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Abstract.
intelligence algorithms is considered — one mimicking tebdviour
of ants foraging (Stochastic Diffusion Search [5]) and tkteeo al-

gorithm simulating the behaviour of birds flocking (Pagi@warm
Optimisation [17]). This hybrid algorithm is assisted by aghanism
inspired from the behaviour of skeletal muscles activatgdnbtor

neurons. The operation of the swarm intelligence algoritlisrfirst
introduced via metaphor before the new hybrid algorithmefre:d.
Next, the novel behaviour of the hybrid algorithm is refledterough
a cooperative attempt to make a drawing, followed by a dsons
about creativity in general and the 'computational cretfivof the

swarm.

1 Introduction

In recent years, studies of the behaviour of social insects ants
and bees) and social animals (e.g. birds and fish) have prdzev-
eral new metaheuristics for use in collective intelligenteis paper
explores an artistic application of this collective inigdince, which
emerges through the interaction of simple agents (reptiegethe

social insects/animals) in two nature-inspired algorghmamely,
Particle Swarm Optimisation (PSO) [17] and Stochastic uBiffin

Search (SDS) [5]. Additionally, the mechanism of musclévatibn

is utilised to introduce the drawing with another layer ofeade

Natural examples of swarm intelligence that exhibit a fofrs@
cial interaction are fish schooling, birds flocking, ant ciés in nest-
ing and foraging, bacterial growth, animal herding, brooding etc.

The parable of thblind men and the elephastiggests how social
interactions can lead to more intelligent behaviour. Thiedus tale,
set in verse by John Godfrey Saxe [30] in the 19th centuryracha
terises six blind men approaching an elephant. They end vipda
six different ideas about the elephant, as each person pasexced
only one aspect of the elephant’s body: wall (elephant’s)sispear
(tusk), snake (trunk), tree (knee), fan (ear) and rope) (fBlile moral
of the story is to show how people build their beliefs by diragvi
them from incomplete information, derived from incomplkrewl-
edge about the world [18]. If the blind men had been commtiniga
about what they were experiencing, they would have possitfye
up with the conclusion that they were exploring the heteneges
qualities that make up an elephant.

Following other works in the field of swarm painting (e.g. [&2
33, 34] and ant colony paintings [14, 21]), this work, in dtefi to
exhibiting the cooperation of birds and ants as a new way ikimga
a drawing, benefits from the mechanism used in skeletal rasiscl

In this paper, each of the swarm intelligence algorithmgl eze
first explained (Sections 2 and 3), and an approach to thasipo
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In this work, a novel approach of merging two swarm ble integration highlighted (Section 4). Subsequentlysimeplified

mechanism of muscle activation is described (Section 8yvied by
an explanation of how the new hybrid algorithm produces auirg;
a process initially inspired by an input sketch and the rioée tnuscle
activation mechanism plays (Section 6). In Section 7 thélairm-
dividualistic approach of the swarm and their importancenaking
a drawing is highlighted, followed by future research in fileéd.

Lastly, despite the novelty of this hybrid approach, it id tiee
intention of the authors to use the results outlined in thekwmmake
either strong epistemological claims of computationabhtivity or
strong aesthetic claims of style.

2 Birds: Particle Swarm Optimisation!

Particle Swarm Optimisation (PSO), first developed in 1995 b
Kennedy and Eberhart [17, 12], is a population-based, opdition
technique which came about as a result of an attempt to graphi
cally simulate the choreography of fish schooling or birdsfiy(e.g.
pigeons, starlings, and shorebirds) in coordinated flobks $show
strong synchronisation in turning, initiation of flightscatanding.
Despite the fact that members of the swarm neither have launel
about the global behaviour of the swarm nor a global inforomat
about the environment, the local interactions of the swariggers

a complex collective behaviour, such as flocking, herdiogpsling,
exploration and foraging behaviour [27, 19, 4, 16].

A high-level description of PSO is presented in form of a abci
metaphor — Lost Child in Jungfe— demonstrating the procedures
through which the communication exchange is facilitatetivben
members of the swarm in its simplest possible form (for dedai
formal explanation and mathematical equations, see [Ty, 12

2.1 The Lost Child in Jungle

A group of villagers realise that a child is lost in a jungleartsy and
set off to find the child. Each one of the villagers is given aiteo
phone equipped with GPS that can be used to communicatehweith t
head of the village. Each villager is also provided with arylito
record some data, as explained below:

The villagers should log the location where they find the best
information so far about the child in their diaries (Perdona
Best,pbest position) and inform the head of the village about
it. Whenever they find something better that might lead to the
location of the child (a location with a better fitness thaeirtth
currentpbest), they should provide the head of the village with
the update.

4 Please note that this metaphor is presented here to givedderan idea
of how the algorithm works, without getting involved in diegd technical
issues and mathematical equations.



The head of the village is responsible to contrast alpthat’s

he has received so far from all the villagers and pick the best
one (Global Bestgbest position). The resultantbest is com-
municated back to the villagers.

Each villager, on the other hand, should log the followingéh

in his diary throughout the search:

e position
e speed (velocity) in walking
e pbest position (which is also callethemory)

Additionally, they should be able to access yiest position
from the head of the village.

In the next step, when villagers decide about their next move
from their current position, they need to consider their bests
(pbest andgbest) and their current velocity.

Thus, while each villager does not neglect his personal find-
ings, he has extra knowledge about its neighbourhood throug
gbest®; therefore, preserving a balance between exploration of
the search space (e.g. jungle, in this case), and expboitafi
potentially good areas around each villager’s persondl bes

In this example, villagers are analogous to particles in P8iaere
optimisation is based on particles’ individual experiefydest) and
their social interaction with the particle swarms (yigst).

Algorithm 1 describes the metaphor chronologically.

At the convergence of the search process, villagers arelikelst
to congregate in the area of jungle where the child is moshyito be
found; so hopefully, using this algorithm, the child is bgbti back
to his family in the village.

Algorithm 1 The Lost Child in Jungle

Villagers spread in the jungle

While ( the child is not found )
For all villagers
Evaluate the fitness of the current location
(how good the current location is
to lead to the child)

If (current location is better than pbest)

pbest = current location
If (pbest is better than gbest)
gbest = pbest
Villager decides about his next move
End
End

3 Ants: Stochastic Diffusion Search!

This section briefly introduces a multi-agent global seat op-
timisation algorithm called Stochastic Diffusion Sear@DE) [5],
whose behaviour is based on simple interaction of agents.

SDS introduced a new probabilistic approach for solving-fies
pattern recognition and matching problems. SDS, as a ragént
population-based global search and optimisation algworiik a dis-
tributed mode of computation utilising interaction betwesmple
agents [11].

Unlike many nature inspired search algorithms, SDS haagtr
mathematical framework, which describes the behaviouhefal-
gorithm by investigating its resource allocation [24], eergence to
global optimum [25], robustness and minimal convergendere
[23] and linear time complexity [26]. A social metaphtre Mining

5 The topology of the metaphor presented here is global neigtiood.

Game[1], is used to describe the mechanism through which SDS
allocates resources.

3.1 The Mining Game

This metaphor provides a simple high-level descriptionhef be-
haviour of agents in SDS, where a mountain range is divided in
hills and each hill is divided into regions:

A group of miners learn that there is gold to be found on the
hills of a mountain range but have no information regardiag i
distribution. To maximize their collective wealth, the nmaxm
number of miners should dig at the hill which has the richest
seams of gold (this information is not available a-pridm)or-

der to solve this problem, the miners decide to employ a mpl
Stochastic Diffusion Search.

e At the start of the mining process each miner is randomly
allocated a hill to mine (his hill hypothesis).

e Every day each miner is allocated a randomly selected re-
gion, on the hill to mine.

At the end of each day, the probability that a miner is happy is
proportional to the amount of gold he has found. Every exgnin
the miners congregate and each miner who is not happy se-
lects another miner at random for communication. If the cho-
sen miner is happy, he shares the location of his hill and thus
both now maintain it as their hypothesrs,if not, the unhappy
miner selects a new hill hypothesis to mine at random.

As this process is structurally similar to SDS, miners wéturally
self-organise to congregate over hill(s) of the mountaithviiigh
concentration of gold.

In the context of SDS, agents take the role of miners; actients
being 'happy miners’, inactive agents being 'unhappy nsrserd the
agent’s hypothesis being the miner’s 'hill-hypothesis’.

Algorithm 2 The Mining Game

Initialisation phase
Allocate each miner (agent) to a random
hill (hypothesis) to pick a region randomly

While (all miners congregate over the highest
concentration of gold)

Test phase
Each miner evaluates the amount of gold
they have mined (hypotheses evaluation)
Miners are classified into happy (active)
and unhappy (inactive) groups

Diffusion phase

Unhappy miners consider a new hill by
either communicating with another miner
or,if the selected miner is also
unhappy, there will be no information
flow between the miners; instead the
selecting miner must consider another
hill (new hypothesis) at random

End

4 Cooperation: Birds and Ants!

In ongoing research [2], an initial set of experiments airt@dh-
vestigate if the information diffusion mechanism deployed&DS
(“ants”) on its own improves PSO (“birds”) behaviour. Eargsults
demonstrate the high potential of this integration.



In the hybrid algorithm, each PSO particle (villager in thest.
Child metaphor) has a current position, a memory (persaoestl fo-
sition) and a velocity; each SDS agent (miner, in the Miniregr@
metaphor), on the other hand, has hypothesis (hill) andsstatppy
or unhappy).

5 The Simplified Mechanism of Muscle Activation

Motor neurons activate the skeletal muscle mainly throlmghreu-
rotransmitter Acetylcholine (Ach) at the neuromusculancfion
(NMJ). This junction is a synapse where the unmyelinatedomot

In the experiment reported here, every PSO particle is an SDEerve terminals are separated from the postsynaptic memitnaa

agent too — together term@d\gentsIn pAgent, SDS-style hypothe-

cleft that contains a basal lamina [28]. This cleft includesny pro-

ses are defined by the PSO particle positions, and an adalition t€ins including acetylcholine esterase (AChE) which hiydre ACh.

boolean variable (status) determines whether the pAgexttige or
inactive (see Figure 1).

Figure 1. pAgent

pAgent
SDS Agent
Hypothesis
Status PSO Particle

Active / Inactive @

The behaviour of the hybrid algorithm in its simplest fornpie-
sented in Algorithm 3.

Algorithm 3 Hybrid Algorithm

Initialise pAgents

While ( stopping condition is not met )
For all pAgents
Evaluate fitness value of each particle

If ( evaluation counter MOD n == 0 )
/1 START SDS
/1 TEST PHASE
for pAg = 1 to Ne-of—pAgents
r_.pAg = pick—random-pAgent()
if ( pAg.pbestFitness ()<=
r_.pAg.pbestFitness () )
pAg. setActivity (true)
else
pAg. setActivity (false)
end if
end for

// DIFFUSION PHASE
for ag = 1 to Naof_pAgents
if ( pAg.activity () == false )
r_.pAg = pick—random-pAgent()
if ( r.pAg.activity () == true )
pAg. setHypo ( tpAg.getHypo() )
else
pAg. setHypo ( randomHypo () )
end if
end for
end if
// END SDS

If (current fitness is better than pbest)
pbest = current fitness
If (pbest is better than gbest)
gbest = pbest
Particle decides about its next move
End
End

The postsynaptic membrane at the NMJ forms a series of dégsp fo
The acetylcholine receptors (AChRs) are found at the toptbiné of
these folds, whereas the voltage-gated sodium channedsmehered
at the bottom of the folds [29, 15].

The nerve action potential from the motor neuron opens geta
gated calcium channels that are located at the motor nerw-te
nal of the NMJ. The resulting influx of calcium leads to theegsle
of acetylcholine (ACh) from the motor end of the junctionarihe
synapse. Nearly 65% reaches the ACh receptors (AcHR) orotte p
synaptic membrane. Binding of two ACh to each AChR leads to
the opening of the AChR-associated ion channel, influx ofboat
(mainly sodium) and generation of an endplate potentiaP(EB1].

The EPP rapidly depolarises the postsynaptic membranetsad,
depolarization should pass a certain threshold so thagtneltage-
gated sodium channels are activated for the propagatiom afca
tion potential along the muscle fiber, once this happens thecta
contracts [10]. The extent to which the EPP exceeds thatseacg
threshold to initiate the action potential is usually cdiltbe safety
factor for neuromuscular transmission [37]. The EPP is tsivad
because the AChRs close spontaneously, ACh dissociategesand
capes by diffusion or is hydrolysed by AChE.

In this paper, the effect of the activation of voltage-gatedium
channels on muscle contraction and the way motor neuroivagect
the skeletal muscle are used for an artistic purpose.

6 The Drawing Mechanism

In this section, first the drawing made with the hybrid swatgoa
rithm (PSO-SDS) is presented and then the influence of thelmus
activation mechanism on the drawing is explored.

6.1 Birds and Ants Set off to Draw

Once the swarm (birds and ants) are presented with a sketeh (s
Figure 2), they use it as inspiration and begin making a drgwased
on the sketch, but utilising their own ‘style’.

The goal of “birds” (PSO algorithm) is to trace the lines {ggi0f
points) in the sketch, and “ants” (SDS algorithm) help thelbiin
this process as explained in Section 4. The trace of the hitdghe
footprints of the ants stay on the canvas, creating a draimsjred
by the initial sketch, followed by a signature of the swarnthat
corner of the canvas (see Figure 3).

6.2 How Muscle Contraction Shapes the Drawing

The simplified mechanism of muscle contraction is used irthe/-
ing to reflect the relation between the time spent for dravdagh
part (e.g. each line) and the form (spikes’ diameter) of treksd
representing the contracted muscles, which are visibleraf@ach
member of the swarm.
Here, in drawing, the concept of duration (for drawing a )jne

is reversely analogous to the idea of the activation of galtgated
sodium channels in the mechanism of muscle contractionghwhi



Figure 2. Sketches Provided to the Swarm

Figure 3. The Drawings of the Hybrid Swarms
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for this artistic purpose — indicates, the shorter the tithe,higher
the activation voltage-gated sodium channels, which in keads to
a bigger contraction (or shock) in each member of the swarm.

When a line is drawn faster than the other in a drawing, thieespi
formed around each member of the swarm (while drawing tha) li
is bigger (more spread on the canvas), but when a line is dsbowrer
(i.e. the pressure is higher), it will have smaller, moreirse (con-
centrated on the canvas) disk around the member of the svmen.
Figure 4.

Having the concept of contraction or 'shock’ derived fromstie
activation, Figure 5 shows the sketches drawn by the swasimgu
birds, ants and the mechanism of muscle contraction.

Although even if the hybrid swarm mechanism (of birds, ant$ a
muscle) processes the same sketch several times it will agem
two identical drawings; furthermore the outputs it produeee not
merely randomised versions of the input. This can be dematest
qualitatively by comparing the output of the hybrid swarnsteyn
with a simple randomised tracing algorithm (e.g. contragtifes 6
with Figure 7). The reason why the hybrid swarm drawings #ferel
ent from using random lines and spikes (shocked muscldsyiolg
the lines of a sketch, is that the underlying algorithms amdhma-

Figure 4. Muscle Contraction (shock) on Drawing

nism [used to coordinate the concentrations at any paatigdint on
the canvas] employ proven swarm intelligence techniquesethod
which is better (more ‘loyal’ to the original sketch) thanmple ran-
domisation, but which still has enough ‘freedom’ to ensuiginal-
ity in the resulting drawing (i.e. the swarm mechanisms emkigh-
level fidelity to the input without making an exact low-lewspy of
the sketch). Thus, despite the fact that the swarm are edmstr by
the rules they follow (see Sections 2 and 3), the stochaatts pf the
algorithms allow them to demonstrate a “regulated diffeegmather
than a simple “random difference”.



Figure 5. The Drawings of the Hybrid Swarms with Muscle Activation

(© Bird, by HybridSwarms+Muscle Activation Effect, 2011

6.3 Regulated difference versus random difference

The drawings in Figure 6 (top and middle) show two outputsiftbe
simple randomised algorithm when configured with limitedi&
tic’ freedom (i.e. there is a only small Gaussian randomadict
and direction from the lines of the original sketch); conipguthe
two drawings we note a lack of any significant difference lestw
them. Furthermore, when more ‘artistic freedom’ is grartiedhe
randomised algorithm (by further increasing the variamcthe un-
derlying Gaussian, which allows the technique to explorédemnar-
eas of the canvas), the algorithm begins to deviate exadgsiom
the original sketch. |.e. Excessive randomisation resnle poor -
low fidelity - interpretation of the original sketch (Figuebottom).
In contrast although the agents in the hybrid ‘bird, ant andcte
swarm’ are free to access any part of the canvas they natanaih-
tain recognisable fidelity to the original input. Thus it da@ seen
that simply extending a basic swarm mechanism by givingipsy
more randomised behaviour (giving it more ‘artistic freedpfails
to demonstrate that more creative drawings would be pratiuce
Thus the ‘controlled freedom’ (or tHéncture of madnes$’exhib-
ited by the hybrid swarm algorithm (induced by the stocltasitile

of the algorithms) is crucial to the resultant wband is the reason
why having the same sketch does not result in the system giraglu
identical drawings

Figure 6. The Drawings of the Swarms with Random Behaviour

Figure 7 shows a few drawings made by the hybrid swarm system,

inspired by a single input sketch. Interestingly, and peetive of
whether the hybrid swarm is ‘genuinely creative’ or not,jitdivid-

6 This freedom emerges, among other things, from the the asticity of
SDS algorithm in picking agents for communication, as welchoosing
agents to diffuse information (see Algorithm 2); and thettime of madness
in PSO algorithm is induced via its strategy of spreadintagérs in the
jungle as well as the stochastic elements in deciding themexe of each
villager (see Algorithm 1).

7 Although the algorithms (PSO and SDS) and the mechanisntetakenus-
cle activation) are biologically inspired we do not clainatihe presented
work is an accurate model of natural systems. Furthermadesigning the
algorithm there was no explicit ‘Hundertwasser-like’ atf@ - by which
we mean stress on using curves instead of straight linesuadéditwasser
considered straight lines not nature-like and ‘godless @ied not to use
straight lines in his works - to bias the style of the systedn&vings.



ualistic style is not totally dissimilar to those of the ‘plant artists’
[36]):

“After | have handed the loaded paintbrush to [the elephhnts
they proceed to paint in their own distinctive style, witlickte
strokes or broad ones, gently dabbing the bristles on thepap
or with a sweeping flourish, vertical lines or arcs and loops,
ponderously or rapidly and so on. No two artists have the same

style”

Figure 7. Different Drawings of the Hybrid Swarms off a Single Sketch

(© Bird #2, by HybridSwarms+Muscle Activation Effect, 2011

7 Discussion on Creativity

In this section, the aim is to discuss whether the hybrid swakF
gorithms can in some sense be ‘computationally creativeitiat
they draw. In our discussion we emphasise the importanceai:
trolled freedom’ (cf. unregulated randomness) and the doatbrial
creativity of the hybrid swarm system and contrast it witamaples
of potential non-human assessment of aesthetic judgmehsag-
gestions of creativity in natural distributed systems. tdeo to de-
flect the charge that computational systems cannot be sensit

emotion we subsequently briefly discuss recent work fromoBim
Colton. Finally, we complete the section with a demonstratf the
provenance of the use of [real-world] swarm-systems in essfcll
exhibited artworks (e.g. by Julie Freeman). Our modestlosian is
that ‘controlled freedom’ (pace unconstrained randomness for
example exhibited in the hybrid bird, ant and muscle albaripre-
sented herein - can be useful in generating interestingraatiigible
drawing outputs.

7.1 On Freedom and Art

For years, it has been argued that there is a relationshigebetart,
creativity and freedom, among which is the famous Germaseytay
Ludwig Hevesi at the entrance of the Secession Building enwa:

“Der Zeit ihre Kunst
Der Kunst ihre Freiheft”

Or a quote by Aristotle (384-322 BCE) [13], which emphasizes
the link between creativity and freedom (here, having “attire of
madness”):

“There was never a genius without a tincture of madness.”

Boden, in [7], also argues that creativity has an ambigueus r
lationship with freedom. Among several definitions thatééeen
given to creativity, around sixty of which (as stated by TayB2])
belong to combinational creativity, which is defined“d®e gener-
ation of unfamiliar combinations of familiar idead6]; a category
that the presented work fits in. Considering the existencenafy
influencing factors in evaluating what is creative, raisaesgjons
about how humans evaluate artistic creativity. Galantg2@j sug-
gests that perhaps computational equivalent of a bird omaect
(e.g. in evaluating mate selection) is “all” that is reqdifer compu-
tational aesthetic evaluation and furthermore states:

“.. this provides some hope for those who would follow a psy-
chological path to computational aesthetic evaluatiorgaese
creatures with simpler brains than man practice mate selec-
tion”

In this context Dorin and Korb [20] suggest that the tastethef
individual in male bowerbirds is visible when they gatheltextions
of bones, glass, pebbles, shells, fruit, plastic and metalps from
their environment, and arrange them to attract females [8]:

“They perform a mating dance within a specially prepared dis
play court. The characteristics of an individual’s danceaote-
fact display are specific to the species, but also to the déipab
ties and, apparently, the tastes of the individual.”

However the underlying question - of whether ‘mate selechie-
haviour in animals entails making a judgement analogoussthatic
judgements in humans’ - is perhaps (pace Nagel's famoussigm
in Philosophical review (1974) of ‘What it is like to be a bata
guestion whose answer can never be known.

In contrast the role of education (or training) in recogmisigood’
and ‘bad’, ‘creative’ and ‘non-creative’ has been more expen-
tally probed. A suggestive study investigating this topjc\Watan-
abe [35], gathers a set of children’s paintings which adulhans
are asked to label ‘good’ or ‘bad’. Pigeons are subsequératiged

8 To time its art, to art its freedom.



through operant conditioning to only peck at good paintirffser
the training, when pigeons are exposed to a novel set of ¢didg
children’s paintings, they show their ability in the coretassifi-
cation of the paintings; emphasising the role of trainingésthetic
judgement and opening the door to computational (machareileg)
explorations in this aréa

A further area relating swarm intelligence and creativityhat of
social, distributed and extended systems. For example Bo{a0]
argues that our creative capabilities are contingent oolbfexts and
infrastructure available to us, which help us achieve iiddial goals,
in two ways:

“One way to look at this is, as Clark does [9], in terms of the
mind being extended to a distributed system with an embodied
brain at the centre, and surrounded by various other tootsnf
digits to digital computers. Another way is to step away from
the centrality of human brains altogether and consider abci
complexes as distributed systems involving more or lessi-cog
tive elements.”

7.2 Onthe Emotional Sensitivity of Computer
Artists

Can a computer program be sensitive to real emotion is digect
its artistic output? Certainly Simon Colton’s work at Imiaé¢iCol-

lege suggests this may be so. Simon describes his ‘Paintin F
as follows, “Firstly, we used software developed by MajatfRan
Michel Valstar and other members of the vision group at Ingber

to take a video sequence of someone expressing an emoticim (su

as smiling, frowning, looking surprised, etc.). The softavthen: de-
tected the emotion; determined where the features of theviece;

and found the image in the video sequence where the emotisen wal3l

being expressed the most. This information was then passtitet
second piece of software in the combination, namely ThetiPgin
Fool, which proceeded to paint a portrait of the person invideo

sequence. It based the portrait on the image provided frenettno-

tional modeling software, and chose its art materials, wopmlette
and abstraction level according to the emotion being espas-or
instance, if it was told that the person was expressing Inagpi it

chose vibrant colours, and painted in simulated acrylioigain a

slapdash way. If, on the other hand, it was told that the peveas

sad, it chose to paint with pastels in muted colours.” Sudtabieur

clearly suggests at least some sensitivity to [human] emas pos-

sible in computational systems.

7.3 Fish: Real-World Swarm Art!

. 11
An example of the use of real-word swarms in computer art comé ]

from the artist, Julie Freem&h In 2005 Julie completed a site in-
stallation ‘Swarm Intelligence’ art work at Tingrith Fisties (a 4000
square meter lake bordering the Woburn Abbey Estate). Feoarth
work - The Lake - Julie implanted 16 fish (four each of four spsc
with electronic transducers that could be tracked in rea¢24/7 by
6 audio transponders and their real-time movements useevEap
electronic soundscape and concomitant computer gendrabegs;
different behaviours were initiated by fish schooling (swiang) and

9 This also raises the question of the degree to which humansaaned (or
‘biased’) to distinguish good and/or creative work.

10 Artist in Residence at the Microsystems & Nanotechnologwtf@e Cran-
field University and Associate Artist, Goldsmiths Digitau8ios

by individual forays through the lake. This work is very sess-
ful and has been extensively installed and exhibited itionally**.
The success of this work by Freeman clearly demonstratéshidre
is at least one niche for the [real-world] swarm aesthetirin

8 Conclusion

In this paper, we make no strong claim about the ‘computatiore-
ativity’ of the work presented, neither do we try to tackle thfa-
mous question on whether computers can be creative at aérer g
erate creative art. This specific work described herein inenm-
phasises the importance of ‘controlled freedom’ in the patighn of
‘drawings’ by computer. The computational artist so ddsettiis the
outcome of a novel marriage between two classical swarnfliinte
gence algorithms (PSO and SB%and a simplified mechanism of
muscle activation. In an ongoing research, the applicaifdghe new
hybrid algorithm to make a ‘swarmic’ drawing ‘as though tigb a
human’s gaze’ is currently being investigated.
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