

In this reward function, the similarity between the current state and the goal state is returned as a numerical 

value. The higher value of this number means significant similarity. In previous approaches, such as the Genetic 

algorithm and A*, this type of reward function is used to detect reachability property [12]. The term DDQN 

refers to the type of implementation of reinforcement learning that uses this reward function. 

4.3. Feature Engineering and Feature Selection 

Feature Engineering is the process of representing a problem domain to make it amenable for learning 

techniques [29]. Feature selection is the process of obtaining not necessarily an accurate model but a model that 

is easier to understand and interpret by humans. It helps to remove unrelated data and redundancy [29]. The 

selection of features is important because if the system is given the wrong features, it will not correctly 

differentiate between different data (i.e., states) and reduce the algorithm's efficiency. Due to the dynamics of 

some environments and also the complexity of modelling via graphs and the heaviness of their calculations, 

especially in large state spaces, it is necessary to look for a feature that, while low and straightforward in 

computation, increases the learning process. Features are the neural network's inputs that differentiate each data 

(i.e., states) from another. 

In the proposed approach, inputs of the neural network are equal to the sequence of the number of applied 

rules from the initial state to the current state. Also, the number of neural network's inputs is equal to the 

maximum allowable steps of the agent in the environment. Assume that the agent can make a maximum of 4 

steps in each episode, then the number of neural network inputs sets to 4, and at the beginning, the values of all 

inputs are 0.  

An example is given in Fig. 5. In this example, the agent is allowed to move 4 steps. Hence the number of 

the neural network's inputs will be 4. In the following, assume that the agent will choose the rules 2,1,2 and 1, 

respectively (Fig. 5 (a)). Thus, the first input of the neural network at the first step will be 2 (Fig. 5 (b)). At the 

second step, the second input's value changes to 1 (Fig. 5 (c)). The third input will change to 2 (Fig. 5 (d)). In 

the last step of the agent, the fourth input of the neural network will change to 1, and the agent cannot take any 

move anymore. Thus, in the end, the inputs of the neural network will be 2,1,2 and 1, respectively (Fig. 5 (e)), 

just the same as the order of selection rules in (Fig. 5 (a)). 

 

 

 



 

15 

 

 

   
 

 

 

 

   

 

 

Fig. 5. Example of how to select features. 

4.4. Handling Invalid Actions 

The number of applicable rules in each state may vary. As a result, the output of a neural network(i.e., the 

list of Q-values for all rules) may contain some rules that cannot be applied in some states. Also, according to 

the epsilon-greedy policy, random actions should be selected from the applicable rules in that state. For 

State 

0

Rule 1 Rule 3

State 

1

Rule 2

State 

2

Rule 2Rule 1 Rule 3 Rule 4

State 

3

Rule 2Rule 1

State 

4

Rule 1

Step 0

Step 1

Step 2

Step 3

Step 4

0

0

0

Outputs

2Step 1

1

0

0

Outputs

2

Step 2

1

2

0

Outputs

2

Step 3

1

2

1

Outputs

2

Step 4

c 

a 

b 

d e 



 

16 

 

example, in the state 0 in Fig. 5 (a), only 3 rules can be applied, but number 5 is randomly selected. Due to the 

absence of rule 5, the agent cannot take any step. Also, due to the fixed structure of the neural network, the 

number of outputs cannot be dynamic and cannot be changed at any time. Two common ways to solve this 

problem: 
 Give negative rewards for selecting any invalid rule and not change the current status after invalid 

selection. The disadvantage of this method is the possibility of storing many negative and repetitive 

experiences in experience replay memory and therefore has a very negative effect on learning the neural 

network. 

 Limit random numbers which are generated at the beginning of the system to gather experiences. 

Afterwards, create a neural network with a large number of output neurons, filter the output number of 

the neural network and select the highest value of Q among the valid actions. 

4.5. Double Deep Q-Network Implementation 

The structure of the proposed approach is presented in Fig. 6, and the overall DDQN implementation 

algorithm in the GROOVE toolset is given in Algorithm 2. In line 1, the goal state, the number of algorithm 

episodes and the number of the agent's steps in each episode are received from the user. In line 2, it checks if 

the reachability property is satisfied, then the path from the initial state leading to the goal state will be returned. 

In line 3, experience replay memory 𝒟 with capacity 𝒩 and in line 4, the main neural network 𝑄𝜃  and the target 

neural network 𝑄𝜃′ with weight 0, are initialized. In line 5 to 7, for each episode, the environment is restarted 

at first. After a restart, the current state is set to the first state of the environment. In lines 8 to 10, it checks that 

if the initial state is the same as the goal state and property is satisfied, then the path leading to that state is 

shown to the user as the output. 

In lines 12 to 15, at first, the agent will get a list of applicable rules on the current state and select a random 

action with the probability of 𝜀 . Otherwise, If the probability is equal to 1 − 𝜀, the next best operation is 

extracted using the main neural network. In lines 15 to 19, the agent at first performs the selected action, and 

then the environment rewards the agent and pushes the agent to the next state. It is now checked that if the next 

state is the same as the goal state, the path leading to that state as an output will be returned. Otherwise, the 

agent stores its last step as an experience in the experience replay memory 𝒟. In lines 20 to 24, a batch of 

experience is extracted from experience replay memory 𝒟  to train the neural network. According to lines 22 

and 23, if the next state is equal to the terminal state, the target value will equal the amount of reward. Otherwise, 

the best action of the next state is selected by the main neural network, and then its Q value is estimated using 

the target neural network. Finally, it is added with the reward value. In line 25, to synchronize what the agent 

has learned from the environment, the weight of the target neural network will be transferred to the main neural 

network. Finally, in line 26, the current state is set to the next state, and if it is possible, the value of 𝜀 is 

decreased. 

 



 

17 

 

 

 

Algorithm 2 The DDQN based approach 
1:     Input: 𝒈 = Goal, M = Episodes, N = Steps 

2:     Output: 𝒓𝒆𝒔𝒖𝒍𝒕 =  if it finds the path, returns it otherwise returns null 

3:     Initialize experience replay memory 𝓓 to capacity 𝓝 

4:     Initialize primary network 𝑸𝜽 and target network 𝑸𝜽′  with weights 0 

5:     for episodes = 1 to M do 

6:         Restart environment 

7:         𝒔𝒕 = initial state graph 

8:         if 𝒔𝒕 = 𝒈 then 

9:             Return a path from the initial state leading to the goal 

10:       end if 

11:       for steps = 1 to N do 

12:           matches = get the list of available rules for the current state 

13:           with probability 𝜺 select a random action 𝒂𝒕 max to the count of matches 

14:           otherwise select 𝒂𝒕 = 𝒂𝒓𝒈𝒎𝒂𝒙 𝑸𝜽(𝒔𝒕) to count of matches 

15:           Execute 𝒂𝒕, observe the next state 𝒔𝒕+𝟏 and set reward 𝒓𝒕 = 𝑹(𝒔𝒕, 𝒂𝒕) 

16:           if 𝒔𝒕 = 𝒈 then 

17:               Return a path from the initial state leading to the goal 

18:           end if 

19:           Store (𝒔𝒕, 𝒂𝒕, 𝒓𝒕, 𝒔𝒕+𝟏) in experience replay memory 𝓓 

20:           batch = Sample random batch from 𝓓 

21:           foreach (𝒔𝒋, 𝒂𝒋, 𝒓𝒋, 𝒔𝒋+𝟏) in batch 

22:               if 𝒔𝒕+𝟏 = Terminal State then Target = 𝒓𝒋 

23:               Otherwise Target = 𝒓𝒋 +  𝜸𝑸𝜽′(𝒔𝒋+𝟏, 𝒂𝒓𝒈𝒎𝒂𝒙𝒂𝑸𝜽(𝒔𝒋+𝟏, 𝒂)) 

24:           end for 

25:           Reset 𝑸𝜽′  weights = 𝑸𝜽 

26:           set 𝒔𝒕 =  𝒔𝒕+𝟏 and if 𝜺 > 𝐭𝐡𝐫𝐞𝐬𝐡𝐨𝐥𝐝 then reduce 𝜺 

27:       end for 

28:    end for 



 

18 

 

 

Fig. 6. The structure of the proposed approach. 

(10) For each batch

False

Store the 

experience in 

the

Experience 

replay 

memory

Restart the 

environment

TrueFalse

True

False

True
False

True

False

True

(5-1)

(8-2)

Start
(1)

Is this state a 

goal state?

(2)

Generate a 

random 

number

(3-1)

Is the generated 

number less than 

epsilon?

(4)

Is the next state 

the goal?

(7)Show the 

path form 

initial state to 

the goal state

(8-1)

Receive a 

batch of 

experience

(9)

Have we reached 

the maximum 

step?

(12)

Have we reached the 

maximum number of 

episodes?

(13)

Select the best 

next state action  

by the main 

neural network

(10-1)

Main neural 

network training

(10-3)
   Calculate the    

Q-value of the 

best action of the 

next state by the 

target neural 

network

(10-2)

Select the number of 

largest value of Q in 

the current state by 

the main neural 

network

(5-2)

Generate and 

select a 

random 

number

(5-1)

Show the 

path form 

initial state to 

the goal state

(3-2)

Perform the next 

action by the 

agent and receive 

the next state and 

replace with the 

current state

(6)

(13-1)End
(14)

No witness is 

found

(13-2)

copy the main 

network 

weights to the 

target 

network

(11)



 

19 

 

4.6. Complexity 

As proposed in Algorithm 2 The DDQN based approach, the proposed approach divides into three main 

components. The reinforcement learning body, neural network and reward function. 

 Computational Complexity 

The body of reinforcement learning itself contains two loops. So the computational complexity will be 

𝑂(𝑚 ∗ 𝑛) where 𝑚 is the number of episodes and 𝑛 is the number of steps. 

The neural network is the main component of the proposed approach. Since we use linear activation 

function (e.g. ReLU) in neural networks, the output is a composition of several linear mappings of the input 

vector. For each batch training, we use two same neural networks. The feedforward propagation algorithm 

in neural networks is as follows. Assume we have t training examples. Propagating between layers are 

matrix multiplication. So it has 𝑂(𝑖 ∗ ℎ ∗ 𝑡) computational complexity where i and h is the number of input 

and hidden layer neurons accordingly. Then we apply the activation function, and this has 𝑂(ℎ ∗ 𝑡) 

computational complexity because it is a linear activation function (e.g. ReLU) that apply to hidden layer 

neurons. Till now, we have 𝑂((𝑖 ∗ ℎ ∗ 𝑡) + (ℎ ∗ 𝑡)) = 𝑂(ℎ ∗ 𝑡 ∗ (𝑡 + 1)) = 𝑂(ℎ ∗ 𝑖 ∗ 𝑡). After that, we go 

from the hidden layer to the output layer with 𝑂(ℎ ∗ 𝑜 ∗ 𝑡), where o is the number of output neurons. In 

total, we have 𝑂(𝑖 ∗ ℎ ∗ 𝑡 + ℎ ∗ 𝑜 ∗ 𝑡) = 𝑂(𝑡 ∗ (𝑖ℎ + ℎ𝑜)). 

The general reward function is explained in 4.2. Reward Engineering. It is 𝑂((𝑎 ∗ 𝑏) + 𝑐) which a is 

current state elements, b is goal state elements, and c is all pairs in state space. 
So in total, we have  𝑂(𝑚 ∗ 𝑛) +  𝑂(𝑡 ∗ (𝑖ℎ + ℎ𝑜)) +  𝑂((𝑎 ∗ 𝑏) + 𝑐). 

 Storage Complexity 

As mentioned in 3.4. Deep Reinforcement Learning Using Double Deep Q-Network, one of the 

benefits of deep reinforcement learning is eliminating the overhead of the table of knowledge. 

The amount of memory that is allocated to a neuron is 𝑂(𝑖), where 𝑖 is the number of inputs. The 

reason is that a neuron has one weight per input. The hidden layer has ℎ neurons. If the number of inputs 

neurons will be n, it needs ℎ ∗ 𝑂(𝑖) units of memory. Also, The output layer has 𝑜 neurons with ℎ inputs 

each, hence 𝑜 ∗ 𝑂(ℎ). So in total, we have ℎ ∗ 𝑂(𝑛)  +  𝑜 ∗ 𝑂(ℎ)  =  𝑂(ℎ ∗ 𝑛)  +  𝑂(𝑜 ∗ ℎ)  =  𝑂((𝑛 +

𝑜) ∗ ℎ) 

We need to store all intersection pairs of current and goal states in the general reward function. So we have 

a nested loop to check for all elements, but we need one variable such that its maximum size will eventually 

be equal to the minimum element count of two states. So we have 𝑂(min (𝑎, 𝑏)) which a is current state 

elements, b is the goal state.  

So in total, we have  𝑂((𝑛 + 𝑜) ∗ ℎ) +  𝑂(min (𝑎, 𝑏)). 

As mentioned above, the computational and storage complexity can be reduced or increased and depend on 

neural network activation function, input, hidden and output layer neurons, and reward function. 



 

20 

 

5. Experimental Results 

This section presents the experimental results of DDQN implementation in the GROOVE open-source 

toolset. This evaluation was performed on a system with 16GB of DDR3 main memory and an Intel Core i7 

processor model 4700 MQ with a frequency of 2.40 GHz. At first, to find the optimal number of hidden layers 

in the neural network, the proposed approach is evaluated using two case studies, and in order to increase the 

accuracy of the results, each experiment was performed 3 times. In the next step, to determine the optimal 

number of hidden layer neurons, the previous test is performed again, this time with the obtained number of the 

hidden layer from the previous test. Finally, after determining the final structure of the neural network, the 

proposed solution was tested on 5 case studies, which again, to achieve more accurate results, each experiment 

was performed 10 times separately. In addition, the maximum running time for each experiment is 15 minutes. 

In order to better compare and understand the performance of the proposed approach, these experiments are 

performed on the genetic algorithm (GA) [3], nBOA [5], particle swarm optimization (PSO) [30] and IDA* 

under the same conditions. 

The results of the experiments are evaluated in terms of (1) the average running time to reach the goal, (2) 

the shortest path to reach the goal, (3) the least explored states to reach the goal and (4) the number of witnesses 

in all of the runs for a problem. The terms of DDQN and DDQN* in the tables of this section is referred to the 

proposed approach with general and dedicated rewards, respectively, which will be explained separately for 

each problem. Also, as previously explained, the general reward function is the same as the similarity function 

that is used in other approaches, such as GA and nBOA [12]. 

5.1. Case Studies 

First, we should review the used case studies in the evaluation. 

 8-Puzzle Problem: In this problem, there is a 3×3 puzzle in which 8 of 9 cells consist of tiles with random 

numbers from 1 to 8, and the other cell is empty. The empty cell can be moved between adjacent cells. The 

goal is to find an arrangement in which the numbers of tiles have an ascending order. In DDQN* mode, 

we used Manhattan distance plus the current agent's depth as the reward. The first arrangements, the second 

arrangements, the third arrangements and the fourth arrangements in the evaluations of this case study are 

shown in Fig. 7(a), Fig. 7(b), Fig. 7(c), Fig. 7(d), respectively. 
1 2 3 

4 5 6 

 7 8 

a 

 1 3 

5 2 6 

4 7 8 

b 

2 3 6 

1 4 8 

7  5 

c 

6 1 2 

4 7 3 

5  8 

d 

Fig. 7. Different arrangements of 8-Puzzle problem. 

 N-Queen problem: There is an N×N chessboard and N queens in this problem. The goal is to find an 

arrangement in which no queen can guard another one. Two queens can guard each other when their 



 

21 

 

columns, rows or diameters are the same. Thus, an arrangement is acceptable in which all queens have 

different columns, rows and diameters. 

 Blocks World problem: As mentioned in section 4.2. Reward Engineering, in this problem, there are three 

various colours of blocks, and the goal is to place the same colour blocks on top of each other. There are 

some rules in this problem. 

o Only one block may be moved in each step. 

o Any block that is placed under another block cannot be moved. 

o Different colour blocks cannot be moved on top of each other. 

 Dining philosophers problem: As mentioned earlier in section 3.2. Graph Transformation System, this 

problem is about some philosophers that there is a fork between each pair of them. Each philosopher thinks, 

gets hungry, takes left and right forks, respectively, and releases both forks after eating. This process will 

be repeated indefinitely. The ultimate goal is a terminal state, in which all philosophers have held their left 

fork, and therefore, no philosopher can hold his right fork anymore to start eating. As a result, the system 

is in the terminal state (or deadlock in this case), which means that no more rules can be applied to the 

graph. 

 Snake problem: This old problem was introduced in the world planning competitions. These competitions 

are held annually by the International Conference on Automated Planning and Scheduling, and this case 

study was one of the problems in the 2018 competition. In this problem, a snake moves on the ground and 

eats apples that exist in some location (i.e., cell) of this ground. By eating each apple, the snake's length 

will increase by 1, and a new apple will grow in a different cell. In order to eliminate uncertainty in this 

problem, the apples grow in a predetermined location. Ultimately, the goal state is the state in which the 

snake has eaten all the apples. 

5.2. Required Parameters 

 The parameters used in the experiments are presented in Table 1. 

 Episodes and Steps parameters depend on the problem. A higher value of episodes results in a more 

accurate and time-consuming result. Because the proposed approach will be repeated and on each start, 

the knowledge will increase. So the result will converge. The Steps parameter is the same as depth in 

graphs. In some problems, the goal cannot be found in lower depth, and due to this, the agent should 

go further and take more steps. 

 Experience Replay Memory Size is set to 1000. A higher value of Experience Replay Memory Size 

cause more storage usage and also, a lower value of this parameter causes the agent to forget about 

past experiences. 

 The Discount Factor allows modelling the agent behaviour with respect to the future rewards. In 

particular, a high discount factor (like 0.1) will make the agent greedy such that it will choose actions 

that provide the highest immediate reward. It is because future rewards will be heavily discounted. 



 

22 

 

Hence they will have a limited impact when the cumulative reward is computed. So The value is set 

to 0.95. 

 The Minimum Value Of Epsilon can be between 0 and 1. For a more greedy approach, this value must 

be near 0. 

 As the epsilon first is set to 1, the Reduction Rate Of Epsilon In Every Step value is set to 0.995. A 

higher value of this parameter causes the agent to act more randomly at first and slowly become greedy. 

 As said in section 4.1. Neural Network, Learning Rate controls how quickly or slowly a neural network 

model learns a problem. In the proposed approach, the most traditional value is set. 

 The Batch Size parameter shows the size of the training set in each train of neural network. If this 

parameter sets too high, the neural network's prediction may be more accurate, but it takes more storage 

and time. With using a small batch size, future predictions will be poor. So there must be a balance 

between speed and accuracy. 

 Max Action Output value is mentioned in section 4.1. Neural Network. A higher value of this parameter 

increases memory consumption and wastes time. Setting Max action output to a lower value limits the 

actions in state space (e.g. applied rules). 

 

Table 1: The initial parameters for the proposed approach. 

Name Description Value 

Episodes The number of iterations of the algorithm 300 

Steps 

The number of steps in each iteration 

(depending on the problem). Also, it is 

the number of neural network's inputs 

100, 150, 200, 500, 700 

or 1000 

Experience Replay Memory Size Experimental replay memory size 1000 
Discount Factor The importance of future rewards 0.95 

The Minimum Value Of Epsilon 
Minimum Epsilon value for random 

selection of actions 
0.2 

Reduction Rate Of Epsilon In 

Every Step 
Reduction value of epsilon per step 0.995 

Learning Rate The neural network learning rate 0.001 
Batch Size Batch size of the training dataset 8 

Max Action Output 
Maximum number of neural network's 

outputs 
400 

 



 

23 

 

5.3. Number of hidden layers and optimal neurons for the neural network 

The number of hidden layers and their neurons is a question for which there is no definitive answer, and 

their optimal number cannot certainly be determined before the experiment. We tested our proposed approach 

under the same conditions on two different case studies to obtain the optimal number. 

 The optimal number of hidden layers 

Fig. 8 shows the average running time in the neural network with different layers. As it is shown, the 

neural network with 1 hidden layer was able to respond to both problems faster than the others. Fig. 9 shows 

the minimum length of the generated witnesses obtained from the neural network with several different numbers 

of hidden layers. The neural network with 1 hidden layer is the winner because it generates shorter witnesses 

than the others. As a result, this paper uses a neural network with 1 hidden layer to evaluate other experiments. 

 

Fig. 8. Comparison of the average running time in the neural network with different numbers of 

hidden layers. 

 

Fig. 9. Comparison of the length of the generated witness in the neural network with different 

numbers of hidden layers. 

 The optimal number of hidden layer neurons 

There is no specific rule for choosing the optimal number of neurons in the hidden layer, but some 

formulas have been proposed to achieve the desired result [31]. In these formulas that are shown in Table 2, we 

need to define the number of input layer neurons as 𝑵𝒊 and in some of them, the number of output layer neurons 

as 𝑵𝒐. As mentioned in section 4.1. Neural Network, 100 and 400 will be used for 𝑁𝑖  and 𝑁𝑜  respectivly. 

Dining philosophers problem with 40

philosophers
N-Queen problem with 8 queens

1 hidden layer 13.29 31.26

2 hidden layer 15.43 59.7

3 hidden layer 14.12 52.82

13.29
31.26

15.43
59.7

14.12

52.82

0
30
60

A
v
er

ag
e 

ru
n

n
in

g
 t

im
e

1 hidden layer 2 hidden layer 3 hidden layer

Dining philosophers problem with 40

philosophers
N-Queen problem with 8 queens

1 hidden layer 80 32

2 hidden layer 80 78

3 hidden layer 80 80

80

32

80 7880 80

0

40

80

L
en

th
 o

f 
th

e 
g
en

er
at

ed
 

w
it

n
es

s

1 hidden layer 2 hidden layer 3 hidden layer



 

24 

 

Eventually, as it is shown in Table 2, the the optimal number of neurons is between 67 and 250, which is tested 

separately by changing the number of hidden layer neurons with 30 steps. 

Table 2 Result of applying formulas in [31] to get the number of hidden neurons 

Formula 𝑵𝒊 𝑵𝒐 Result 

≤ 𝟐 × 𝑵𝒊 + 𝟏 100 400 201 

(𝑵𝒊 + 𝑵𝒐)/𝟐 100 400 250 

𝟐𝑵𝒊/𝟑 100 400 67 

√𝑵𝒊 × 𝑵𝒐 100 400 200 

𝟐𝑵𝒊 100 400 200 

 

In Fig. 10, with 67 neurons, the fastest result was obtained in both case studies. In addition, as shown in 

Fig. 11, the neural network with 67 neurons in the case of 8 queens was able to take second place. According 

to the formulas presented in [31], this number of neurons is equal to 
2

3
  input neurons and it can balance the speed 

and optimal length of generated witness; we use this formula to obtain the optimal number of hidden layer 

neurons in all future experiments. 

 

Fig. 10. Comparing the average running time in seconds in the neural network with different 

numbers of neurons. 

Dining philosophers problem with 40

philosophers
N-Queen problem with 8 queens

67 neurons 12.48 19.56

97 neurons 13.28 36.17

127 neurons 12.7 46.61

157 neurons 13.01 25.94

187 neurons 12.99 64.76

227 neurons 12.89 86.98

250 neurons 12.53 33.95

1
2

.4
8

1
9

.5
6

1
3

.2
8

3
6

.1
7

1
2

.7

4
6

.6
1

1
3

.0
1

2
5

.9
4

1
2

.9
9

6
4

.7
6

1
2

.8
9

8
6

.9
8

1
2

.5
3

3
3

.9
5

0

20

40

60

80

100

A
v
er

ag
e 

ru
n

n
in

g
 t

im
e 

(s
ec

o
n

d
s)

67 neurons 97 neurons 127 neurons 157 neurons 187 neurons 227 neurons 250 neurons



 

25 

 

 

Fig. 11. Comparison of the length of the generated witness in the neural network with different 

numbers of hidden layers. 

5.4. Evaluation 

In order to evaluate the proposed approach, five case studies are evaluated. In this section, a brief 

description of the problem and then the evaluation results are provided. 

8-Puzzle problem: Fig. 12 shows the comparison of the average running time in seconds, Fig. 13 shows the 

comparison of the accuracy  (i.e. the number of witnesses), Fig. 14 shows the comparison of the length of the 

witness, and Fig. 15 shows the comparison of the number of explored states to satisfy the property in the 8-

Puzzle problem. 

 

In the case of the N-Queen problem, considering Fig. 12, it is quite clear that DDQN has spent much time 

to reach the goal state due to the heavy calculation of the reward function in each explored state, while DDQN* 

is much faster because of its dedicated reward function. The IDA* method performed much better than other 

approaches in terms of speed in the case of second and third arrangements. However, as the problem becomes 

complex, the number of explored states increases. Due to the large state space, IDA* may encounter the same 

amount of rewards along the way, and therefore, more states are needed to be considered because of its 

exploration method. The nBOA approach works better than DDQN in terms of speed and time because it 

depends on the rules, and also it does not need to calculate the reward function many times.  

Dining philosophers problem with 40

philosophers
N-Queen problem with 8 queens

67 neurons 80 13

97 neurons 80 25

127 neurons 80 17

157 neurons 80 11

187 neurons 80 45

227 neurons 80 17

250 neurons 80 27

80

13

80

25

80

17

80

11

80
45

80

17

80

27

0
20
40
60
80

L
en

th
 o

f 
th

e 
g
en

er
at

ed
 w

it
n

es
s

67 neurons 97 neurons 127 neurons 157 neurons 187 neurons 227 neurons 250 neurons



 

26 

 

 

Fig. 12. Comparing the average running time in seconds in the 8-Puzzle problem. 

 

According to Fig. 13, in the third arrangement, the IDA* and DDQN* approaches have succeeded in 

finding the goal state in all 10 runs. DDQN is also weaker than GA due to its inaccurate reward function. 

Naturally, the GA has a better chance of reaching the goal state and escaping from the local optimum trap due 

to its capabilities such as mutation and crossover. However, DDQN performed better than nBOA and PSO. The 

overall performance of DDQN* because of the impact of its reward function is quite clear. 

The first

arrangement

The second

arrangement

The third

arrangement

The fourth

arrangement

DDQN* 1.98 6.04 33.9 836.45

DDQN 2.32 5.65 195.6 1759.55

GA 2.05 77.19 220.98 124.91

plnBOA 7.1237 25.2072 21.968 0

nBOA 1.02 7.93 39.74 0

PSO 10.28 123.65 201.57 304.6

IDA* 2.7 2.53 4.34 0

0

300

600

900

1200

1500

1800

2100

A
V

E
R

A
G

E
 R

U
N

N
IN

G
 T

IM
E

 (
S

E
C

O
N

D
S

)



 

27 

 

 

Fig. 13. Comparing the ratio of the number of successful runs to the total runs in the 8-Puzzle 

problem. 

According to Fig. 14, The length of generated witnesses in the first, second and third arrangement is 3, 7 

and 10 for all approaches. However, in the fourth arrangement, plnBOA, IDA* and nBOA fail, and the length 

of the generated witness was 26, 39, 28 and 22 for DDQN*, DDQN, GA and PSO, respectively. According to 

these results, the PSO approach was able to find the goal at a lower depth due to the particle swarm and more 

flexibility of this algorithm against the local optimum trap. DDQN* has failed to achieve lower depth targets 

due to its greedy nature in choosing the best Q value and reducing the random selection rate during the path. 

Also, nBOA, plnBOA and IDA* fail to find the goal state, which is a big disadvantage for these approaches. 

The first arrangement
The second

arrangement

The third

arrangement

The fourth

arrangement

IDA* 10 10 10 0

PSO 10 10 6 2

nBOA 10 4 3 0

plnBOA 10 5 3 0

GA 10 9 9 1

DDQN 10 8 7 1

DDQN* 10 10 10 2

0

10

20

30

40

50

60

70

80

T
H

E
 N

U
M

B
E

R
 O

F
 S

U
C

C
E

S
S

F
U

L
 R

U
N

S



 

28 

 

 

Fig. 14. Comparing the length of the generated witnesses in the 8-Puzzle problem. 

 

As it is shown in Fig. 15, DDQN* and DDQN have been able to find the goal state with the least number 

of explored states, indicating the performance of these two approaches to find the path to achieve the goal. 
Especially in more complex arrangements of this problem, it is important to intelligently explore the state space 

to prevent the state space explosion. However, the number of explored states in nBOA approach is not as optimal 

as our proposed approach. In a more complex puzzle arrangement, i.e. the fourth arrangement, this time DDQN* 

and PSO performed better than the other algorithms, and DDQN*, with fewer explored states, was superior to 

PSO. 

The first arrangement
The second

arrangement

The third

arrangement

The forth

arrangement

DDQN* 3 7 10 26

DDQN 3 7 10 39

GA 3 7 10 28

plnBOA 3 7 10 0

nBOA 3 7 10 0

PSO 3 7 10 22

IDA* 3 7 10 0

0

5

10

15

20

25

30

35

40

45

L
E

N
T

H
 O

F
 T

H
E

 G
E

N
E

R
A

T
E

D
 W

IT
N

E
S

S
E

S



 

29 

 

 

Fig. 15. Comparing the number of explored states in the 8-Puzzle problem. 

 

N-Queen Problem: Fig. 16 shows the comparison of the average running time in seconds, Fig. 17 shows 

the comparison of the accuracy (i.e., the number of witnesses), Fig. 18 shows the comparison of the length of 

the witness and Fig. 19 shows the comparison of the number of explored states to satisfy the property in the N-

Queen problem. 

In the case of the N-Queen problem, According to Fig. 16, the fastest approach is the nBOA approach. 

Because this approach depends on the rules and thus, it does not need to calculate the reward function many 

times. Also, because of the lower need to use the fitness function to achieve the goal in GA, this approach is 

faster than DDQN. 

The first

arrangement

The second

arrangement

The third

arrangement

The fourth

arrangement

DDQN* 5 20 14 14919

DDQN 4 44 845 65329

GA 4 1186 3142 21162

plnBOA 107 315 3141 0

nBOA 104 300 1765 0

PSO 4 412 225 20271

IDA* 32 254 1863 0

0

10000

20000

30000

40000

50000

60000

70000

T
H

E
 N

U
M

B
E

R
 O

F
 E

X
P

L
O

R
E

D
 S

T
A

T
E

S



 

30 

 

 

Fig. 16. Comparing the average running time in seconds in the N-Queen problem. 

Fig. 17 shows that, In the case of 12 queens, DDQN* can find the goal in all 10 experiments, and DDQN 

came in second place with 7 answers. However, GA can only find 1 witnesses in large state spaces out of 10. 

In the case of 16 queens, nBOA shows that there is always the possibility of a better performance in terms of 

accuracy in the large state spaces than the smaller ones. It also performs much better than plnBOA. plnBOA, 

GA and IDA* fail to find the goal state in 16 queens. 

 

Fig. 17. Comparing the ratio of the number of successful runs to the total runs in the N-Queen 

problem. 

8-Queens 12-Queens 16-Queens

DDQN* 21.54 34.33 87.85

DDQN 40.78 242.57 522.58

GA 30.17 130.98 0

plnBOA 8.6296 57.369 0

nBOA 6.57 23.47 51.04

PSO 19.45 304.06 241.56

IDA* 72.05 0 0

0

100

200

300

400

500

600

A
V

E
R

A
G

E
 R

U
N

N
IN

G
 T

IM
E

 (
S

E
C

O
N

D
S

)

8-Queens 12-Queens 16-Queens

DDQN* 10 10 10

DDQN 10 7 2

GA 10 1 0

plnBOA 10 1 0

nBOA 9 2 9

PSO 10 5 1

IDA* 10 0 0

0

5

10

T
H

E
 N

U
M

B
E

R
 O

F
 S

U
C

C
E

S
S

F
U

L
 R

U
N

S



 

31 

 

 

According to Fig. 18, the DDQN* approach achieves the shortest generated witness in all 8, 12 and 16 

queens cases. Except for 16-Qunnes, the DDQN approach also performs well in terms of the length of the 

generated witnesses. 

 

Fig. 18. Comparing the length of the generated witnesses in the N-Queen problem. 

 

Also, As shown in Fig. 19, DDQN* and DDQN performed much better than other approaches in terms of 

fewer explored states. Finally, DDQN* once again shows a better performance in terms of fewer explored states 

to reach the goal state and more accuracy (Fig. 17). 

8-Queens 12-Queens 16-Queens

DDQN* 8 12 22

DDQN 10 22 30

GA 20 58 0

plnBOA 32 98 0

nBOA 24 58 22

PSO 12 42 26

IDA* 14 0 0

0

25

50

75

100

L
E

N
T

H
 O

F
 T

H
E

 G
E

N
E

R
A

T
E

D
 W

IT
N

E
S

S
E

S



 

32 

 

 

Fig. 19. Comparing the number of explored states in the N-Queen problem. 

 

Blocks World Problem: Fig. 20 shows the comparison of the average running time in seconds, Fig. 21 

shows the comparison of the accuracy (i.e. the number of witnesses), Fig. 22 shows the comparison of the length 

of the witnesses and Fig. 23 shows the comparison of the number of explored states to satisfy the property in 

the blocks world problem. 
According to the results in Fig. 20, the nBOA approach finds the goal state faster than the proposed 

approach in the blocks world. 

 

Fig. 20. Comparing the average running time in seconds in the blocks world problem. 

Although DDQN performs worse in terms of speed than nBOA, according to the results in Fig. 21, it can 

find 8 out of every 10 runs, which this number is 7 in nBOA. 

8-Queens 12-Queens 16-Queens

DDQN* 10 500 93

DDQN 219 451 1943

GA 37 13928 0

plnBOA 80 4996 0

nBOA 235 2846 4042

PSO 899 3477 11440

IDA* 3999 0 0

0

2000

4000

6000

8000

10000

12000

14000

T
H

E
 N

U
M

B
E

R
 O

F
 E

X
P

L
O

R
E

D
 S

T
A

T
E

S

6 Blocks 8 Blocks

DDQN* 19.52 64.82

DDQN 26.45 89.62

GA 10.73 179.71

plnBOA 7.78 17.02

nBOA 0.91 5.05

PSO 74.53 155.73

IDA* 3.17 18.83

0

40

80

120

160

200

A
V

E
R

A
G

E
 R

U
N

N
IN

G
 T

IM
E

 

(S
E

C
O

N
D

S
)



 

33 

 

 

Fig. 21. Comparing the ratio of the number of successful runs to the total runs in the blocks world 

problem. 

As shown in Fig. 22, the DDQN* approach finds the shortest witness among the other approaches. In 

addition, the IDA* method will always provide the same witness. It is because of the fact that the reward of a 

path is constant, and this approach relies on the cost of the paths. 

 

Fig. 22. Comparing the length of the generated witnesses in the blocks world problem. 

According to the results of Fig. 23, when the number of blocks reached 6, nBOA scored a point by exploring 

the fewer states than the others. In addition, DDQN was able to find the goal state with fewer explored states 

than DDQN*. The reason could be the overestimation in DDQN* approach. While DDQN* and IDA* both 

6 Blocks 8 Blocks

DDQN* 10 10

DDQN 10 8

GA 10 9

plnBOA 9 3

nBOA 10 7

PSO 10 6

IDA* 10 10

0

2.5

5

7.5

10

T
H

E
 N

U
M

B
E

R
 O

F
 S

U
C

C
E

S
S

F
U

L
 R

U
N

S

6 Blocks 8 Blocks

DDQN* 8 14

DDQN 8 30

GA 10 22

plnBOA 10 34

nBOA 16 16

PSO 8 22

IDA* 12 100

0

25

50

75

100

L
E

N
T

H
 O

F
 T

H
E

 G
E

N
E

R
A

T
E

D
 W

IT
N

E
S

S
E

S



 

34 

 

find the goal state in all 10 runs (Fig. 21), the witness in the IDA* approach is not as optimal as DDQN* in 

terms of length and the number of explored states. Also, plnBOA performs worse than others. 

 

Fig. 23. Comparing the number of explored states in the blocks world problem. 

Dining philosophers Problem: Fig. 24 shows the comparison of the average running time in seconds, 

Fig. 25 shows the comparison of the accuracy (i.e. the number of witnesses), Fig. 29 shows the comparison of 

the length of the witness, and Fig. 27 shows the comparison of the number of explored states to satisfy the 

property in the dining philosopher problem. 

According to Fig. 24 and Fig. 25, as the state space becomes large, the IDA* fails and cannot find a 

witness, indicating a drawback of this approach in large state spaces. Thus, IDA* fails in 70 and 90 philosophers 

problems. However, all six other approaches found the witness in all runs. Also, according to these results, it 

can be concluded that due to the high usage of reward function in the DDQN approach and also the heavy 

calculation of this function, this approach is much slower than the others to find the goal state. However, the 

DDQN approach does not encounter state space explosion. 

6 Blocks 8 Blocks

DDQN* 34 1070

DDQN 13 219

GA 119 1232

plnBOA 87 872

nBOA 128 129

PSO 177 4546

IDA* 252 4786

0

1000

2000

3000

4000

5000

T
H

E
 N

U
M

B
E

R
 O

F
 E

X
P

L
O

R
E

D
 S

T
A

T
E

S



 

35 

 

 

Fig. 24. Comparing the average running time in seconds in the dining philosophers problem. 

 

Fig. 25. Comparing the ratio of the number of successful runs to the total runs in the dining 

philosophers problem. 

40 Philosophers 70 Philosophers 90 Philosophers

DDQN* 2.09 4.07 8.27

DDQN 12.04 75.46 265.23

GA 1.79 2.43 5.82

plnBOA 2.1 4.54 7.55

nBOA 1.29 2.79 6.15

PSO 2.4 2.29 5.6

IDA* 353.13 0 0

0

50

100

150

200

250

300

350

400

A
V

E
R

A
G

E
 R

U
N

N
IN

G
 T

IM
E

 (
S

E
C

O
N

D
S

)

40 Philosophers 70 Philosophers 90 Philosophers

DDQN* 10 10 10

DDQN 10 10 10

GA 10 10 10

plnBOA 10 10 10

nBOA 10 10 10

PSO 10 10 10

IDA* 10 0 0

0

5

10

T
H

E
 N

U
M

B
E

R
 O

F
 S

U
C

C
E

S
S

F
U

L
 R

U
N

S



 

36 

 

According to experiments, as shown in Fig. 26, in terms of length of generated witnesses, all approaches 

have the same results in 40 and 90 philosophers problems. However, in the 70 philosopher problem, the length 

of the generated witnesses in GA and plnBOA approaches was 136. For DDQN*, DDQN, nBOA and PSO 

approaches, this number was 138,137,137 and 137, respectively. Among the tested approaches, the GA was 

able to find the goal state at a lower depth and with fewer explored states than the others, according to Fig. 27.  

In terms of overall performance, GA was the best. Given that the GA first traverses the path of a 

chromosome without any specific calculations, the speed of the operation in the GA makes it superior to other 

approaches. Since the general reward function is slightly more accurate than the dedicated reward, DDQN has 

a better performance in finding the shorter witness than the DDQN* approach. plnBOA explores more states 

than the others in the largest state space of this problem, i.e., 90 philosophers. 

 

Fig. 26. Comparing the length of the generated witnesses in the dining philosophers problem. 

 

40 Philosophers 70 Philosophers 90 Philosophers

DDQN* 80 138 180

DDQN 80 137 180

GA 80 136 180

plnBOA 80 136 180

nBOA 80 137 180

PSO 80 137 180

IDA* 80 0 0

0

40

80

120

160

200

L
E

N
T

H
 O

F
 T

H
E

 G
E

N
E

R
A

T
E

D
 W

IT
N

E
S

S
E

S



 

37 

 

 

Fig. 27. Comparing the number of explored states in the dining philosophers problem. 

 

Snake Problem: The host graph of the snake problem is designed in the GROOVE toolset and is shown in 

Fig. 28(a). Also, the goal state of this problem is shown in Fig. 28(b). In this model, every location is called a 

cell (of type node n0), and if a cell has ispoint label (of type edge e0) it means that the cell contains an apple. 

Given this figure, there should be no cell in the ground with an ispoint label. When the snake eats all the apples 

in the ground, the agent reaches the goal state. 

 

 

Fig. 28. A GTS-based model of the snake problem designed in the GROOVE toolset. 

As a dedicated reward in DDQN*, the score of eating each apple is equal to 5, and other movements are 

equal to −1 . Fig. 29 shows the comparison of the average running time in seconds, Fig. 30 shows the 

comparison of the length of the witnesses, Fig. 31 the comparison of the accuracy  (i.e., the number of 

witnesses), and Fig. 32 shows the comparison of the number of explored states to satisfy the property in the 

snake problem. 

40 Philosophers 70 Philosophers 90 Philosophers

DDQN* 81 139 181

DDQN 81 138 181

GA 81 137 181

plnBOA 145 230 559

nBOA 81 138 181

PSO 81 138 181

IDA* 2302 0 0

0

500

1000

1500

2000

2500

T
H

E
 N

U
M

B
E

R
 O

F
 E

X
P

L
O

R
E

D
 S

T
A

T
E

S

a b 



 

38 

 

According to Fig. 29 and Fig. 30, the proposed approach in most cases finds the goal state with optimal 

length, but due to its heavy calculations, it was not able to find the goal state in all runs in the limited time of 

each experiment. Because of this, the proposed approach shows that it needs more time than other approaches. 

The impact of the reward function is quite clear. The nBOA approach shows a remarkable performance due to 

the high dependency among the rules of this problem in which the new apple growth location rule is highly 

dependent on the previous apple growth location. However, the length of the witness is not optimal. The PSO 

was relatively fast, but it does not perform well enough in length and the number of witnesses by this approach. 

The GA is not very successful in terms of the length of the generated witness but shows that it can find the goal 

state more quickly and more likely than other approaches except nBOA. 

 

Fig. 29. Comparing the average running time in seconds in the snake problem. 

5 x 5 5 x 6 6 x 6

DDQN* 166.3 439.65 402.22

DDQN 245.55 307.64 227.04

GA 87.65 277.27 166.12

plnBOA 36.557 0 0

nBOA 14.18 276.31 118.98

PSO 11.62 209.05 11.13

IDA* 0 0 0

0

50

100

150

200

250

300

350

400

450

500

A
V

E
R

A
G

E
 R

U
N

N
IN

G
 T

IM
E

 (
S

E
C

O
N

D
S

)



 

39 

 

Fig. 30. Comparing the length of the generated witnesses in the snake problem. 

 

According to the results of Fig. 31, IDA* fails in this problem and also plnBOA provides a poor 

performance and just find the goal state in a 5 x 5 environment. 

 

 

Fig. 31. Comparing the ratio of the number of successful runs to the total runs in the snake problem. 

 

Also, according to Fig. 32, the nBOA and GA approaches achieve the goal state by exploring fewer states, 

especially in the most complex environment. DDQN was better than DDQN*, again because of the more 

accurate reward function. 

5 x 5 5 x 6 6 x 6

DDQN* 279 637 642

DDQN 323 638 680

GA 331 557 808

plnBOA 376 0 0

nBOA 332 582 663

PSO 336 545 842

IDA* 0 0 0

0

300

600

900

L
E

N
T

H
 O

F
 T

H
E

 G
E

N
E

R
A

T
E

D
 W

IT
N

E
S

S
E

S

5 x 5 5 x 6 6 x 6

DDQN* 10 2 4

DDQN 10 2 3

GA 10 4 8

plnBOA 5 0 0

nBOA 10 5 10

PSO 6 2 6

IDA* 0 0 0

0

5

10

T
H

E
 N

U
M

B
E

R
 O

F
 S

U
C

C
E

S
S

F
U

L
 R

U
N

S



 

40 

 

 

Fig. 32. Comparing the number of explored states in the snake problem. 

5.5. Discussion 

In this section, the results from 5.4. Evaluation is collected and compared to each other to find the 

advantages and disadvantages of the proposed approach. It should be noted that the statistics were extracted 

through the SPSS statistical program. 

Fig. 33 shows the success rate of all approaches in all experiments. The proposed approach performs better 

than other approaches in terms of accuracy (i.e., the number of witnesses). However, due to excessive 

calculations and time limitations, the accuracy of the DDQN approach is reduced and comes in fourth place. It 

shows that the bottleneck of the proposed approach is the reward function and has a huge impact on the results. 

The proposed approach is 15% better than the runner up (i.e. GA), and on average, it is 37% better than the 

other approaches in terms of accuracy. 

 

Fig. 33. Comparing the ratio of the number of successful runs to the total runs in all problems. 

 

Because of the structure of the proposed approach in maintaining experiences, it is possible to provide better 

witnesses by rerunning the algorithm. In fact, in every run of the proposed approach, the last data is remembered 

5 x 5 5 x 6 6 x 6

DDQN* 596 9248 4744

DDQN 482 5751 3683

GA 1093 1969 1573

plnBOA 4093 0 0

nBOA 479 5948 2006

PSO 1852 7698 2256

IDA* 0 0 0

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
H

E
 N

U
M

B
E

R
 O

F
 E

X
P

L
O

R
E

D
 S

T
A

T
E

S

128
111 109 108 104

76 70

0

30

60

90

120

150

DDQN* GA nBOA DDQN PSO plnBOA IDA*T
h

e 
to

ta
l 

o
f 

al
l 

ru
n

s

Evaluated Approaches



 

41 

 

and used to complete the dataset. The agent will go with more knowledge than the previous run in the next run. 

Fig. 34 shows the results of the sequential execution of the proposed approach in 100 seconds on the problem 

of dining philosophers with 70 philosophers. The length of the first generated witness is 139, and after five 

repetitions of the algorithm, this number is decreased to 135. 

 

Fig. 34. Improving the length of the witness by sequentially implementing the proposed approach on 

the dining philosophers problem with 70 philosophers 

 

The proposed approach provides shorter witnesses in some case studies such as 8-puzzle, N-Queen and 

dining philosophers. Table 3 fully addresses this issue. According to these results, in most case studies, the 

proposed approach with a dedicated reward has provided more optimal witnesses in terms of the length. Also, 

it is better than the general reward approach that again shows the importance of reward function. On average, 

the proposed approach is 300% better than the others in terms of generating shorter witnesses. 

Table 3 Comparing the length of the generated witnesses in all problems. 

Ranks 
DDQN* -  

DDQN 

DDQN* - 

GA 

DDQN* - 

plnBOA 

DDQN* - 

nBOA 

DDQN* - 

PSO 

DDQN* - 

IDA* 

The superiority 

of the DDQN* 8 8 9 7 6 11 

The superiority 

of the other 

approaches 

1 2 1 7 3 0 

The number of 

draws 
6 5 5 6 6 4 

 

   The reported results show that this approach searches smartly and explores fewer states than other approaches 

to reach the goal in most experiments. The relevant statistics are presented in Error! Reference source not 

found.. It is clear that the proposed approach has performed better in terms of efficiency exploring among the 

139 139 139

138

135

133

134

135

136

137

138

139

140

The first witness The second witness The third witness The fourth witness The fifth witness

T
h

e 
le

n
g
th

 o
f 

g
en

er
at

ed
 

w
it

n
es

s

The witnesses



 

42 

 

tested approaches. Our approach is 60% better than nBOA and 125% better than GA and PSO, and on average, 

it is 400% better than the others in terms of exploring fewer states. 

Table 4 Comparing the number of explored states in all problems. 

Ranks 
DDQN* -  

DDQN 

DDQN* - 

GA 

DDQN* - 

plnBOA 

DDQN* - 

nBOA 

DDQN* - 

PSO 

DDQN* - 

IDA* 

The superiority of 

the DDQN* 5 9 14 8 9 15 

The superiority of 

the other 

approaches 

8 4 1 5 4 0 

The number of 

draws 
2 2 0 2 2 0 

 

    The results obtained from the average running time from all experiments are evaluated by the Wilcoxon 

signed-rank test [32] and provided in  

 Table 5. In the Wilcoxon signed-rank test, if the decision criterion (sig.) is less than 0.05, it shows that 

there is a significant difference between two groups of data, i.e. comparison of the average running time of two 

different approaches. Also, in this test, it is assumed that a positive rank means DDQN* approach is faster than 

the other approach. Otherwise, it is slower. As it turns out, the proposed approach with a dedicated reward is 

significantly faster than the general reward one and also the IDA* approach. However, the opposite is true for 

comparison with the nBOA approach. According to the results of  

 Table 5, where the value of the signed number of standard deviations (Z) comparing the DDQN* and nBOA 

approaches based on positive ranks, it shows that nBOA approach is much faster. However, the proposed 

approach is slightly faster than plnBOA. In the case of other approaches, the overall speed has not changed at 

all. 

 

 Table 5 Results of the Wilcoxon signed-rank test. 

 DDQN*- DDQN DDQN*-GA DDQN*-plnBOA DDQN*-nBOA DDQN*- PSO DDQN*-IDA* 

Z -2.158a -0.057b -0.057a -1.988b 0 -2.613a 

Sig. 0.031 0.955 0.307 0.047 1.0 0.009 

a. Based on positive ranks 

b. Based on negative ranks 

6. Conclusion and future works 

Model-checking is one of the well-known and formal techniques in the verification of software systems 

and is used to check some properties such as reachability. The goal of satisfying reachability property is to find 



 

43 

 

the desired state in the state space. However, applying this technique may lead to the state space explosion 

problem in which all reachable states cannot be checked due to computational limitations. Some approaches 

such as GA and PSO have been proposed to handle this problem. These approaches intelligently explore only 

a portion of the state space instead of an exhaustive exploration. The proposed approach in this paper is based 

on deep reinforcement learning and can explore the state space by using machine learning and also interacting 

with the environment. In this way, the agent will perform an action and wait for the environment to give it a 

reward or penalty. Afterwards, the agent will remember the performed action and its result and try to perform 

better action based on its experiences. In this paper, two types of rewards are given to the agent: (1) Dedicated 

reward for each problem and (2) General reward for all problems. The proposed approach proves that it has 

good potential in providing optimal performance in terms of shorter generated witnesses, fewer explored states 

and higher accuracy in finding the goal state than other approaches. Also, changing the rewards for each 

problem causes the agent's behaviour changes in the environment to search for a goal state. Eventually, the 

proposed approach proves that it can improve the generated witness after the sequential execution of the 

algorithm. 

Advantages of the proposed approach: 

From the results, these advantages can be concluded: 

1. The proposed approach performs better than other case studies in terms of accuracy 

2. Can provide shorter witnesses at first and also after sequentially running of the algorithm 

3. Searches smartly and explores fewer states than other approaches 

4. The user can quickly solve the desired problem by designing and modifying the dedicated reward 

function. The different results from the proposed approach with the general reward and the dedicated 

reward prove this. 

 

Limitations of the proposed approach: 

Due to the many calculations of the proposed approach to get the reward's value in each state, other approaches 

can find the goal state faster. However, their generated witness is not necessarily optimized. We should 

remember that the time factor cannot be ignored, and our resources are limited. Reward function has an 

important role in the proposed approach and is used as a guide for an agent. So, eliminating the reward function 

is inevitable. However, it can be optimized. 

 

Recommendations: 

Future works can be considered as follows: 

 There are many approaches, such as Actor-Critic and Policy Gradient, in the field of reinforcement learning 

that can be implemented. The Policy Gradient method calculates the reward at the end of each path. Thus, 

it is no need to calculate the reward on each step. 



 

44 

 

 Instead of randomly selecting rules at the beginning of the search process to complete the dataset for the 

neural network, more efficient methods can be used to build this dataset. 

 It is also possible to optimize the general reward function so that the calculations of this function are more 

accurate and faster than before. 

 Instead of a random selection, the experience batch can be fetched more intelligently from experience 

replay memory to train the neural network, which results in more accuracy.  



 

45 

 

References 

[1] C. Baier and J.-P. Katoen, Principles of model checking. MIT press, 2008. 

[2] S. Demri, F. Laroussinie, and P. Schnoebelen, "A parametric analysis of the state-explosion problem 

in model checking," Computer and System Sciences, vol. 72, no. 4, pp. 547-575, 2006. [Online]. 

Available: https://www.sciencedirect.com/science/article/pii/S0022000005001297. 

[3] R. Yousefian, V. Rafe, and M. Rahmani, "A heuristic solution for model checking graph 

transformation systems," Applied Soft Computing, vol. 24, pp. 169-180, 2014. [Online]. Available: 

https://www.sciencedirect.com/science/article/abs/pii/S1568494614003305. 

[4] E. Snippe, "Using heuristic search to solve planning problems in GROOVE," in 14th Twente Student 

Conference on IT, University of Twente, 2011. [Online]. Available: 

https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_

Problems_in_GROOVE. [Online]. Available: 

https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_

Problems_in_GROOVE 

[5] E. Pira, V. Rafe, and A. Nikanjam, "Deadlock detection in complex software systems specified through 

graph transformation using Bayesian optimization algorithm," Systems and Software, vol. 131, pp. 

181-200, 2017. [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S0164121217301061. 

[6] G. Rozenberg, Handbook of Graph Grammars and Comp. World scientific, 1997. 

[7] A. Rensink, "The GROOVE simulator: A tool for state space generation," in International Workshop 

on Applications of Graph Transformations with Industrial Relevance, 2003: Springer, pp. 479-485. 

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-25959-6_40. [Online]. 

Available: https://link.springer.com/chapter/10.1007/978-3-540-25959-6_40 

[8] J. Maeoka, Y. Tanabe, and F. Ishikawa, "Depth-first heuristic search for software model checking," in 

Computer and Information Science 2015: Springer, 2016, pp. 75-96. 

[9] R. Yousefian, S. Aboutorabi, and V. Rafe, "A greedy algorithm versus metaheuristic solutions to 

deadlock detection in Graph Transformation Systems," Intelligent and Fuzzy Systems, vol. 31, no. 1, 

pp. 137-149, 2016. [Online]. Available: 

https://www.researchgate.net/publication/301542900_A_greedy_algorithm_versus_metaheuristic_so

lutions_to_deadlock_detection_in_Graph_Transformation_Systems. 

[10] V. Rafe, M. Darghayedi, and E. Pira, "MS-ACO: a multi-stage ant colony optimization to refute 

complex software systems specified through graph transformation," Soft Computing, vol. 23, no. 12, 

pp. 4531-4556, 2019. 

[11] E. Pira, V. Rafe, and A. Nikanjam, "Using evolutionary algorithms for reachability analysis of complex 

software systems specified through graph transformation," Reliability Engineering & System Safety, 

vol. 191, p. 106577, 2019. 

[12] E. Pira, V. Rafe, and A. Nikanjam, "Searching for violation of safety and liveness properties using 

knowledge discovery in complex systems specified through graph transformations," Information and 

Software Technology, vol. 97, pp. 110-134, 2018. [Online]. Available: 

https://www.sciencedirect.com/science/article/abs/pii/S095058491830003X. 

[13] E. Pira, "A novel approach to solve AI planning problems in graph transformations," Engineering 

Applications of Artificial Intelligence, vol. 92, p. 103684, 2020. [Online]. Available: 

https://www.sciencedirect.com/science/article/abs/pii/S0952197620301214. 

[14] E. Pira, V. Rafe, and A. Nikanjam, "EMCDM: Efficient model checking by data mining for verification 

of complex software systems specified through architectural styles," Applied Soft Computing, vol. 49, 

pp. 1185-1201, 2016. [Online]. Available: 

https://www.sciencedirect.com/science/article/abs/pii/S1568494616303192. 

[15] J. Partabian, V. Rafe, H. Parvin, and S. Nejatian, "An approach based on knowledge exploration for 

state space management in checking reachability of complex software systems," Soft Computing, vol. 

24, no. 10, pp. 7181-7196, 2020. 

https://www.sciencedirect.com/science/article/pii/S0022000005001297
https://www.sciencedirect.com/science/article/abs/pii/S1568494614003305
https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_Problems_in_GROOVE
https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_Problems_in_GROOVE
https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_Problems_in_GROOVE
https://www.researchgate.net/publication/228977418_Using_Heuristic_Search_to_Solve_Planning_Problems_in_GROOVE
https://www.sciencedirect.com/science/article/pii/S0164121217301061
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_40
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_40
https://www.researchgate.net/publication/301542900_A_greedy_algorithm_versus_metaheuristic_solutions_to_deadlock_detection_in_Graph_Transformation_Systems
https://www.researchgate.net/publication/301542900_A_greedy_algorithm_versus_metaheuristic_solutions_to_deadlock_detection_in_Graph_Transformation_Systems
https://www.sciencedirect.com/science/article/abs/pii/S095058491830003X
https://www.sciencedirect.com/science/article/abs/pii/S0952197620301214
https://www.sciencedirect.com/science/article/abs/pii/S1568494616303192


 

46 

 

[16] M. Yasrebi, V. Rafe, and S. Nejatian, "An efficient approach to state space management in model 

checking of complex software systems using machine learning techniques," Journal of Intelligent & 

Fuzzy Systems, vol. 38, no. 2, pp. 1761-1773, 2020. 

[17] E. Pira, "Using knowledge discovery to propose a two-phase model checking for safety analysis of 

graph transformations," Software Quality Journal, pp. 1-28, 2021. 

[18] N. Jansen, B. Könighofer, S. Junges, and R. Bloem, "Shielded decision-making in MDPs," arXiv.org 

e-Print archive, vol. abs/1807.06096, 2018. [Online]. Available: 

https://www.researchgate.net/profile/Nils_Jansen/publication/326459531_Shielded_Decision-

Making_in_MDPs/links/5be0224e4585150b2b9faeed/Shielded-Decision-Making-in-

MDPs.pdf?origin=publication_detail. 

[19] N. Fulton and A. Platzer, "Safe reinforcement learning via formal methods: Toward safe control 

through proof and learning," in Thirty-Second AAAI Conference on Artificial Intelligence, 2018. 

[Online]. Available: 

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17376/16225. [Online]. 

Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17376/16225 

[20] T. Liu, B. Tian, Y. Ai, L. Li, D. Cao, and F.-Y. Wang, "Parallel reinforcement learning: A framework 

and case study," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 4, pp. 827-835, 2018. 

[21] A. Corradini, F. L. Dotti, L. Foss, and L. Ribeiro, "Translating Java code to graph transformation 

systems," in International Conference on Graph Transformation, 2004: Springer, pp. 383-398. 

[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-30203-2_27. [Online]. 

Available: https://link.springer.com/chapter/10.1007/978-3-540-30203-2_27 

[22] G. Taentzer, "AGG: A graph transformation environment for modeling and validation of software," in 

International Workshop on Applications of Graph Transformations with Industrial Relevance, 2003: 

Springer, pp. 446-453. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-

25959-6_35. [Online]. Available: https://link.springer.com/chapter/10.1007/978-3-540-25959-6_35 

[23] J. De Lara and H. Vangheluwe, "AToM 3: A Tool for Multi-formalism and Meta-modelling," in 

International Conference on Fundamental Approaches to Software Engineering, 2002: Springer, pp. 

174-188. [Online]. Available: https://link.springer.com/chapter/10.1007/3-540-45923-5_12. [Online]. 

Available: https://link.springer.com/chapter/10.1007/3-540-45923-5_12 

[24] G. Bergmann et al., "Viatra 3: A reactive model transformation platform," in International Conference 

on Theory and Practice of Model Transformations, 2015: Springer, pp. 101-110. [Online]. Available: 

https://link.springer.com/chapter/10.1007/978-3-319-21155-8_8. [Online]. Available: 

https://link.springer.com/chapter/10.1007/978-3-319-21155-8_8 

[25] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018. 

[26] I. A. Hosu and T. Rebedea, "Playing atari games with deep reinforcement learning and human 

checkpoint replay," arXiv.org e-Print archive, 2016. [Online]. Available: 

https://arxiv.org/abs/1607.05077. 

[27] D. P. Bertsekas, "Feature-based aggregation and deep reinforcement learning: A survey and some new 

implementations," IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 1, pp. 1-31, 2018. 

[28] H. Van Hasselt, A. Guez, and D. Silver, "Deep reinforcement learning with double q-learning," in 

Thirtieth AAAI conference on artificial intelligence, 2016. [Online]. Available: 

https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847. [Online]. 

Available: https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847 

[29] P. Duboue, The Art of Feature Engineering: Essentials for Machine Learning. Cambridge University 

Press, 2020. 

[30] V. Rafe, M. Moradi, R. Yousefian, and A. Nikanjam, "A meta-heuristic solution for automated 

refutation of complex software systems specified through graph transformations," Applied Soft 

Computing, vol. 33, pp. 136-149, 2015. [Online]. Available: 

https://www.sciencedirect.com/science/article/abs/pii/S1568494615002598. 

[31] M. Amiri, H. B. Amnieh, M. Hasanipanah, and L. M. Khanli, "A new combination of artificial neural 

network and K-nearest neighbors models to predict blast-induced ground vibration and air-

overpressure," Engineering with Computers, vol. 32, no. 4, pp. 631-644, 2016. [Online]. Available: 

https://link.springer.com/article/10.1007/s00366-016-0442-5. 

https://www.researchgate.net/profile/Nils_Jansen/publication/326459531_Shielded_Decision-Making_in_MDPs/links/5be0224e4585150b2b9faeed/Shielded-Decision-Making-in-MDPs.pdf?origin=publication_detail
https://www.researchgate.net/profile/Nils_Jansen/publication/326459531_Shielded_Decision-Making_in_MDPs/links/5be0224e4585150b2b9faeed/Shielded-Decision-Making-in-MDPs.pdf?origin=publication_detail
https://www.researchgate.net/profile/Nils_Jansen/publication/326459531_Shielded_Decision-Making_in_MDPs/links/5be0224e4585150b2b9faeed/Shielded-Decision-Making-in-MDPs.pdf?origin=publication_detail
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17376/16225
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/download/17376/16225
https://link.springer.com/chapter/10.1007/978-3-540-30203-2_27
https://link.springer.com/chapter/10.1007/978-3-540-30203-2_27
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_35
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_35
https://link.springer.com/chapter/10.1007/978-3-540-25959-6_35
https://link.springer.com/chapter/10.1007/3-540-45923-5_12
https://link.springer.com/chapter/10.1007/3-540-45923-5_12
https://link.springer.com/chapter/10.1007/978-3-319-21155-8_8
https://link.springer.com/chapter/10.1007/978-3-319-21155-8_8
https://arxiv.org/abs/1607.05077
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/download/12389/11847
https://www.sciencedirect.com/science/article/abs/pii/S1568494615002598
https://link.springer.com/article/10.1007/s00366-016-0442-5


 

47 

 

[32] F. Wilcoxon, "Individual comparisons by ranking methods," in Breakthroughs in statistics: Springer, 

1992, pp. 196-202. 

 


