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ABSTRACT
This paper introduces a new metaobject, the general-
izer, which complements the existing specializer metaobject.
With the help of examples, we show that this metaobject al-
lows for the efficient implementation of complex non-class-
based dispatch within the framework of existing metaob-
ject protocols. We present our modifications to the generic
function invocation protocol from the Art of the Metaob-
ject Protocol ; in combination with previous work, this pro-
duces a fully-functional extension of the existing mechanism
for method selection and combination, including support for
method combination completely independent from method
selection. We discuss our implementation, within the SBCL
implementation of Common Lisp, and in that context com-
pare the performance of the new protocol with the standard
one, demonstrating that the new protocol can be tolerably
efficient.

Report-No.: http://eprints.gold.ac.uk/id/eprint/9924

Categories and Subject Descriptors
D.1 [Software]: Programming Techniques—Object-oriented
Programming ; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features

General Terms
Languages, Design

Keywords
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1. INTRODUCTION
The revisions to the original Common Lisp language [14] in-
cluded the detailed specification of an object system, known
as the Common Lisp Object System (CLOS), which was
eventually standardized as part of the ANSI Common Lisp

standard [10]. The object system as presented to the stan-
dardization committee was formed of three chapters. The
first two chapters covered programmer interface concepts
and the functions in the programmer interface [15, Chapter
28] and were largely incorporated into the final standard;
the third chapter, covering a Metaobject Protocol (MOP)
for CLOS, was not.

Nevertheless, the CLOS MOP continued to be developed,
and the version documented in [7] has proven to be a rea-
sonably robust design. While many implementations have
derived their implementations of CLOS from either the Clos-
ette illustrative implementation in [7], or the Portable Com-
mon Loops implementation of CLOS from Xerox Parc, there
have been largely from-scratch reimplementations of CLOS
(in CLISP1 and CCL2, at least) incorporating substantial
fractions of the Metaobject Protocol as described.

•

CLOS

AMOP space

•

sparse slots

•
message-not-understood

Figure 1: MOP Design Space

Although it has stood the test of time, the CLOS MOP
is neither without issues (e.g. semantic problems with
make-method-lambda [2]; useful functions such as compute-

effective-slot-definition-initargs being missing from

1GNU CLISP, at http://www.clisp.org/
2Clozure Common Lisp, at http://ccl.clozure.com/
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the standard) nor is it a complete framework for the
metaprogrammer to implement all conceivable variations of
object-oriented behaviour. While metaprogramming offers
some possibilities for customization of the object system be-
haviour, those possibilities cannot extend arbitrarily in all
directions (conceptually, if a given object system is a point
in design space, then a MOP for that object system allows
exploration of a region of design space around that point;
see figure 1). In the case of the CLOS MOP, there is still
an expectation that functionality is implemented with meth-
ods on generic functions, acting on objects with slots; it is
not possible, for example, to transparently implement sup-
port for “message not understood” as in the message-passing
paradigm, because the analogue of messages (generic func-
tions) need to be defined before they are used.

Nevertheless, the MOP is flexible, and is used for a number
of things, including: documentation generation (where in-
trospection in the MOP is used to extract information from
a running system); object-relational mapping and other ap-
proaches to object persistence; alternative backing stores
for slots (hash-tables or symbols); and programmatic con-
struction of metaobjects, for example for IDL compilers and
model transformations.

One area of functionality where there is scope for customiza-
tion by the metaprogrammer is in the mechanics and seman-
tics of method applicability and dispatch. While in princi-
ple AMOP allows customization of dispatch in various dif-
ferent ways (the metaprogrammer can define methods on
protocol functions such as compute-applicable-methods,
compute-applicable-methods-using-classes), for exam-
ple, in practice implementation support for this was weak
until relatively recently3.

Another potential mechanism for customizing dispatch is im-
plicit in the class structure defined by AMOP: standard spe-
cializer objects (instances of class and eql-specializer)
are generalized instances of the specializer protocol class,
and in principle there are no restrictions on the metapro-
grammer constructing additional subclasses. Previous work
[9] has explored the potential for customizing generic func-
tion dispatch using extended specializers, but there the
metaprogrammer must override the entirety of the generic
function invocation protocol (from compute-discriminating-

function on down), leading to toy implementations and du-
plicated effort.

This paper introduces a protocol for efficient and controlled
handling of new subclasses of specializer. In particular,
it introduces the generalizer protocol class, which gener-
alizes the return value of class-of in method applicability
computation, and allows the metaprogrammer to hook into
cacheing schemes to avoid needless recomputation of effec-
tive methods for sufficiently similar generic function argu-
ments (See Figure 2).

The remaining sections in this paper can be read in any
order. We give some motivating examples in section 2, in-
cluding reimplementations of examples from previous work,

3the Closer to MOP project, at http://common-lisp.net/
project/closer/, attempts to harmonize the different im-
plementations of the metaobject protocol in Common Lisp.
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Figure 2: Dispatch Comparison

as well as examples which are poorly supported by previ-
ous protocols. We describe the protocol itself in section 3,
describing each protocol function in detail and, where ap-
plicable, relating it to existing protocol functions within the
CLOS MOP. We survey related work in more detail in sec-
tion 4, touching on work on customized dispatch schemes in
other environments. Finally, we draw our conclusions from
this work, and indicate directions for further development,
in section 5; reading that section before the others indicates
substantial trust in the authors’ work.

2. EXAMPLES
In this section, we present a number of examples of dis-
patch implemented using our protocol, which we describe
in section 3. For reasons of space, the metaprogram code
examples in this section do not include some of the neces-
sary support code to run; complete implementations of each
of these cases, along with the integration of this protocol
into the SBCL implementation [11] of Common Lisp, are
included in the authors’ repository4.

A note on terminology: we will attempt to distinguish be-
tween the user of an individual case of generalized dispatch
(the “programmer”), the implementor of a particular case
of generalized dispatch (the “metaprogrammer”), and the
authors as the designers and implementors of our general-
ized dispatch protocol (the “metametaprogammer”, or more
likely “we”).

2.1 CONS specializers
One motivation for the use of generalized dispatch is in an
extensible code walker: a new special form can be han-
dled simply by writing an additional method on the walking
generic function, seamlessly interoperating with all existing
methods. In this use-case, dispatch is performed on the
first element of lists. Semantically, we allow the program-
mer to specialize any argument of methods with a new kind
of specializer, cons-specializer, which is applicable if and
only if the corresponding object is a cons whose car is eql

to the symbol associated with the cons-specializer; these
specializers are more specific than the cons class, but less
specific than an eql-specializer on any given cons.

4the tag els2014-submission in http://christophe.
rhodes.io/git/specializable.git corresponds to the
code repository at the point of submitting this paper.
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The programmer code using these specializers is unchanged
from [9]; the benefits of the protocol described here are: that
the separation of concerns is complete – method selection is
independent of method combination – and that the proto-
col allows for efficient implementation where possible, even
when method selection is customized. In an application such
as walking source code, we would expect to encounter spe-
cial forms (distinguished by particular atoms in the car po-
sition) multiple times, and hence to dispatch to the same ef-
fective method repeatedly. We discuss the efficiency aspects
of the protocol in more detail in section 3.1.2; we present the
metaprogrammer code to implement the cons-specializer

below.

(defclass cons-specializer (specializer)

((%car :reader %car :initarg :car)))

(defclass cons-generalizer (generalizer)

((%car :reader %car :initarg :car)))

(defmethod generalizer-of-using-class

((gf cons-generic-function) arg)

(typecase arg

((cons symbol)

(make-instance ’cons-generalizer

:car (car arg)))

(t (call-next-method))))

(defmethod generalizer-equal-hash-key

((gf cons-generic-function)

(g cons-generalizer))

(%car g))

(defmethod specializer-accepts-generalizer-p

((gf cons-generic-function)

(s cons-specializer)

(g cons-generalizer))

(if (eql (%car s) (%car g))

(values t t)

(values nil t)))

(defmethod specializer-accepts-p

((s cons-specializer) o)

(and (consp o) (eql (car o) (%car s))))

The code above shows a minimal use of our protocol. We
have elided some support code for parsing and unparsing
specializers, and for handling introspective functions such
as finding generic functions for a given specializer. We have
also elided methods on the protocol functions specializer<
and same-specializer-p; for cons-specializer objects,
specializer ordering is trivial, as only one cons-specializer

(up to equality) can ever be applicable to any given argu-
ment. See section 2.3 for a case where specializer ordering
is non-trivial.

As in [9], the programmer can use these specializers to imple-
ment a modular code walker, where they define one method
per special operator. We show two of those methods below,
in the context of a walker which checks for unused bindings
and uses of unbound variables.

(defgeneric walk (form env stack)

(:generic-function-class cons-generic-function))

(defmethod walk

((expr (cons lambda)) env call-stack)

(let ((lambda-list (cadr expr))

(body (cddr expr)))

(with-checked-bindings

((bindings-from-ll lambda-list)

env call-stack)

(dolist (form body)

(walk form env (cons form call-stack))))))

(defmethod walk

((expr (cons let)) env call-stack)

(flet ((let-binding (x)

(walk (cadr x) env

(cons (cadr x) call-stack))

(cons (car x)

(make-instance ’binding))))

(with-checked-bindings

((mapcar #’let-binding (cadr expr))

env call-stack)

(dolist (form (cddr expr))

(walk form env (cons form call-stack))))))

Note that in this example there is no strict need for cons-

specializer and cons-generalizer to be distinct classes.
In standard generic function dispatch, the class functions
both as the specializer for methods and as the generalizer
for generic function arguments; we can think of the dispatch
implemented by cons-specializer objects as providing for
subclasses of the cons class distinguished by the car of
the cons. This analogy also characterizes those use cases
where the metaprogrammer could straightforwardly use fil-
tered dispatch [3] to implement their dispatch semantics.
We will see in section 2.3 an example of a case where fil-
tered dispatch is incapable of straightforwardly expressing
the dispatch, but first we present our implementation of the
motivating case from [3].

2.2 SIGNUM specializers
Our second example of the implementation and use of gener-
alized specializers is a reimplementation of one of the exam-
ples in [3]: specifically, the factorial function. Here, dispatch
will be performed based on the signum of the argument, and
again, at most one method with a signum specializer will be
applicable to any given argument, which makes the struc-
ture of the specializer implementation very similar to the
cons specializers in the previous section.

The metaprogrammer has chosen in the example below
to compare signum values using =, which means that a
method with specializer (signum 1) will be applicable to
positive floating-point arguments (see the first method on
specializer-accepts-generalizer-p and the method on
specializer-accepts-p below). This leads to one subtle
difference in behaviour compared to that of the cons spe-
cializers: in the case of signum specializers, the next method
after any signum specializer can be different, depending on
the class of the argument. This aspect of the dispatch is
handled by the second method on specializer-accepts-

generalizer-p below.

(defclass signum-specializer (specializer)

((%signum :reader %signum :initarg :signum)))

(defclass signum-generalizer (generalizer)



((%signum :reader %signum :initarg :signum)))

(defmethod generalizer-of-using-class

((gf signum-generic-function) (arg real))

(make-instance ’signum-generalizer

:signum (signum arg)))

(defmethod generalizer-equal-hash-key

((gf signum-generic-function)

(g signum-generalizer))

(%signum g))

(defmethod specializer-accepts-generalizer-p

((gf signum-generic-function)

(s signum-specializer)

(g signum-generalizer))

(if (= (%signum s) (%signum g))

(values t t)

(values nil t)))

(defmethod specializer-accepts-generalizer-p

((gf signum-generic-function)

(s specializer)

(g signum-generalizer))

(specializer-accepts-generalizer-p

gf s (class-of (%signum g))))

(defmethod specializer-accepts-p

((s signum-specializer) o)

(and (realp o) (= (%signum s) (signum o))))

Given these definitions, and once again some more straight-
forward ones elided for reasons of space, the programmer
can implement the factorial function as follows:

(defgeneric fact (n)

(:generic-function-class signum-generic-function))

(defmethod fact ((n (signum 0))) 1)

(defmethod fact ((n (signum 1))) (* n (fact (1- n))))

The programmer does not need to include a method on
(signum -1), as the standard no-applicable-method pro-
tocol will automatically apply to negative real or non-real
arguments.

2.3 Accept HTTP header specializers
In this section, we implement a non-trivial form of dispatch.
The application in question is a web server, and specif-
ically to allow the programmer to support RFC 2616 [5]
content negotiation, of particular interest to publishers and
consumers of REST-style Web APIs.

The basic mechanism in content negotiation is as follows:
the web client sends an HTTP request with an Accept

header, which is a string describing the media types it is
willing to receive as a response to the request, along with nu-
merical preferences. The web server compares these stated
client preferences with the resources it has available to sat-
isfy this request, and sends the best matching resource in its
response.

For example, a graphical web browser might send an Accept

header of text/html,application/xml;q=0.9,*/*;q=0.8

for a request of a resource typed in to the URL bar. This

should be interpreted as meaning that: if the server can
provide content of type text/html (i.e. HTML) for that re-
source, then it should do so. Otherwise, if it can provide
application/xml content (i.e. XML of any schema), then
that should be provided; failing that, any other content type
is acceptable.

In the case where there are static files on the filesystem, and
the web server must merely select between them, there is
not much more to say. However, it is not unusual for a web
service to be backed by some other form of data, and re-
sponses computed and sent on the fly, and in these circum-
stances the web server must compute which of its known
output formats it can use to satisfy the request before ac-
tually generating the best matching response. This can be
modelled as one generic function responsible for generating
the response, with methods corresponding to content-types
– and the generic function must then perform method se-
lection against the request’s Accept header to compute the
appropriate response.

The accept-specializer below implements this dispatch.
It depends on a lazily-computed tree slot to represent
the information in the accept header (generated by parse-

accept-string), and a function q to compute the (de-
faulted) preference level for a given content-type and tree;
then, method selection and ordering involves finding the q

for each accept-specializer’s content type given the tree,
and sorting them according to the preference level.

(defclass accept-specializer (specializer)

((media-type :initarg :media-type :reader media-type)))

(defclass accept-generalizer (generalizer)

((header :initarg :header :reader header)

(tree)

(next :initarg :next :reader next)))

(defmethod generalizer-equal-hash-key

((gf accept-generic-function)

(g accept-generalizer))

‘(accept-generalizer ,(header g)))

(defmethod specializer-accepts-generalizer-p

((gf accept-generic-function)

(s accept-specializer)

(g accept-generalizer))

(values (q (media-type s) (tree g)) t))

(defmethod specializer-accepts-generalizer-p

((gf accept-generic-function)

(s specializer)

(g accept-generalizer))

(specializer-accepts-generalizer-p

gf s (next g)))

(defmethod specializer<

((gf accept-generic-function)

(s1 accept-specializer)

(s2 accept-specializer)

(g accept-generalizer))

(let ((m1 (media-type s1))

(m2 (media-type s2))

(tree (tree g)))

(cond

((string= m1 m2) ’=)

(t (let ((q1 (q m1 tree)))



(q2 (q m2 tree))))

(cond

((= q1 q2) ’=)

((< q1 q2) ’>)

(t ’<))))))

The metaprogrammer can then add support for objects rep-
resenting client requests, such as instances of the request

class in the Hunchentoot5 web server, by translating these
into accept-generalizer instances. The code below imple-
ments this, by defining the computation of a generalizer

object for a given request, and specifying how to compute
whether the specializer accepts the given request object (q
returns a number between 0 and 1 if any pattern in the tree

matches the media type, and nil if the media type cannot
be matched at all).

(defmethod generalizer-of-using-class

((gf accept-generic-function)

(arg tbnl:request))

(make-instance ’accept-generalizer

:header (tbnl:header-in :accept arg)

:next (call-next-method)))

(defmethod specializer-accepts-p

((s accept-specializer)

(o tbnl:request))

(let* ((accept (tbnl:header-in :accept o))

(tree (parse-accept-string accept))

(q (q (media-type s) tree)))

(and q (> q 0))))

This dispatch cannot be implemented using filtered dispatch,
except by generating anonymous classes with all the right
mime-types as direct superclasses in dispatch order; the filter
would generate

(ensure-class nil :direct-superclasses

’(text/html image/webp ...))

and dispatch would operate using those anonymous classes.
While this is possible to do, it is awkward to express content-
type negotiation in this way, as it means that the dispatcher
must know about the universe of mime-types that clients
might declare that they accept, rather than merely the set
of mime-types that a particular generic function is capable of
serving; handling wildcards in accept strings is particularly
awkward in the filtering paradigm.

Note that in this example, the method on specializer<

involves a non-trivial ordering of methods based on the q

values specified in the accept header (whereas in sections 2.1
and 2.2 only a single extended specializer could be applicable
to any given argument).

Also note that the accept specializer protocol is straight-
forwardly extensible to other suitable objects; for exam-
ple, one simple debugging aid is to define that an accept-

specializer should be applicable to string objects. This
5Hunchentoot is a web server written in Common Lisp, al-
lowing the user to write handler functions to compute re-
sponses to requests; http://weitz.de/hunchentoot/

can be done in a modular fashion (see the code below, which
can be completely disconnected from the code for Hunchen-
toot request objects), and generalizes to dealing with multi-
ple web server libraries, so that content-negotiation methods
are applicable to each web server’s request objects.

(defmethod generalizer-of-using-class

((gf accept-generic-function)

(s string))

(make-instance ’accept-generalizer

:header s

:next (call-next-method)))

(defmethod specializer-accepts-p

((s accept-specializer) (o string))

(let* ((tree (parse-accept-string o))

(q (q (media-type s) tree)))

(and q (> q 0))))

The next slot in the accept-generalizer is used to deal
with the case of methods specialized on the classes of ob-
jects as well as on the acceptable media types; there is a
method on specializer-accepts-generalizer-p for spe-
cializers that are not of type accept-specializer which
calls the generic function again with the next generalizer, so
that methods specialized on the classes tbnl:request and
string are treated as applicable to corresponding objects,
though less specific than methods with accept-specializer

specializations.

3. PROTOCOL
In section 2, we have seen a number of code fragments as
partial implementations of particular non-standard method
dispatch strategies, using generalizer metaobjects to me-
diate between the methods of the generic function and the
actual arguments passed to it. In section 3.1, we go into
more detail regarding these generalizer metaobjects, de-
scribing the generic function invocation protocol in full, and
showing how this protocol allows a similar form of effective
method cacheing as the standard one does. In section 3.2,
we show the results of some simple performance measure-
ments on our implementation of this protocol in the SBCL
implementation [11] of Common Lisp to highlight the im-
provement that this protocol can bring over a näıve imple-
mentation of generalized dispatch, as well as to make the
potential for further improvement clear.

3.1 Generalizer metaobjects
3.1.1 Generic function invocation

As in the standard generic function invocation protocol, the
generic function’s actual functionality is provided by a dis-
criminating function. The functionality described in this
protocol is implemented by having a distinct subclass of
standard-generic-function, and a method on compute-

discriminating-function which produces a custom dis-
criminating function. The basic outline of the discriminat-
ing function is the same as the standard one: it must first
compute the set of applicable methods given particular ar-
guments; from that, it must compute the effective method
by combining the methods appropriately according to the
generic function’s method combination; finally, it must call
the effective method with the arguments.

http://weitz.de/hunchentoot/


Computing the set of applicable methods is done using a
pair of functions: compute-applicable-methods, the stan-
dard metaobject function, and a new function compute-

applicable-methods-using-generalizers. We define a
custom method on compute-applicable-methods which
tests the applicability of a particular specializer against a
given argument using specializer-accepts-p, a new pro-
tocol function with default implementations on class and
eql-specializer to implement the expected behaviour. To
order the methods, as required by the protocol, we define a
pairwise comparison operator specializer< which defines
an ordering between specializers for a given generalizer ar-
gument (remembering that even in standard CLOS the or-
dering between class specializers can change depending on
the actual class of the argument).

The new compute-applicable-methods-using-generalizers

is the analogue of the MOP’s compute-applicable-methods-
using-classes. Instead of calling it with the class-of each
argument, we compute the generalizers of each argument us-
ing the new function generalizer-of-using-class (where
the -using-class refers to the class of the generic func-
tion rather than the class of the object), and call compute-
applicable-methods-using-generalizers with the generic
function and list of generalizers. As with compute-applicable-

methods-using-classes, a secondary return value indicates
whether the result of the function is definitive for that list
of generalizers.

Thus, in generic function invocation, we first compute the
generalizers of the arguments; we compute the ordered set of
applicable methods, either from the generalizers or (if that
is not definitive) from the arguments themselves; then the
normal effective method computation and call can occur.
Unfortunately, the nature of an effective method function is
not specified, so we have to reach into implementation in-
ternals a little in order to call it, but otherwise the remain-
der of the generic function invocation protocol is unchanged
from the standard one. In particular, method combination
is completely unchanged; programmers can choose arbitrary
method combinations, including user-defined long form com-
binations, for their generic functions involving generalized
dispatch.

3.1.2 Effective method memoization
The potential efficiency benefit to having generalizer

metaobjects lies in the use of compute-applicable-methods-
using-generalizers. If a particular generalized special-
izer accepts a variety of objects (such as the signum spe-
cializer accepting all reals with a given sign, or the ac-

cept specializer accepting all HTTP requests with a par-
ticular Accept header), then there is the possibility of
cacheing and reusing the results of the applicable and effec-
tive method computation. If the computation of the appli-
cable method from compute-applicable-methods-using-

generalizers is definitive, then the ordered set of applicable
methods and the effective method can be cached.

One issue is what to use as the key for that cache. We can-
not use the generalizers themselves, as two generalizers that
should be considered equal for cache lookup will not com-
pare as equal – and indeed even the standard generalizer,
the class, cannot easily be used as we must be able to in-

validate cache entries upon class redefinition. The issue of
class generalizers we can solve as in [8] by using the wrapper
of a class, which is distinct for each distinct (re)definition of
a class; for arbitrary generalizers, however, there is a priori
no good way of computing a suitable hash key automatically,
so we allow the metaprogrammer to specify one by defining
a method on generalizer-equal-hash-key, and combining
the hash keys for all required arguments in a list to use as a
key in an equal hash-table.

3.2 Performance
We have argued that the protocol presented here allows for
expressive control of method dispatch while preserving the
possibility of efficiency. In this section, we quantify the ef-
ficiency that the memoization protocol described in section
3.1.2 achieves, by comparing it both to the same protocol
with no memoization, as well as with equivalent dispatch
implementations in the context of methods with regular spe-
cializers (in an implementation similar to that in [8]), and
with implementation in straightforward functions.

In the case of the cons-specializer, we benchmark the
walker acting on a small but non-trivial form. The imple-
mentation strategies in the table below refer to: an imple-
mentation in a single function with a large typecase to dis-
patch between all the cases; the natural implementation in
terms of a standard generic function with multiple methods
(the method on cons having a slightly reduced typecase to
dispatch on the first element, and other methods handling
symbol and other atoms); and three separate cases using
cons-specializer objects. As well as measuring the ef-
fect of memoization against the full invocation protocol, we
can also introduce a special case: when only one argument
participates in method selection (all the other required ar-
guments only being specialized on t), we can avoid the con-
struction of a list of hash keys and simply use the key from
the single active generalizer directly.

implementation time (µs/call) overhead
function 3.17
standard-gf/methods 3.6 +14%
cons-gf/one-arg-cache 7.4 +130%
cons-gf 15 +370%
cons-gf/no-cache 90 +2700%

The benchmarking results from this exercise are promising:
in particular, the introduction of the effective method cache
speeds up the use of generic specializers in this case by a fac-
tor of 6, and the one-argument special case by another fac-
tor of 2. For this workload, even the one-argument special
case only gets to within a factor of 2-3 of the function and
standard generic function implementations, but the overall
picture is that the memoizability in the protocol does in-
deed drastically reduce the overhead compared with the full
invocation.

For the signum-specializer case, we choose to benchmark
the computation of 20!, because that is the largest factorial
whose answer fits in SBCL’s 63-bit fixnums – in an attempt
to measure the worst case for generic dispatch, where the
work done within the methods is as small as possible without



being meaningless, and in particular does not cause heap
allocation or garbage collection to obscure the picture.

implementation time (µs/call) overhead
function 0.6
standard-gf/fixnum 1.2 +100%
signum-gf/one-arg-cache 7.5 +1100%
signum-gf 23 +3800%
signum-gf/no-cache 240 +41000%

The relative picture is similar to the cons-specializer case;
including a cache saves a factor of 10 in this case, and an-
other factor of 3 for the one-argument cache special case.
The cost of the genericity of the protocol here is starker;
even the one-argument cache is a factor of 6 slower than
the standard generic-function implementation, and a further
factor of 2 away from the implementation of factorial as a
function. We discuss ways in which we expect to be able to
improve performance in section 5.1.

We could allow the metaprogrammer to improve on the one-
argument performance by constructing a specialized cache:
for signum arguments of rational arguments, the logical
cache structure is to index a three-element vector with (1+

signum). The current protocol does not provide a way of
eliding the two generic function calls for the generic cache;
we discuss possible approaches in section 5.

3.3 Full protocol
The protocol described in this paper is only part of a com-
plete protocol for specializer and generalizer metaob-
jects. Our development of this protocol is as yet incomplete;
the work described here augments that in [9], but is yet rel-
atively untested – and additionally our recent experience of
working with that earlier protocol suggests that there might
be useful additions to the handling of specializer metaob-
jects, independent of the generalizer idea presented here.

4. RELATED WORK
The work presented here builds on specializer-oriented pro-
gramming described in [9]. Approximately contemporane-
ously, filtered dispatch [3] was introduced to address some
of the same use cases: filtered dispatch works by having a
custom discriminating function which wraps the usual one,
where the wrapping function augments the set of applica-
ble methods with applicable methods from other (hidden)
generic functions, one per filter group; this step is not memo-
ized, and using eql methods to capture behaviours of equiv-
alence classes means that it is hard to see how it could be.
The methods are then combined using a custom method
combination to mimic the standard one; in principle im-
plementors of other method combinations could cater for
filtered dispatch, but they would have to explicitly mod-
ify their method combinations. The Clojure programming
language supports multimethods6 with a variant of filtered
dispatch as well as hierarchical and identity-based method
selectors.

In context-oriented programming [6, 16], context dispatch
occurs by maintaining the context state as an anonymous

6http://clojure.org/multimethods

class with the superclasses representing all the currently ac-
tive layers; this is then passed as a hidden argument to
context-aware functions. The set of layers is known and
under programmer control, as layers must be defined be-
forehand.

In some sense, all dispatch schemes are specializations of
predicate dispatch [4]. The main problem with predicate
dispatch is its expressiveness: with arbitrary predicates able
to control dispatch, it is essentially impossible to perform
any substantial precomputation, or even to automatically
determine an ordering of methods given a set of arguments.
Even Clojure’s restricted dispatch scheme provides an ex-
plicit operator for stating a preference order among meth-
ods, where here we provide an operator to order specializers;
in filtered dispatch the programmer implicitly gives the sys-
tem an order of precedence, through the lexical ordering of
filter specification in a filtered function definition.

The Slate programming environment combines prototype-
oriented programming with multiple dispatch [13]; in that
context, the analogue of an argument’s class (in Common
Lisp) as a representation of the equivalence class of objects
with the same behaviour is the tuple of roles and delegations:
objects with the same roles and delegations tuple behave the
same, much as objects with the same generalizer have the
same behaviour in the protocol described in this paper.

The idea of generalization is of course not new, and arises
in other contexts. Perhaps of particular interest is general-
ization in the context of partial evaluation; for example, [12]
considers generalization in online partial evaluation, where
sets of possible values are represented by a type system con-
struct representing an upper bound. Exploring the relation-
ship between generalizer metaobjects and approximation in
type systems might yield strategies for automatically com-
puting suitable generalizers and cache functions for a variety
of forms of generalized dispatch.

5. CONCLUSIONS
In this paper, we have presented a new generalizer metaob-
ject protocol allowing the metaprogrammer to implement in
a straightforward manner metaobjects to implement custom
method selection, rather than the standard method selection
as standardized in Common Lisp. This protocol seamlessly
interoperates with the rest of CLOS and Common Lisp in
general; the programmer (the user of the custom specializer
metaobjects) may without constraints use arbitrary method
combination, intercede in effective method combination, or
write custom method function implementations. The pro-
tocol is expressive, in that it handles forms of dispatch not
possible in more restricted dispatch systems, while not suf-
fering from the indeterminism present in predicate dispatch
through the use of explicit ordering predicates.

The protocol is also reasonably efficient; the metaprogram-
mer can indicate that a particular effective method computa-
tion can be memoized, and under those circumstances much
of the overhead is amortized (though there remains a sub-
stantial overhead compared with standard generic-function
or regular function calls). We discuss how the efficiency
could be improved below.

http://clojure.org/multimethods


5.1 Future work
Although the protocol described in this paper allows for a
more efficient implementation, as described in section 3.1.2,
than computing the applicable and effective methods at
each generic function call, the efficiency is still some way
away from a baseline of the standard generic-function, let
alone a standard function. Most of the invocation pro-
tocol is memoized, but there are still two full standard
generic-function calls – generalizer-of-using-class and
generalizer-equal-hash-key – per argument per call to a
generic function with extended specializers, not to mention
a hash table lookup.

For many applications, the additional flexibility afforded by
generalized specializers might be worth the cost in efficiency,
but it would still be worth investigating how much the over-
head from generalized specializers can be reduced; one pos-
sible avenue for investigation is giving greater control over
the cacheing strategy to the metaprogrammer.

As an example, consider the signum-specializer. The nat-
ural cache structure for a single argument generic function
specializing on signum is probably a four-element vector,
where the first three elements hold the effective methods for
signum values of -1, 0, and 1, and the fourth holds the cached
effective methods for everything else. This would make the
invocation of such functions very fast for the (presumed)
common case where the argument is in fact a real num-
ber. We hope to develop and show the effectiveness of an
appropriate protocol to allow the metaprogrammer to con-
struct and exploit such cacheing strategies, and (more spec-
ulatively) to implement the lookup of an effective method
function in other ways.

We also aim to demonstrate support within this protocol
for some particular cases of generalized specializers which
seem to have widespread demand (in as much as any lan-
guage extension can be said to be in “demand”). In partic-
ular, we have preliminary work towards supporting efficient
dispatch over pattern specializers such as implemented in
the Optima library7, and over a prototype object system
similar to that in Slate [13]. Our current source code for
the work described in this paper can be seen in the git
source code repository at http://christophe.rhodes.io/

git/specializable.git, which will be updated with future
developments.

Finally, after further experimentation (and, ideally, non-
trivial use in production) if this protocol stands up to use
as we hope, we aim to produce a standards-quality docu-
ment so that other implementors of Common Lisp can, if
they choose, independently reimplement the protocol, and
so that users can use the protocol with confidence that the
semantics will not change in a backwards-incompatible fash-
ion.

5.2 Acknowledgments
We thank Lee Salzman, Pascal Costanza and Mikel Evins
for helpful and informative discussions, and all the respon-
dents to the first author’s request for imaginative uses for
generalized specializers.

7https://github.com/m2ym/optima

6. REFERENCES
[1] Craig Chambers. Predicate Classes. In Oscar

Nierstrasz, editor, ECOOP 1993 – Object-Oriented
Programming, number 707 in LNCS, pages 268–296.
Springer, 1993.

[2] Pascal Costanza and Charlotte Herzeel.
make-method-lambda considered harmful. In
European Lisp Workshop, 2008.

[3] Pascal Costanza, Charlotte Herzeel, Jorge Vallejos,
and Theo D’Hondt. Filtered Dispatch. In Dynamic
Languages Symposium. ACM, 2008.

[4] Michael Ernst, Craig Kaplan, and Craig Chambers.
Predicate dispatching: A unified theory of dispatch. In
Eric Jul, editor, ECOOP 1998 – Object-Oriented
Programming, number 1445 in LNCS, pages 186–211.
Springer, Berlin, 1998.

[5] R. Fielding, J. Gettys, J. Movil, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, IETF,
June 1999.

[6] Robert Hirschfeld, Pascal Costanza, and Oscar
Nierstrasz. Context-oriented programming. Journal of
Object Technology, 7(3):125–151, 2008.

[7] Gregor Kiczales, Jim des Rivières, and Daniel G.
Bobrow. The Art of the Metaobject Protocol. MIT
Press, Cambridge, Mass., 1991.

[8] Gregor Kiczales and Luis Rodriguez. Efficient Method
Dispatch in PCL. In LISP and Functional
Programming, pages 99–105, Nice, 1990.

[9] J. Newton and C. Rhodes. Custom specializers in
Object-oriented Lisp. Journal of Universal Computer
Science, 14(20):3370–3388, 2008. Presented at
European Lisp Symposium, Bordeaux, 2008.

[10] Kent Pitman and Kathy Chapman, editors.
Information Technology – Programming Language –
Common Lisp. Number 226–1994 in INCITS. ANSI,
1994.

[11] C. Rhodes. SBCL: A Sanely-Bootstrappable Common
Lisp. In Robert Hirschfeld and Kim Rose, editors,
Self-Sustaining Systems, number 5146 in LNCS, pages
74–86. Springer-Verlag, Berlin, 2008. Presented at
Workshop on Self-Sustaining Systems, Potsdam, 2008.

[12] Erik Ruf. Topics in Online Partial Evaluation. PhD
thesis, Stanford, California, USA, 1993.

[13] Lee Salzman and Jonathan Aldrich. Prototypes with
Multiple Dispatch: An Expressive and Dynamic
Object Model. In Andrew P. Black, editor, ECOOP
2005 – Object-Oriented Programming, number 3586 in
LNCS, pages 312–336. Springer, Berlin, 2005.

[14] Guy L. Steele, Jr. Common Lisp: The Language.
Digital Press, Newton, Mass., 1984.

[15] Guy L. Steele, Jr. Common Lisp: The Language.
Digital Press, Newton, Mass., second edition, 1990.

[16] Jorge Vallejos, Sebastián González, Pascal Costanza,
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