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Abstract 
Gesture-based interaction is widespread in touch screen 
interfaces. The goal of this paper is to tap the richness 
of expressive variation in gesture to facilitate 
continuous interaction. We achieve this through novel 
techniques of adaptation and estimation of gesture 
characteristics. We describe two experiments. The first 
aims at understanding whether users can control 
certain gestural characteristics and if that control 
depends on gesture vocabulary. The second study uses 
a machine learning technique based on particle filtering 
to simultaneously recognize and measure variation in a 
gesture. With this technology, we create a gestural 
interface for a playful photo processing application. 
From these two studies, we show that 1) multiple 
characteristics can be varied independently in slower 
gestures (Study 1), and 2) users find gesture-only 
interaction less pragmatic but more stimulating than 
traditional menu-based systems (Study 2).  
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Introduction 
Gestural interaction has become commonplace in 
consumer electronics. Finger gestures captured on 
touch screens provide intuitive ways to interface with 
complex tasks, and some gestures such as pinch-zoom 
have become iconic. Most techniques for coding gesture 
are based on forms of activity detection that involve 
recognition of gesture in unitary form. Meanwhile users' 
casual perception of the potential of gestural input goes 
beyond simple recognition. People imagine gestural 
interaction to be intuitive and continuous, where 
aspects of a gesture organically map onto the response 
of an interactive system. What are the ways in which 
we might capture gesture quality to enable forms of 
continuous interaction? 

These challenges point out the need to better 
understand the elements at play when a user swipes a 
finger across a touchscreen. What qualities make up 
that gesture? Are they reproducible? Are they similar 
across users? If a user does the same gesture in a 
different way, what does it reflect? Rather than 
suppress inter-gesture and inter-user variation, can we 
use these differences to extract expressive vectors from 
a gesture and its component qualities? 

This paper looks at ways to capture gesture variations 
as expressive vectors for continuous human-computer 
interaction. The goal is to exploit the simultaneous 
identification and estimation of gesture and its variation 
for use in user interface operations that link UI actions 
of selection and modification. Gesture-based selection 
requires low latency, early recognition that identifies an 

incoming gesture as quickly as possible. Modification of 
an application UI parameter is then controlled by 
continuous variation in the way the gesture is 
articulated.  

Using gestures in such a compound fashion raises 
several challenges. First, there is a question of which 
gesture characteristics can be controlled. What 
characteristics of gesture can users consciously control? 
What are the conditions for simultaneous control of 
multiple characteristics? And does it depend on the 
gesture in play? 

Second, there is a question of how to use manipulating 
gesture variation in an expressive way in continuous 
interaction. Can we combine unitary selection and 
continuous parameter control? How does the user 
perceive such control?  

To explore these challenges, we propose a two-stage 
study. The first experiment is a quantitative study on 
gesture performance with combinations of variations. 
Then we implement an advanced machine learning 
system that allows recognizing gesture and assessing 
its variation. The second experiment is a qualitative 
study in which we examine subjective impressions of 
the attractiveness of gesture selection/manipulation in 
a ludic real world application. The results provide 
important complementary clues to guide the design of 
gesture-based continuous interaction. 

Related Work 
Gesture Design 
Designer-centered approaches to gesture consider 
ergonomics and technical constraints [14]. Ergonomics 
form the underlying metrics for characterizing ballistic 



 

movements like pointing [7] or reaching [15]. Specific 
features of recognition systems can steer the design of 
gesture vocabularies to guarantee high recognition 
success rates [14].  
 
In user-centered approaches to gesture design, Long et 
al. [11] asked users to rate similarity between shape-
based gestures to define a vocabulary avoiding 
ambiguity. Wobbrock et al. [21] asked participants to 
perform gestures corresponding to a given command in 
order to arrive at a tabletop gesture vocabulary. Kane 
et al. [9] seek to better understand the difference 
between gesture vocabularies created by sighted and 
blind people. Bragdon et al. [4] extend this approach 
by looking at environmental demands on attention.  

Recognition and Classification of Gestures 
There exist a number of techniques for gesture 
recognition. Rubine using a Single-Path recognizer 
[17], and Wobbrock using the $1 Recognizer [20] show 
that shape-based methods are efficient in HCI 
applications. Some techniques such as Dynamic Time 
Warping take into account temporal profiles of gestures 
by defining one template per class.  

Methods based on machine learning make use of 
multiple examples to derive gesture classes. 
Established methods include Hidden Markov Models 
(HMM) [12] for time-dependent signals and Support 
Vector Machines (SVM) for static patterns. A training 
procedure is needed to estimate model parameters that 
best fit the data - the resulting models are able to take 
into account gesture variations present in the database. 
Building up comprehensive databases, however, are 
time-consuming and are not well suited for user-centric 
approaches.  

Hybrid methods implement template-based approaches 
while using statistical recognition algorithm [2, 3, 5, 
16]. The method presented in this paper belongs to this 
category. 

Variations and Invariance 
Inter-user variation is a key challenge for recognition 
and generalization. Recognition accuracy is generally 
diminished when a particular user's data is not in the 
original training set. Large multi-user databases are a 
brute-force solution that remains inelegant and 
impractical. Adaptation procedures that modify the 
class description during recognition have been 
described for both template-based methods [5, 10] and 
those using statistical learning [18, 19]. Some work 
makes direct use of gesture variation in the interaction 
process [6, 19]. These approaches remain largely 
unexplored and confined to the study of gesture in 
subjective art performance contexts but provide 
potentially powerful tools for continuous interaction 
scenarios. 

Continuous interaction and early recognition 
Most recognition systems output results in discrete 
time, typically upon gesture completion. There are 
some systems that continuously report estimation on 
gesture classes or characteristics [2, 5, 13], allowing 
for prediction and “early recognition” that could 
enhance the fluidity of continuous interaction [1]. A 
tradeoff exists between low latency recognition and 
recognition accuracy. 

Study 1: Control of Gesture Variations 
We first conducted a task-oriented study to look at 
dependencies between gestures and their variations. 
We recruited 13 participants (3 female, 10 male) for 



 

this experiment, ranging in age between 25 and 49 
with a mean age of 33. Each subject took an individual 
45-minute session and was recompensed GBP10 for 
their participation. Participants' gestures were captured 
using a custom application based on TuioPad1 running 
on an Apple iPad. The application traced finger stroke 
gestures onscreen and sent the drawing as a series of 
time-stamped x, y coordinates over Wifi to a data 
logging computer (running the real time graphical 
programming environment Max/MSP 5 on a MacBook 
Pro OS X 10.7.4).  

Procedure 
We used Wobbrock's [21] taxonomy of surface gesture, 
of the form, static pose and path with one finger. We 
based our gesture vocabulary on perceptually different 
gestures [11] typically used for gesture recognition 
systems [20] (Figure 1).  

We looked at how participants perform the gestures 
while modifying characteristics such as: speed, size, 
and orientation. From these characteristics we created 
four unitary transformations: slower, faster, change 
size, change orientation. In order to study the 
dependency of the variations on the gesture itself and 
the inter-dependency between variations, we created a 
set of 11 combinations of these four unitary 
transformations. This final set of variations is reported 
in the Table 1. The goal of the study was to understand 
if users could successfully control multiple 
characteristics simultaneously and whether this ability 
depended on the gesture in question. 

                                                   
1 See http://code.google.com/p/tuiopad  

The experiment followed a within-subject design with 
two factors: GESTURE (G1 to G12, Figure 3) and 
VARIATION (V1 to V11, Table 1). The study was 
comprised of three steps: 1) Gesture execution with no 
variation, 2) Gesture execution with all combinations of 
variations, 3) Outgoing questionnaire. From Step 1, we 
collected 12 gestures x 3 repetitions = 36 trials for 
each of the 13 participants. Step 2 generated 12 
gestures x 3 repetitions x 11 variations =396 trials for 
each participant. We performed an a posteriori analysis, 
computing the mean relative size defined as: 

 

We also computed the mean speed, and rotation angle 
for each gesture trial. 

Results 
SIZE VARIATION 
We analyzed how both factors, GESTURE and VARIATION, 
affect the mean value of relative size (where relative 
size is based on original gesture performance with no 
variation) on two distinct subsets of variation tasks: I) 
a subset of VARIATION containing “change size” (called 
VARIATION-SUBSET I with V3, V5, V6, V9, V10, v11), and 
II) a subset containing the remaining combinations 
(called VARIATION-SUBSET II with V1, V2, V4, V7, V8). 

Looking first at the two factors, GESTURE and VARIATION-
SUBSET I, a repeated-measure ANOVA reveals a 
significant effect of GESTURE on the relative mean size 
(F(11,792)=16.0, p<0.01) while VARIATION-SUBSET I 
does not affect mean size. A post-hoc analysis using 
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Figure 4. Gesture characteristics considered in the first experiment:
speed, size, and orientation

Variations
Id. Description
V1 slower
V2 faster
V3 change size
V4 change orientation
V5 slower and change size
V6 faster and change size
V7 slower and change orientation
V8 faster and change orientation
V9 change size and orientation
V10 slower and change size and orientation
V11 faster and change size and orientation

Table 1. Set of 11 variations combinations used in Step 2 of Study 1.

Design and procedure
The experiment followed a within-subject design with two
factors: the GESTURES (G1 to G12, Figure 3) and the VARI-
ATIONS (V1 to V11, Table 1). The study was comprised of
three steps: 1.) gesture execution with no variation, 2.) ges-
ture execution with all combinations of variation, 3.) outgo-
ing questionnaire.

In Step 1., we looked at the reproducibility of gesture. The
experimental setup consisted of two screens: one for display-
ing the prototype gesture, and the second, a touchscreen for
user input. A video was shown on the display to give a dy-
namic reference of a gesture. A drawn prototype was dis-
played during the video as well as during user response, giv-
ing the participant a static visual guide. The user was shown
each gesture from the vocabulary and asked to reproduce it 3
times.

In Step 2., we examined the reproducibility of gesture when
adding variation in speed, size, or orientation. For each ges-
ture and each of 11 variation combinations, the task was to
perform the modified gesture 3 times. The same prototype
drawing and reference video from Step 1. were shown on the
display monitor with the addition of a textual description of
the variation requested.

Finally, the participants were asked to answer a multiple-
choice questionnaire to indicate which gestures and combi-
nations were easiest or most difficult.

Participants were seated in front of the iPad, which was posi-
tioned under the display monitor. The researcher was seated
next to the participant explaining the procedure and monitor-
ing its progress.

Data collection
From Step 1., we collected 3 ⇥ 12 = 36 trials for each of
13 participants. Step 2. generated 3 ⇥ 12 ⇥ 11 = 396 trials
for each participant. We performed an a posteriori analysis,
computing the mean speed, mean size and rotation angle for
each gesture trial.

Velocity is computed by fitting a B-spline basis of order 3 on
the 2-dimensional raw data. We then computed the norm of
the velocity (called speed) using functional data analysis [27].
The mean speed is obtained by averaging over the time and
the three trials for each gesture.

Size is obtained by computing the mean distance between a
gesture’s sample points and their collective centroid. When
prompted to “change size”, some participants preferred mak-
ing smaller gestures while others tended towards bigger ges-
tures. Because of this, we used relative size instead of abso-
lute size, by comparing the size from the unmodified, original
gestures of Step 1., against the size computed for the modified
gestures performed during Step 2.. Relative size was defined
as:

relative size =

s✓
1� modified size

original size

◆2

Orientation is computed by inspecting each group of 3
trials and annotating the approximate angle according to
a set of “obvious rotations”: {45�, 90�, 135�, 180�/ �
180�,�135�,�90�,�45�}. If the angle does not fit in this
set, it is tagged as “other”.

In Step 3, participants responded to each question in the ques-
tionnaire with a score between 1 and 5. We computed the
mean score for each question over all participants. Means
were compared using a T-test with a confidence level of 0.01.

Results
Size variation
We analyzed how both factors, GESTURE and VARIATION,
affect the mean value of relative size (where relative size is
based on original gesture performance with no variation) on
two distinct subsets of variation tasks: I.) a subset of VARI-
ATION containing “change size”, and II.) a subset containing
the remaining combinations (Table 2).

Looking first at the two factors GESTURE and VARIATION-
SUBSET I, a repeated-measure ANOVA reveals a significant
effect of GESTURE on the relative mean size (F (11, 792) =
16.0, p < 0.01) while VARIATION-SUBSET I does not affect
mean size (Figure 5 a) and b)). A post-hoc analysis using
Tukey’s HSD (Honestly Significant Difference) shows that
the Gesture 5 (straight line) has a significant higher relative
size than the other gestures. All the other gestures do not
exhibit significant difference in relative size (Figure 5 a)).
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Figure 1 Gesture vocabulary used in the 
first experiment 

Variations 

Id. Description 

V1 Slower 

V2 Faster 

V3 Change size 

V4 Change orientation 

V5 Slower and change size 

V6 Faster and change size 

V7 Slower and change 
orientation 

V8 Faster and change 
orientation 

V9 Change size and orientation 

V10 Slower and change size and 
orientation 

V11 Faster and change size and 
orientation 

Table 1 Set of 11 variations 
combinations used in Step 2 of Study 1. 

G1 G2 G3 G4

G5 G6 G7 G8

G9 G10 G11 G12



 

Tukey's HSD (Honestly Significant Difference) shows 
that the GESTURE factor affects mean size since Gesture 
5 (straight line) has a significantly higher relative size 
than the other gestures. All the other gestures do not 
exhibit significant difference in relative size. 

Next, looking at the influence of factors GESTURE and 
VARIATION-SUBSET II, a repeated-measure ANOVA 
reveals a significant effect of GESTURE on the relative 
mean size (F(11,660)=5.9, p<0.01) while VARIATION-
SUBSET II does not affect the mean size. As with Subset 
I, post-hoc analysis shows that the influence of GESTURE 
is due exclusively to Gesture 5, with the others giving a 
statistically insignificant difference in relative size. 

SPEED VARIATION 
Slower and faster were considered separately as 
distinct unitary transformations and formed the basis of 
two subsets of variations involving one or the other. 
VARIATION-SUBSET I contains: V1, V5, V7, V10. 
VARIATION-SUBSET II contains: V2, V6, V8, V11. We 
analyzed, for each (I, slower; II, faster), whether mean 
speed changes when varying one of the other gesture 
characteristics. 

Looking first at both factors GESTURE and VARIATION-
SUBSET I, a repeated-measure ANOVA reveals a 
significant effect of VARIATION-SUBSET I on the mean 
speed (F(3,528)=4.4, p<0.01) while GESTURE does not 
affect the speed. A post-hoc analysis shows that speed 
is significantly different for the following pairs of 
variations: V1–V10 and V5–V10 (see Table 1). 

We next consider the factors, GESTURE and VARIATION-
SUBSET II. A repeated-measure ANOVA with these two 
factors reveals a significant effect of VARIATION-SUBSET 

II on the mean speed (F(11,528)=4.5, p<0.01) as well 
as  GESTURE (F(3,528)=11.9, p<0.01). A post-hoc 
analysis shows that only Gesture 5 induces a difference 
in speed: the mean speed is significantly higher than 
for the other gestures. With VARIATION-SUBSET II, a 
significant variation in speed exists between the 
following pairs of variations:  V2–V6, V2–V11, V8–V6 
and V8–V11 (see Table 1). 

ORIENTATION VARIATION 
We looked at the participants' choices when asked to 
modify a gesture's orientation, and whether or not they 
mapped onto a set of obvious angular rotations. The 
analysis showed that the dominant angle of rotation 
chosen by the participants was -90º (28.6% of all trials 
including a change of orientation) followed by -180º 
(15.4%).  

PERCEIVED TASK DIFFICULTY 
In Step 3, we asked the participants to indicate which 
gesture characteristic they found the easiest to modify 
as well as the one they found most difficult. 69.2% of 
the participants rated size as the easiest characteristic 
to control, followed by speed (30.8%). Nobody (0%) 
rated the orientation as the easiest variation while 
76.9% of participants rated it the most difficult 
characteristic to control. This was followed by the speed 
(according to 23.1%). Size was never perceived as the 
most difficult characteristic. These results allow us to 
sort each gesture characteristic according to the 
perceived difficulty indicated by the participants. We 
obtained the following order (from easiest to most 
difficult): Size, Speed, Orientation. 



 

Observations from Study 1 
At slow gesture execution, a change of size does not 
affect the speed. Speed then increases if varying the 
orientation and even more when varying the size and 
the orientation. Since participants rated speed more 
difficult than size, and orientation more difficult than 
speed, this seems to indicate that the inter-
characteristic dependency increased as difficulty 
increased. At faster gesture execution, the 
dependencies were different. Speed increases with 
changing size. A complementary analysis shows that 
users tend to perform larger gestures when asked to 
change size. This dependency does not exist between 
speed and orientation. However, orientation has been 
shown to be rather obvious.  

Moreover, these results are independent of the gesture 
considered as long as we do not consider Gesture 5 
(which, as a straight line, is an exception due to its 
simple nature). 

Technique for Gesture Variation Estimation: 
Recognition with Adaptation 
We sought to use the knowledge gained from the 
previous results in a concrete application 
implementation that recognizes gesture and adapts to 
user controlled variation. In this section, we present a 
template-based technique for recognition coupled with 
an adaptation procedure. The method is based on 
particle filtering (PF), and allows for continuous 
recognition and early estimation of spatial and temporal 
variations while performing recognition in real time. A 
detailed description of the algorithm can be found in 
our prior work [5] (Chapter 8). 

Recognition  
Figure 2 shows the process to recognize one of 3 stroke 
gestures: square, figure-8, triangle. In an initial 
learning phase, the user (or gesture designer) performs 
each gesture once by way of example. This is stored as 
a template comprised of a time series of multi-
dimensional coordinate points. In the recognition 
phase, gesture input is captured sample by sample. The 
algorithm estimates the probability of the input against 
each gesture template. This forms a set of weights, 
each between 0 and 1 (illustrated underneath the 
template in Figure 2). At the first input sample, the 
probability distribution is uniform across the gesture 
templates. For every new incoming sample, the 
algorithm continuously updates the weights. The 
gesture is assigned to the template having the 
maximum weight. 

Adaptation 
In addition to recognition, the algorithm is able to 
adapt to a set of spatial and temporal variations: phase 
(position along the gesture template); speed (execution 
relative to timestamps in the template); scale 
(instantaneous size relative to template); orientation 
(relative angle of rotation relative to template). The 
algorithm updates the values of each characteristic at 
each new input sample, continuously estimating the 
characteristics' degree of variation with respect to the 
original templates. Figure 3 illustrates two gesture 
inputs on the left side of the figure: a gray curve is the 
template performed with a smaller size and twisted; 
the dashed curve is the template performed more 
largely. On the right, we report the estimation of the 
two characteristics, scale and orientation. The 
estimation is continuous with the initial point at time 0 
corresponding exactly to the original template (scale is 

Figure 2 A gesture is recognized across a 
set of templates in real time. A running 
probability is assigned to each, the 
maximum being the recognized gesture 
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Figure 3 Adaptation of two iterations 
with variations (dashed, solid) in scale 
and/or rotation. Continuous estimation 
of the characteristics in time. 

0

1

0

1

0

1

ge
st
ur
e

re
co

gn
iz
ed

ge
st
ur
e

pr
ob

ab
ilit
ie
s

template 1 template 2 template 3

0

1

0

1

0

1

ge
st
ur
e

re
co

gn
iz
ed

ge
st
ur
e

pr
ob

ab
ilit
ie
s

template 1 template 2 template 3

0

1

0

90º

adaptation of gesture characteristics

time

time

2

-90º

scale

angle of 
rotation



 

1 and orientation is 0). The estimated characteristics 
can be thought of as invariants in the recognition 
process. 

Study 2: Application scenario in Continuous 
interaction 
We implemented the recognition/adaptation technique 
in an end user application for use in a follow up study. 
The interface took advantage of users ability to modify 
gesture characteristics across a number of gestures. 
We tested this technique in a qualitative study to 
assess the attractiveness of using continuous variation 
of gesture to control parameters in a graphical 
application. 

We recruited 16 participants, (7 female, 9 male), 
ranging in age between 23 and 43 with a mean age of 
30. Each subject took an individual 30-minute session 
and were recompensed GBP10 for their participation. 
We developed a custom image processing program 
using the Max/MSP Jitter environment to emulate 
Apple’s Photo Booth (playful image processing on self-
portraits) and added the possibility for effects 
parameters to be controlled by different interface 
elements. Participants' gestures were captured on the 
touchscreen of an iPad and sent using the 
OpenSoundControl protocol to the host computer.   

Use case and procedure 
The application allows the user to select from one of six 
(6) different effects. The first three effects were 
geometric deformations (Tunnel, Squeeze, Dent) in 
which the deformation intensity could be controlled by 
the user. The other 3 effects paired geometric 
deformations with chromatic distortion (Tunnel + 
Contrast, Squeeze + Brightness, Dent + Saturation) 

giving two continuous parameters (see Figure 4). The 
program was set up to be controlled by one of 3 
modes:  

Menu/Slider (MS) drop-down menu for selecting 
effect and vertical slider(s) to control continuous 
parameter(s) 

Gesture/Slider (GS) gesture recognition for selecting 
the effect and an onscreen vertical slider(s) to control 
the continuous parameter(s) 

Gesture Only (GO) gesture recognition for selecting 
the effect and gesture variation(s) to control the 
continuous parameter(s) 

Both GS and GO require a gesture vocabulary. We used 
a subset of the vocabulary from Study 1. We eliminated 
the simplistic (line, Figure 1, Gesture 5) and complex 
(star, Figure 1, Gesture 6) extremes. The independence 
of gesture characteristic from gesture demonstrated in 
Study 1 enabled us to assemble a vocabulary for Study 
2 in a relatively straightforward manner (see Figure 5).  

In GS interaction, the machine learning classifier 
recognized the stroke input as one of 6 different 
gestures (Items 1-6 in Figure 5), and used the 
recognized gesture index to select the visual effect. The 
user then dialed in the effects parameter using an on-
screen slider. In this way, GS interaction replicated MS 
interaction, where the menu for effects selection was 
replaced by gesture recognition.  

In GO interaction, classification was complemented by 
adaptation to gesture variation. The adaptation feature 
of the machine learning algorithm reported the amount 

Figure 5 Gesture vocabulary used in Study 
2. Items 1-3 are used in the Gesture Only 
(GO) mode. Items 1-6 are used in the 
Gesture/Slider mode (GS) 

1 2 3

4 5 6

Vocabulary used in GS

Vocabulary used in GO

Original Picture

Tunnel

Squeeze

Dent

Tunnel+Contrast

Squeeze+Brightness

Dent+Saturation

Effects
1-Parameter Effects 2-Parameter Effects

Figure 4 Effects considered in Study 2 



 

of variation for each of 2 variations (phase and size) as 
a continuous value (0.0 - 1.0). Gesture variation was 
used to control one or two effects parameters 
separately, and consequently this mode used 3 
gestures instead of 6 (Items 1-3 in Figure 5). This was 
used alongside gesture recognition to combine the two 
step select/parametrize process into a single gestural 
act. The algorithm we used allows the visual effect to 
be selected while still drawing, and the variation on the 
gesture to parametrize, in a continuous fashion, the 
intensity of the effect. 

The experiment followed a within-subject design. The 
participants were asked to explore each of the 3 control 
modes (MS, GS, GO) by using the program taking a 
photo self-portrait and applying an effect. After trying 
each control mode, participants were asked to 
complete a questionnaire to indicate the attractiveness 
of the interaction. We used AttrakDiff2, an evaluation 
method in which the user rates a product according to 
a series of word pairs, along a 7-point scale in order to 
assess the pragmatic quality (PQ), hedonic qualities 
(stimulation HQ-S and identity HQ-I), as well as the 
overall attractiveness of a product (ATT). Participants 
evaluated 28 pairs of words, 7 pairs in each category 
(PQ, HQ-S, HQ-I, ATT), rating each pair on a scale from 
-3 (negative) to 3 (positive). Scores are then averaged 
to have one mean per category for each of the 3 modes 
of interaction (MS, GS, GO) leading to 16 x 28 x 
3=1,344 scores. 

Results 
The questionnaire results are summarized in an 
AttrakDiff Portfolio (Figure 6). Menu/Slider interaction 
                                                   

2 See http://www.attrakdiff.de/  

was rated by participants as being highly pragmatic, 
but of medium hedonic quality. Gesture/Slider 
interaction was seen nearly as pragmatic, and slightly 
more hedonic. The confidence rectangle overlaps with 
the MS results, crosses over to a less pragmatic zone, 
but stays within the same hedonic zone overall. 
Gesture Only interaction does not overlap with either 
MS or GS interaction, and is in a less pragmatic zone 
and more hedonic zone than MS interaction. On the 
pragmatic scale, the users felt that GO was distinctly 
less task-oriented than MS or GS interaction. On the 
hedonic scale, GO straddles the Neutral and Self-
Oriented zones, resulting in a rating of "fairly self-
oriented". 

Let us now compare the three modes of interaction 
along each of the four dimensions, PQ, HQ-S, HQ-I and 
ATT. Figure 7 reports averaged results for the 3 
interaction modes for each dimension.  

MS is seen as most pragmatic. We collected scores for 
all word pairs in the questionnaire in the pragmatic 
category. A statistical test (ANOVA) shows that the 
modes of interaction are not equally rated (F(2,333) = 
8.4, p<0.01), with the MS mode being evaluated as 
having a more pragmatic quality than GO mode 
(p=0.0002).  

GO ranks highest in Hedonic-Identity, Hedonic-
Stimulation, and Attractiveness, with the largest 
difference in Stimulation. In the HQ-I category, there is 
also a significant difference in how the participants 
rated each mode of interaction (F(2,333)=6.8, 
p<0.01). The GO mode returns a higher global score on 
how the users identify themselves with this mode than 
the MS mode (p=0.0007).  
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Figure 6 AttrakDiff Portfolio confidence 
rectangles, PQ vs HQ of the three tested 
modes of interaction “GO”, “GS” and “MS”. 
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In Hedonic-Stimulation, we found that GO gives 
significantly higher scores than the other two 
interaction modes (F(2,333)=34.9, p<0.01). GS also 
gives higher HQ-S scores than MS. 

For Attractiveness, users' scores were also significantly 
different according to the mode of interaction 
(F(2,333)=16.6, p<0.01). Gesture-only interaction was 
perceived to be more attractive compared to Menu-
slider or Gesture-slider interaction. 

Discussion 
Control of Gesture Characteristics 
Study 1 shows that, at slow execution, users are able 
to reliably control variations of multiple gestural 
characteristics simultaneously. At fast execution, 
certain characteristics become dependent, notably the 
speed and the size (coherent with motor control 
constraints). Globally, user ability to vary gesture 
execution does not depend on the gesture in question. 

Our machine learning algorithm was successfully 
deployed in an application use scenario. Users were 
able to use gesture and its variation as an alternative 
to classical menu-slider interaction to control an image 
processing application. Users responded positively to 
Gesture Only interaction. While they felt that traditional 
Menu-Slider interaction was more pragmatic, Gesture 
Only interaction scored high on the Hedonic scale, 
indicating that interfacing with the application in this 
manner was a pleasant experience.  

Study 2 demonstrates the potential in an open-ended 
creative task of interaction that exploits subtle 
variations in gesture input. This is grounded in Study 1 
which established the ability of users to reliably and 

deliberately exercise gestural control of temporal and 
spatial variations. This provides interaction designers 
insight on ways in which variation in gesture could be 
used expressively in the user interface, and design 
guidelines for leveraging forms of continuous control.  

Beyond Recognition 
Machine learning is typically optimized for recognition 
and classification tasks, suppressing inter-user or inter-
gesture variation by identifying invariants.  Our 
technique, based on particle filtering, provides early 
recognition then follows user gesture variation, making 
these nuances available for continuous adaptive 
control. The application in gestural UIs of the statistical 
and information analysis processes embodied in 
machine learning, is a manifestation of the convergence 
of intelligent systems and interaction design described 
by Grudin [8].  

The question remains why GO interaction was deemed 
less pragmatic but more attractive. This could be due to 
a number of reasons. Although the machine learning 
technique is robust, the technology is still young and it 
is not error free. As these techniques improve in the 
future, they could become perceived as more reliable 
for task oriented commands. The use of gesture in this 
way was new for subjects in our studies. This has dual 
consequences – it is possible that a novelty effect made 
GO interaction attractive. Would the attractiveness 
decrease as the user gets accustomed to this kind of 
interaction? At the same time, as the user becomes 
used to GO interaction, it is possible that they would 
become more adept at using it in pragmatic 
applications. 



 

This kind of interaction may take on more practical 
applicability with improvements in machine learning, 
and wider take up by users of this form of interaction. 
For the moment, GO interaction seems well suited for 
open-ended tasks such as image processing and 
exploration. The studies point out the usefulness of a 
gesture tracking technique that takes into account and 
uses gesture variation instead of suppressing them. 
Indeed, we can control them.  
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