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Abstract
The main objective of this paper is to put forward a soft-

ware process model for high-performance systems (HPS),
and to present a formal framework to describe software de-
sign methodologies (SDMs) for those systems. The frame-
work consists of two main parts: the software process ac-
tivities which characterise the development of HPS, and the
components of the SDM (concepts, artifacts, representation
and actions) which are essential for any methodology. The
framework relates these two parts by identifying generic
components of each activity in the software process that
can be used to classify and evaluate SDMs for HPS. The
framework has been formally specified using the language
Z and used to derive formal specifications of SDMs. This
is illustrated in the paper by presenting part of the specifi-
cation of oDM (an occam design method).

1 Introduction
The number of software design methodologies (SDMs)

currently available is enormous. This means that designers
and managers are faced with the difficult task of deciding
which SDM best suits their projects. Methodology and tool
developers also face problems as their methodologies and
tools must evolve to cope with technological changes.

In order to solve these problems, there is an urgent
need for models or frameworks which allow us to charac-
terise, classify and integrate SDMs and many authors have
proposed such solutions [5, 24, 3, 2]. However, most of
them concentrate only on particular properties of the life-
cycle model or software process model on which SDMs
are based, and whilst still important in enabling users to
evaluate properties of particular SDMs [5], do not go fur-
ther in considering the structure of the SDMs and their
components. When solutions do consider their structure
and components [23] it becomes possible not only to give a
more detailed comparison and evaluation of systems, but to
allow for the integration of different components of SDMs.

Unfortunately, most of these models and frameworks
are based on traditional (sequential) SDMs. Little has been
done to systematically classify and evaluate SDMs and
tools for high-performance systems (HPS) the field where
parallel computing is applied. Attempts have been made
in presenting surveys of methods and tools applied to the
development of HPS [14] but there are not frameworks
or models similar to those applied to traditional software.
There are many reasons for this, the main one being the
lack of life-cycle or software process models that describe
the development of HPS. The principal consequence is that
HPS developers cannot systematically compare the few

SDMs available. In addition, tool developers have little
insight into how their tools can be applied and integrated
to SDMs.

The main objective of this paper is to propose a charac-
terisation of the HPS software process, and present a formal
framework to describe SDMs for HPS. Although the frame-
work aims at the systematic classification of methods, it can
also be applied to the classification of tools by identifying
which components or activities they can support.

In the following section, a model of the software pro-
cess for HPS is introduced. This model is the basis for the
framework which is presented in Section 3. First, we de-
scribe existing frameworks and then informally introduce
our own. The outline of the formal specification in Z of the
framework is presented in Section 4. Section 5 presents an
example of how the framework has been used to specify
an existing SDM for HPS. Finally, Section 6 presents the
conclusions of the paper, and future work.

2 The HP Software Process
Independently of the approach taken (life cycle models

[21, 19] or software process models[2]), traditional soft-
ware development has been fully characterised by its ac-
tivities and their relationships. Unfortunately, little work
has been done to characterise the HPS software process,
one of the reasons being the young state of the field. An-
other important reason is the historical development of HPS
themselves; much of the initial work on the development of
HPS consisted of the transformation of legacy (sequential)
code into parallel code. This activity was supposed to be
performed automatically by parallelising compilers [22].
However, the resulting parallelism was considered harm-
ful and had to be hidden from the user, and consequently
HPS development was viewed merely as a small variation
of the traditional software process. The limitations of this
approach have now been recognised [1] and it is clear that
the programmer/designer must share the responsibility of
exposing parallelism. In fact, the advantages of explicit
parallelism have been recognised by certain authors for
some time [10], and there is now an urgent need for more
SDMs (and tools) which support the development of ex-
plicitly parallel programs [14].

Our process model is described in statechart [9] (Figure
1); a visual formalism which extends the notion of state
diagram with hierarchy and abstraction. States (seen as
sets) are denoted by bullets and arrows represent transitions.
If two sub-states (sets) B and C of state A do not overlap,
they are exclusive. In this case, state A can be in sub-state
B or C. Default arrows indicate default initial states. A
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Figure 1: A model of a HP software process.

default arrow pointing to a non-atomic state indicates that
every sub-state is a possible initial state. Dotted lines stands
for the (unordered) Cartesian product of states.

One of the main differences between traditional software
development and HPS development is that in the former,
performance usually plays a minor role and is only con-
sidered in the final stages of the development. For HPS,
however, performance is a dominant issue and some au-
thors claim that it should be considered in all stages of the
development [8, 15]. This means that there is some tension
between the performance activities (performance engineer-
ing activities) and the “traditional” development activities
(software engineering activities). As these activities are
usually related in different ways by tools and methods, we
have decided to consider a concurrent view of these groups
of activities (as illustrated in Figure 1). This means, for ex-
ample, that performance prototypes can be developed both
in the early stages of the development [8, 15], and after the
implementation [4].

We now describe each group of activities, starting from
the software engineering activities which are the (default)
initial state. In most cases the development starts with the
problem specification, and the eventual description of a so-
lution design (software). Traditionally, an implementation
(code) is derived later from this description, possibly as-
suming a certain environment (target machine). In terms
of HPS, however, information about the target machine
(hardware) will not only influence the implementation but
it may influence the solution itself [8]. So, the model al-
lows for the hardware description to be constructed and
analysed simultaneously with the software. This enables
us to model SDMs where the hardware-dependent designs
are derived from abstract (virtual) designs [13], and also
those where the hardware characteristics are taken into ac-
count during the design, especially to reduce “performance
design errors” [4].

Certainly, an implementation is only derived after a soft-
ware/hardware description has been produced. However,
many approaches assume the transformation of existing
programs known as parallelisation. Our model accommo-
dates these approaches by allowing the software engineer-
ing activities to start from the code generation state. Fi-
nally, the correctness of the implementation can be tested,
and possible errors can be traced by using debugging tools.

Performance engineering activities consist of measuring
the performance and then analysing of the results. For sim-
plification, the description of our model presented in this
paper shows the performance engineering activities as a
single activity. The performance measurements (statistics)

can be obtained before the program has been implemented
(using performance prediction methods) or after (using pre-
diction or monitoring methods). The statistics about pro-
gram performance produced via prediction or monitoring
are then analysed, typically with the support of visualisation
tools. The results can then be used to modify the program
or the design to improve performance. It is important to
understand that the performance measurements do not sim-
ply include time or resource usage but also scalability and
portability, which measure the relationship between the
software and hardware.

3 The Framework
3.1 Some Existing Frameworks

Davis, and Comer [5] present a framework to compare
life cycle models. This is based on five metrics which
measure properties of the life cycle and how it responds
to the evolution of the users’ needs. This framework can
help developers in evaluating how their methodologies may
react to the user needs but as it concentrates on major
properties, it does not help in the integration of components
of life cycle models or in the evaluation of supporting tools.

The framework proposed by Conrandi, Ferbström and
Fuggetta [3] concentrates on the evolutionary properties of
the software development process: it is particularly im-
portant for the systematic evaluation of the capabilities of
SDMs to support evolution.

The framework proposed by Blum [2] focuses not on
life cycle models but on the software process. The au-
thor defines the software process as a series of activities
– with respect to a software product – from conception
to implementation. He also identifies two major domains
in the software process: the problem domain where the
problem is solved, and the implementation domain where a
solution to the problem is executed. So, problem-oriented
SDMs concentrate on producing a better understanding of
the problem and its solution and product-oriented SDMs
concentrate on the generation of an implementation from
a specification. Another dimension of the framework is
the separation of SDMs based on conceptual models from
those based on formal models. Conceptual models describe
(subjective) guidelines for design decisions and validation,
whilst formal models prescribe (objective) criteria for cor-
rect behaviour of the software product.

The above frameworks focus on general properties of
SDMs, but not on their structure and components. They
do not provide the support for integration of SDMs, for ex-
ample. By contrast, the framework presented by Song and
Osterweil [24] describes the components of SDMs based
on the empirical observation of a group of existing and
relevant SDMs. The components are organised in a hierar-
chical way where the top level assumes that the objective
of SDMs is to provide a systematic way (actions) for the
production of artifacts using different representations, fol-
lowing some principles and guidelines (concepts). These
elements are then further decomposed. Thus the frame-
work allows a detailed description of SDMs and therefore
can also be used to define the possible integration of com-
ponents of different methods.

3.2 Informal Description
Our framework follows the same principle of that pre-

sented in [24] where the basic components of SDMs are



identified, and then categorised. These components are
also: Concepts, Artifacts, Representation and Actions.
However, our view of what these elements are differs from
that suggested by Song and Osterweil [24]. One of the
main reasons is that we want to present a framework which
is formally specified, and as such, some abstract notions
considered by Song and Osterweil are not relevant. An-
other important point is the nature of these components,
which depends very much on the SDMs to which the frame-
work will be applied. Song and Osterweil are interested
in problem-oriented methods whilst we are interested in
solution-oriented methods; the kind of methods usually
available for HPS.

In summary, SDMs, for us, consist of Concepts which
are basic elements that are related to form Artifacts which
are produced and manipulated by Actions. These artifacts
can be realised using different concrete Representations.
An informal description of each component is presented
below. In the next section they will be specified formally.

Concepts denote the basic (usually atomic) elements that
are used in a method; they are the raw product of the
Artifacts. They can be, for example, a task in [20] or
a template in [16]. The framework presents Concepts
which are general enough to characterise many SDMs.

Artifacts are structured elements defined from Concepts
or other Artifacts. They usually define relationships
amongst Concepts and Artifacts. For example, a
configuration of tasks in [20] or a network of tem-
plates in [16] define a relationship amongst the tasks
or templates respectively.

Representation is a concrete realisation of Artifacts. The
type of Representation of the Artifacts defines the
nature of the method in terms of its formality and
visual basis. The framework defines four categories
of Representation: Textual, Textual Formal, Struc-
tural and Formal Visual. The first category Textual,
denotes pieces of text in an informal language which
has no formal semantics. The second category is also
textual but is defined in a formal language, for ex-
ample, CSP [10]. The last two categories comprise
graphical representations but the Structural ones do
not have a formal semantics and are simply manipu-
lated as pictures whilst the Formal Visual have a for-
mal semantics and can be formally manipulated. For
example, a configuration diagram in [20] is classified
as Structural but a Petri Net in [8] is Formal Visual.

Actions denote the operations provided by SDMs for the
production and manipulation of the Artifacts. The
framework provides a collection of operations which
we believe are sufficient to characterise most SDMs
for HPS.

Having identified the basic components of the SDM, the
next part of the framework consists of a collection of ba-
sic components for the software process model, which was
presented in Section 2. This means that for each activity of
the software process its basic components (Concepts, Ar-
tifacts, Representation and Actions) are identified. The
complete structure of the framework is presented in Table
1. Below we describe the components of each activity:

Software Description: the main issue of this activity is
to decompose the system into a collection of parallel
units and to describe the relationship between them
[20]. In this case, the framework provides the con-
cept of Parallelism Units which are structured into the
Design Structure that relates the Parallelism Units.
Another important aspect of the software description
is the way the Parallelism Units behave or interact
among themselves. In the framework, this is defined
by the Behaviour Description. The Design Structure
is usually represented in a Structural way. Most SDMs
for HPS include some form of graphical representation
[14]. However, these representations do not present a
well-defined semantics and are only used to illustrate
the Design Structure. The Behaviour Description is
usually represented in a Textual form like a piece of
code or more formally (Formal Textual) using a spec-
ification language [14]. There are, however, cases
where Formal visual representations are used [14].

These artifacts are built using actions for Decompose
and Identify Parallelism Units or Selecting pre-defined
artifacts. The Behaviour Description can also be
specified (Specify) or built from pre-defined descrip-
tions [16]. The Mapping Description relates artifacts
from the Software and Hardware Description.

Hardware Description: this activity is based on the con-
cepts of hardware components which are essential for
a (parallel) machine model [26]. This description is
usually presented in a simple declarative way. Textual
representations indicating the hardware parameters are
the most common but graphical representations are
also used [27].

Code Generation & Optimisation: this activity is con-
cerned with the concept of
Program Structures which are put together to form the
Program Code. These structures can denote loops [1]
or other elementary program components [16]. The
process of code generation and optimisation basically
consist of Derive Code from the Software Description
artifacts and Transform Code to make it more suitable
for the specific hardware.

Testing & Debugging: the concepts of Test and Error
are the basic elements of this Activity. These ele-
ments are usually structured as lists which are mostly
represented textually but sometimes graphically [14].

Performance Engineering: this activity consists of
the derivation of Performance Statistics about the
Program Code or Design Structure [8]. Again, these
artifacts are represented textually but there is some
mechanism to represent them graphically [15].

One of the important aspects of the framework, as we
will see in the next section, is to enable the SDM developers,
and also their users, to classify the components of a SDM
in a systematic way. Table 1 corresponds to an archetype
methodology and the intention is to identify which of those
components a particular methodology contains. The next
section presents a formal description of the framework in
terms of Z.



Software Process Framework Components
Activities Concepts Artifacts Representation Actions
Software Parallelism Unit Design Structure (DS) Structural Decompose PU
Description Mode of Parallelism Message Structure (MS) Textual Specify MS

Synchronisation Mode Behaviour Description Formal Textual Specify Interactions
Mapping Description Formal Visual Specify Mapping

Specify PU Behaviour
Verify Interactions
Derive DS
Refine DS
Select Behaviour Template
Select Mapping Template
Select Message Template
Modify Struct/Descr

Hardware Processor Type Processor Description Structural Specify Processor
Description Memory Type Memory Description Formal Textual Specify Memory

Network Type Network Description Textual Specify Network
Virtual Description Select Network Template

Specify Virtual Network
Verify SH Suitability
Modify Description

Code Program Structure Program Code Formal Textual Derive Code
Generation & Optimisation (sequential & parallel) Structural Transform Code
Optimisation Program Skeleton Formal Visual Select Transformation

Apply Transformation
Testing & Correctness List of Tests Formal Textual Identify Error
Debugging Test List of Errors Structural Specify Test

Error Program Code Formal Visual Apply Test
Program Program Skeleton Check Property

Performance Performance evaluation Performance Model Formal Textual Select Statistics
Engineering Portability Performance Statistics Structural Select Events

Suitability List of Events Formal Visual Identify Bottlenecks
Check Property
Specify Model
Derive Model
Derive Statistics
Derive Events

Table 1: Classification of the components of the framework using the process model.

4 Formalising the Framework
4.1 Introduction to Z

The Z language [25] is based on set theory and first order
logic. It extends the use of these languages by allowing an
additional mathematical type known as the schema type.
Syntactically a schema is a box divided into two parts by a
horizontal line. There are two types of schema: state and
peration. In a state schema, the upper half is known as
the declarative part, and is used to declare variables and
their types. The second part of the state schema is known
as the predicate part, and in this part we show how the
variables are related and constrained. Each schema has a
distinct name. Semantically, a schema can be considered
as having the same type as the Cartesian product of the
types of its variables, without ordering, and with the state
space constrained by the schema predicates. State schemas
describe the possible states of a system. Modularity is
facilitated in Z by allowing schemas to be included within
other schemas.

Operations effect state, and are characterised by their
effect on the state. An operation schema relates the state
variables before and after the operation. The general opera-
tion schema has a before state (unprimed state variables), an
after state (primed state variables), inputs (question-marked
variables), outputs (exclamation-marked variables), and a

set of pre-conditions for the application of the operation.
To introduce a type where the structure of the elements

is not considered, we use the notion of a given set. For
example, [EVENT ] represents the set of all events, and
we write events : PEVENT to declare a set of events. A
relation ($), expresses some relationship between two ex-
isting types known as the source and target of the relation.
Total functions (!) and partial ( 7!) can also be defined.
In addition, Z provides a schema calculus which allows
schemas to be joined using the basic logical connectives
such as disjunction (_). The use of Z in providing frame-
works for the presentation, evaluation and comparison of
classes of systems has been shown elsewhere [6, 7, 17, 18]
and will not be considered further here.

4.2 Specifying the Framework in Z
We now provide an overview of how the framework

represents the concepts, artifacts, representations and ac-
tions of a methodology, and then describe the structure of
the framework specification. Initially, we define the con-
cepts of the system as higher-level given sets. It may also
be necessary to define given sets to represent certain sec-
ondary concepts which can not be expressed in terms of the
primary concepts.

Artifacts are the elements which are defined from the
concepts and are represented mathematically as some col-



lection of state variables – which we call artifact variables
– each describing some aspect of an artifact. The type of
any artifact variable can (and must) be expressed solely in
terms of the basic concept types. For example, suppose that
we wish to constrain particular sequences of event along a
certain channel. One means of representing this would be
to define some artifact variable with the following type

artifact var1 : Channel�P(seq Event)
so that artifact var1 could represent the set of possible

sequences of events allowed on a particular channel. This
would be legitimate so long as bothEvent andChannel are
concepts of the methodology. Artifact variables thus rep-
resent the relationships under investigation between con-
cepts, between concepts and artifacts and so on hierarchi-
cally, building up the necessary information structures to
describe the artifacts. Initially before any actions of the
method have been performed these variables are set either
to the empty set or to some system global constant. Further,
within the framework we can define state schema predi-
cates which ensure that the artifact variables are always
well-defined.

It is through repeated use of the actions of a method
that the designer can develop, decompose and refine the
artifacts of the system. The definition of these actions is
done in terms of operation schemas which effect certain
artifact variables. Lastly, representation of the artifacts
can take several forms such as code fragments, textual
descriptions and structured diagrams.

Within our framework we have defined a set of generic
state and operation schemas representing the possible arti-
facts and actions given in Table 1. We then draw from this
library as required.

4.2.1 The Specification Structure

The basic premise is to separate the concerns of artifacts
into distinct but related part activities. A part activity
corresponds to some aspect or sub-method of the whole
activity which can be considered independently. Each
part activity is then concerned with a particular artifact
and set of artifact variables, which are created only through
the use of the Actions associated with that part activity.
It might be that some part activities have to be ordered
since artifact variables of one part activity may rely on
existing artifact variabes being defined from another
part activity. Further than this, formalising an activity in
this way enables the designer to understand the nature of
information dependency within a design methodology.

Accordingly, the approach taken in the specification is to
describe each of the part activities separately. For each, we
define the general state, the initial state, the terminal state
and the operations/actions associated with that part activity
which allow the designer to achieve the terminal state from
the initial state. These terminal states can then be used by
automatic system operations known as system-inferences
which can then derive both additional design information
from the terminal states and representations of the design
information as required. For completeness in the frame-
work the automatic inference activities are included in the
general state of succeeding part activities.

Each action is specified by one or more schemas de-
scribing the successful completion of the operation and one

operation schema for each possible error case of the action.
Each error schema specifies a report to the user indicating
why the action could not be performed. The total operation
is then constructed from these schemas.

However, it may be that for any given part activity is
large and itself contains separate concerns which are so re-
lated that they must be treated simultaneously rather than
sequentially. (In fact, it may be that a method does not
lend itself to be considered in sequential part activities
at all and so must be be considered in its entirety). The
framework thus allows for each part activity’s state to be
split into sub-states, each described by a separate sub-state
schema which records the information introduced by the
designer during that part activity. This is another direc-
tion along which modularisation can take place within the
framework and allows large part activities to be decom-
posed into manageable sub-states where the relationship
between the sub-part activities is well-defined. The initial
and terminal states for each part activity are then composed
of the initial states and terminal states respectively, of each
of the part activity’s sub-states.
4.3 The Components of the Framework

For each part activity of the method we define:

1. The sub-states: as stated before, the framework makes
use of generic state and operation schemas. These can
then be re-used as required in describing the relations
that exist in a method and the actions which are defined
on these relations. In the following simple example
we introduce a generic schema which states that every
(generic) element has an associated textual descrip-
tion.

Element–State[X]
knownElements : F X
ElementDesc : X 7� DESC

dom ElementDesc � knownElements

As we will see, this schema may then be re-
used with the generic instantiated to the relevant
artifact variable under consideration.

2. The general state: using schema inclusion we define
the general state as the collection of sub-states together
with any additional constraints between the artifacts
of the sub-states included in the predicate part of the
schema.

StageNState
PartActivityN–Sub-State1

.

..
PartActivityN–Sub-Statem

Predicates Relating Sub-States

3. The initial sub-states: before any action the vari-
ables are undefined or set to system global-variables.
For example, the initial state of the previous generic
schema is given by:

Init–Element–State[X]
Element–State[X]

knownElements = ;
ElementDesc = ;



4. The general initial state: if there are m sub-states
for PartActivityN , then the general initial state is
written:

InitStageNState
Initial–PartActivityN–Sub-State1

.

..
Initial–PartActivityN–Sub-Statem

5. Actions: all operations which effect a sub-state are
defined with pre-conditions ensuring that information
is consistently maintained. For example, consider theidentify action represented by the followingoperation
schema which creates a new element from some type
and provides a textual description of this element so
updating the state of the Element–State[X] schema
previously given.

Identify–Element[X]4Element–State[X]
element? : X
description? : DESC

element? =2 knownElements
knownElements0 = knownElements [ felement?g
ElementDesc0 = ElementDesc[f(element?; description?)g

Operations are defined on the entire part activity
but in many cases only one of the sub-states of
a given part activity is actually altered. In re-
sponse, we introduce a new schema convention�PartActivityN–Sub-Statei to be used to permit
changes to only one of the component sub-state
schemas of the composite state schema which rep-
resents a given part activity. This not only makes the
schemas much more concise, but much more readable
since the sub-state that is being altered is explicitly
mentioned.�PartActivityN–Sub-Statei4StageNState� PartActivityN–Sub-State1

.

..� PartActivityN–Sub-Statei�14PartActivityN–Sub-Statei� PartActivityN–Sub-Statei+1

.

.

.� PartActivityN–Sub-Statem

6. Terminal states: the terminal sub-states are then de-
fined. For example, the terminal generic state schema
for Element–State[X] is given as follows. It insists
that every identified element has an associated de-
scription. The general terminal state can be defined in
terms of the terminal sub-states.

Term–Element–State[X]
Element–State[X]

dom ElementDesc = knownElements

5 Application of the Framework to oDM
The occam design method ( oDM ) is currently targeted

at the production of occam programs [12]. It is based on the
use of Data Flow Modelling (DFM) together with aspects
of CSP [10] and FOREST [11]. The motivation for adopt-
ing a DFM approach is that data flow diagrams (DFDs)
provide a good indication of the structure of a program and
map directly into occam. The Data Flow Model is a hierar-
chical collection of data flow diagrams. The top-level DFD
represents the main program, where nodes represent pro-
cesses (possibly executing in parallel) and arcs represent
communication channels which connect these processes.
Each process itself may be decomposed recursively into
sub-processes, which themselves are represented by DFDs.

oDM comprises eight stages which are suitable only for
the top-level design, together with two stages which are
only appropriate to the internal (lower-level) design of pro-
cesses. The strategy for applyingoDM is to recursively per-
form the stages until the designer is left only with sequen-
tial processes. The top-level design stages are: Process and
Action Structure, Data Analysis, Data-flow Analysis, Pro-
tocol Analysis,Communication Analysis, Processes Termi-
nation Analysis, Procedure Specification and Main Body
Construction. The next phase is to repeat these stages for
each of the identified top-level processes. As previously
stated, processes are recursively decomposed into subpro-
cesses, each of which is represented by a new DFD. The
lower-level design stages include all top-level design stages
plus the following: Process Structure Analysis and Mes-
sage Sending/Receiving Analysis.

Each stage of oDM is concerned with one aspect of pro-
gram design. The general approach is that, by completing
the stage, a program designer can add to the Data Flow
Model and so incrementally develop the design.

As Table 2 illustrates, according to our framework oDM
is concerned with the software description activities. Then,
using the framework, we can identify the following actions
of oDM:� Identify creates an instance of a concept-type. In oDM

this is always associated with supplying with this new
instance a textual description of its role. (The generic
state and operation schemas relating to this action were
given in the previous section).� Define creates a relationship between an artifact and
another (set of) artifact(s).� Create chooses an instance of a particular relationship
which inherits the properties of that relationship. (For
example in oDM if a process is created of a certain
process-class then the process contains an action of
each of the actionclasses associated with that process-
class.)� Modify Add takes a definition and creates an extra
mapping between an artifact and a set of artifacts.� Modify Delete takes a definition and removes one ex-
isting relationship between an artifact and set of arti-
facts.� Select takes an artifact and places it in a particular
category of concept.



Software Process Framework Components
Activities Concepts Artifacts Representation Events
Software
Description Process Design Structure Formal Textual (eg Occam Code) Identify (describe)

Event Message Structure Formal Visual (eg DFDs) Define
Channel Behaviour Description Textual (eg concept descriptions) Create

Modify add
Modify Delete
Verify
Select
Derive

Table 2: Classification of the components of oDM using the framework.� Verify takes some collection of artifacts and checks the
consistency of the information.� Derive takes information contained in existing arti-
facts and generates either new artifacts or representa-
tions.

5.1 Specification of oDM
We now show how oDM has been specified within the

formal framework. Firstly, we defined the primary concepts
of oDM as given in Table 2 using given sets:[ PROCESS; EVENT; CHANNEL]

The secondary concepts are given by[ DESC ]
Further, for the purposes of reporting, we build up new

types from these concept-types as follows:

OP ::= Create j Define j Identify j : : :
OBJ ::= Event j Process j Channel j Desc
COND ::= Already-Created j Already-Defined j : : :
REP ::= succhhOP � OBJ ii j errhhOP � OBJ � COND ii

We then treat each of the ten stages of oDM as
part activities. For the purposes of illustration we will
show how the first part activity called part activity1 is de-
rived formally from the framework. This part activity is
concerned with identifying the processes and events of a
program and defining a higher level Behaviour Description
in terms of the set of events which a process can perform.
Table 3 illustrates part activity1 of oDM.

Before we start the description of part activity1 we in-
troduce the following type synonyms, defined in terms of
our basic concepts. An EventClass is a set of Events and a
ProcessClass is a set of Processes.

EVCLASS ==PEVENT
PROCCLASS ==PPROCESS

We now show how the specification of the oDM
part activity1 can be given in terms of the framework com-
ponents given in section 4.3.

1. The sub-states: part activity1’s state is composed of
the four sub-states as follows.
EventClassState: EventClasses identified by the de-
signer and EventClassDesc is a mapping from the

EventClasses to their natural language descriptions.
Only known EventClasses can be described. This state
schema is then an instantiation of the generic library
schema Element–State[X] with variables re-named as
follows.

EventClassState b= Element–State[EVCLASS][ knownEventClasses=knownElements;
EventClassDesc=ElementDesc ]

Which is equivalent to:

EventClassState
knownEventClasses : F EVCLASS
EventClassDesc : EVCLASS 7� DESC

dom EventClassDesc � knownEventClasses

The following sub-state schemas are similarly ob-
tained through library schemas.

ProcClassState: here, AlphabetClass is a mapping
from the ProcessClasses to a set of EventClasses,
knownProcClasses is the set of all the ProcessClasses
defined by the designer and ProcClassDesc is a map-
ping from ProcessClasses to their descriptions. Fur-
ther, every known ProcessClass must have a set of
EventClasses and only known ProcessClasses can be
described.

ProcClassState
AlphabetClass : PROCCLASS 7! F EVCLASS
knownProcClasses : F PROCCLASS
ProcClassDesc : PROCCLASS 7� DESC

knownProcClasses = dom AlphabetClass

dom ProcClassDesc � knownProcClasses

ResClassState: we have that knownResClasses is the
set of all system Resource Classes.

ResClassState
knownResClasses : F PROCCLASS

ProcState: in this schema we have that classofProcess
and classofEvent are mappings from Processes and
Events to their ProcessClass and EventClass respec-
tively, knownProcesses is the set of all the defined
Processes, knownActions is the set of all the Events
created by the system and alphabet is a mapping



Software Process Framework Components
Activities Concepts Artifacts Representation Events
Software Description (part activity1)

Process Design Structure Textual Identify (ActionClass)
Action Formal Visual Define(ProcessClass)

Create(Process)
Derive(Events)

Table 3: Classification of the components of part activity1 using the framework.

from a Process to its Event alphabet. In addi-
tion, every known event/process belongs to an Event-
Class/ProcessClass, only known processes can have
their event alphabets defined, and only known Events
can be used in the alphabet of a Process.

ProcState
classofProcess : PROCESS 7! PROCCLASS
classofEvent : EVENT 7! EVCLASS
knownProcesses : F PROCESS
knownActions : F EVENT
alphabet : PROCESS 7! F EVENT

knownProcesses = dom classofProcess
knownActions = dom classofEvent

dom alphabet � knownProcessesS(ran alphabet) � knownActions

2. The general state: this schema represents the general
state information of part activity1. The constraints
in this schema relate the observations from the dif-
ferent sub-states: only known EventClasses can be
allocated to an Alphabet Class; the known Resource
Classes are a subset of the known ProcessClasses; the
known Resources are a subset of the known Processes;
only Events of known Event Classes can be created,
and only Processes of known ProcessClasses can be
created.

PartActivity1State
EventClassState
ProcClassState
ResClassState
ProcStateS(ran AlphabetClass) � knownEventClasses

knownResClasses � knownProcClasses

ran classofEvent � knownEventClasses
ran classofProcess � knownProcClasses

3. The initial sub-states: there are four initial sub-states
corresponding to each of the sub-states. The initial
state of EventClassState is defined using a library
schema Init–Element–State[X]:

Init–EventClassStateInit–Element–State[EVCLASS][ knownEventClasses=knownElements;
EventClassDesc=ElementDesc ]

which is equivalent to:

Init–EventClassState
EventClassState

knownEventClasses = ;
EventClassDesc = ;

The other initial sub-states are defined similarly.

4. The general initial state: part activity1’s initial state
is comprised of the four initial sub-states.

Init–PartActivity1State
PartActivity1State

Init–EventClassState
Init–ProcessClassState
Init–ResourceClassState
Init–ProcessState

5. Actions: we now give an example of an action be-
longing to this part activity known as CreateProcess.
This operation creates an instance of a ProcessClass.
When a Process is created a new set of Events must
be created by oDM. One new Event is created for each
EventClass in the Alphabet Class of the ProcessClass
of the Process being created. The pre-conditions for
the operation are that the ProcessClass is known and
the new Process is unknown. The first schema de-
scribes the role of the designer and the second the role
of the CASE tool supporting oDM. In terms of the ac-
tions of the framework this is a create action followed
by a derive action.

Create–Process�ProcState

pc? : PROCCLASS
p? : PROCESS

pc? 2 knownProcClasses
p? =2 knownProcesses

classofProcess0 = classofProcess [ f p? 7! pc? g
knownProcesses0 = knownProcesses [ f p? g
Derive–Events�ProcState

pc? : PROCCLASS
p? : PROCESS9 f : EVENT 7� EVCLASSj #(dom f ) = #(AlphabetClass(pc?)) ^(dom f \ knownActions) = ; ^

ran f = AlphabetClass(pc?) �
alphabet0 = alphabet[f p? 7! (dom f ) g ^
classofEvent0 = classofEvent [ f ^
knownActions0 = knownActions [ (dom f )



In Z the successful operation is defined as follows:

ReportSuccess–CreateProcess b= [ report! : REP j
report! = succ(Create; Process) ]

CreateProcess–OK b= Create–Process^ Derive–Events ^ ReportSuccess–CreateProcess

It can be seen that defining the CreateProcess–OK op-
eration in terms of a create action followed by a derive
action makes clear the distinction between informa-
tion provided by the designer and that automatically
derived during application of oDM. Another advan-
tage of modularising our general state schemas into
sub-states is that, since typically an operation will ef-
fect just one of the sub-state schemas, there will be
no state change to the other components of the gen-
eral part activity state schema. In this operation, for
example, the only sub-state which is affected is the
ProcState; there is no state change to any of the other
three modular components.

6. Terminal sub-states and general state: we first de-
fine the terminal sub-states for each of the sub-state
schemas of part activity1 by instantiation of the rele-
vant generic schema

Term–EventClassState b= Term–Element–State[EVCLASS][knownEventClasses=knownElements;
EventClassDesc=ElementDesc ]

which is equivalent to the following schema which
states that all EventClasses have been described.

Term–EventClassState
EventClassState

dom EventClassDesc = knownEventClasses

The other terminal sub-states are defined similarly
and the final terminal schema which specifies the
completion of part activity1 in oDM is given as fol-
lows. The schema constraints relate the different
artifact variables from the different terminal sub-
states. In this case, all known EventClasses have been
allocated to at least one Alphabet Class and there is
at least one instance of each EventClass and Process-
Class.

Terminal–PartActivity1State
PartActivity1State

Term–EventClassState
Term–ProcessClassState
Term–ResourceClassState
Term–ProcessStateS(ran AlphabetClass) = knownEventClasses

ran classofEvent = knownEventClasses
ran classofProcess = knownProcClasses

Typically, on completion of a part activity further ‘de-
rive’ actions take place. For example, the known re-
sources of the design are compiled automatically from
part activity1’s terminal state as follows:

SystemDeriveFromPartActivity1State
Terminal–PartActivity1State
knownRes : F PROCESS

knownRes = dom (classofProcessB knownResClasses)
After this has been achieved, the designer moves on
to the next part activity and repeats the process out-
lined above. In general, whilst the designer has read
access to previously defined information from preced-
ing part activities, they can not alter this information.
Operation schemas on a general state thus take the
following general form.

OperationOnCurrentPartActivityState4CurrentPartActivityState� Inference–From–PreviousPartActivityState
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6 Conclusions
Although HPS are now widely available, little work has

been done in trying to support SDM developers in pro-
ducing methods and tools for the development of these
systems. More importantly, we have not seen any attempt
in systematically classifying and evaluating the SDMs cur-
rently available. This paper puts forward the first solution
in this direction – a formal framework for describing SDMs
for HPS. The framework can be used informally to clas-
sify SDM and tools but one of its important properties is
to allow the derivation of a formal specification of a given
methodology. By applying this approach to an existing
methodology known as oDM we have encountered a num-
ber of benefits to the method. First, as direct result of the
Z specification, the method has been made more precise,
rigorous and complete. Informal aspects of oDM have been
isolated and refined, inconsistencies have been removed
and new notions introduced. In addition, there is now an
increased understanding and representation of the relation-
ships between components of the SDM. Further, the role
of the designer, the role of a supporting CASE tool and the
interaction between the designer and the tool can be fully
defined within the framework.

We have found Z an ideal means of formally present-
ing a design methodology. Through the use of an abstract
specification we do not restrict a specifier to any particular
mathematical model; rather it provides a general mathe-
matical framework within which particular systems can be
defined and contrasted.

The next step in the evaluation of the framework will be
to apply it to the SEPP project (Software Engineering for
Parallel Processing) funded by the EEC and partially devel-
oped at the University of Westminster. The methodology
behind the SEPP project is very informal but the software
development environment it proposes covers many of the
activities included in our software process model. We be-
lieve that the framework will help in formalising the re-
lationships and roles of the tools within the environment,
thereby formally structuring the methodology.
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