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ABSTRACT 
 
A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the 

behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion 

Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid 

algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in 

blood vessels, where the concept of high and low blood pressure is utilised. The performance of the 

nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected 

through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage 

between the two swarm intelligence algorithms is currently being investigated thoroughly on many 

benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). 

We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms 

can possibly be considered as ‘computationally creative’. 

 

Keywords: Stochastic Diffusion Search (SDS), Particle Swarm Optimisation (PSO), Swarm 

Intelligence, Blood Vessel Remodelling, Visualisation, Optimization, Metaheuristics, Swarm Regulated 

Freedom, Gaussian Constrained Freedom 

 

INTRODUCTION 

 

In recent years, studies of the behaviour of social insects (e.g. ants and bees) and social animals (e.g. birds 

and fish) have proposed several new metaheuristics for use in collective intelligence. Natural examples of 

swarm intelligence (a form of collective intelligence) that exhibit a form of social interaction are fish 

schooling, birds flocking, ant colonies in nesting and foraging, bacterial growth, animal herding, brood 

sorting etc.  

 

This chapter explores the artistic side of this collective intelligence, which emerges through the 

interaction of simple agents (representing the social insects/animals) in two nature-inspired algorithms, 

namely, Particle Swarm Optimisation (PSO) (J. Kennedy & Eberhart, 1995) and Stochastic Diffusion 
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Search (SDS) (Bishop, 1989). Additionally, the mechanisms of blood vessel and blood flow are utilised to 

add another layer of detail to the drawing. 

 

In the presented work, a user-made sketch is used as an input for the system. Then, the swarms of ‘birds’ 

and ‘ants’ explore the digital canvas they are provided with, going through all the lines made in the sketch 

and reworking them in their own way. The output of the system would be the swarms’ ‘interpretation’ of 

the original sketch. As mentioned earlier, at a later stage, the physiologically inspired mechanism of blood 

flow is also used to add more details to the drawings made by the swarms. 

 

A-Life (Artificial Life), where the boundary between biology and artificial intelligence is blurred (Levy, 

1993), inspired many artists and researchers in computer graphics to explore this blurred area. Among the 

direct responses to A-Life are some works by Karl Sims (e.g. Sims, 1991, 1994). In an earlier work, 

Harold Cohen, an artist who used techniques of artificial intelligence to produce art, developed a 

computer program called AARON, which produced drawings as well as paintings (McCorduck, 1991). 

 

Following other works in the field of swarm painting (Moura & Ramos, 2007, Aupetit, Bordeau, 

Monmarche, Slimane, & Venturini, 2004, Urbano, 2005, 2006) and ant colony paintings (Greenfield, 

2005, Monmarche, Aupetit, Bordeau, Slimane, & Venturini, 2003), this work, in addition to exhibiting 

the cooperation of birds and ants as a new way in making a drawing, benefits from the mechanism used in 

blood vessels. 
 

There are many works where the input of the nature has been utilised, some of which are claimed be to 

art. As for the presented work, despite the novelty of this hybrid approach, it is not the intention of the 

authors to use the results outlined in this work to make neither strong epistemological claims of 

computational creativity nor strong aesthetic claims of style. 

 

In this chapter, each of the swarm intelligence algorithms used are introduced, and an approach to their 

possible integration is highlighted. Subsequently, the simplified mechanisms of blood vessel and blood 

flow are described, followed by an explanation on how the new hybrid algorithm produces a drawing and 

the role played by blood vessel remodeling. Lastly, the similar individualistic approach of the swarms in 

making a drawing is highlighted, followed by a brief section on creativity in general as well as a 

discussion on whether swarms can be computationally creative. The chapter comes to an end with a 

conclusion and possible future research. 

 

BACKGROUND 

 

After a brief introduction to communication in social systems, this section introduces two swarm 

intelligence algorithms as well as their integration strategy, followed by the simplified mechanism of 

blood vessel and blood flow. 

 

Communication in Social Systems 

 
Communication – social interaction or information exchange – observed in social insects and social 

animals plays a significant role in all swarm intelligence algorithms, including SDS and PSOs. Although 

in nature not just the syntactical information is exchanged between the individuals but also semantic rules 

and beliefs about how to process this information (J. F. Kennedy, Eberhart, & Shi, 2001), in typical 

swarm intelligence algorithms only the syntactical exchange of information is taken into account. 
 

In the study of the interaction of social insects, two important elements are the individuals and the 

environment, which result in two integration schemes: the first one is the way in which individuals self-



 3 

interact and the second one is the interaction of the individuals with the environment (Bonabeau, Dorigo, 

& Theraulaz, 2000). Self-interaction between individuals is carried out through recruitment strategies and 

it has been demonstrated that, typically, various recruitment strategies are used by ants (Holldobler & 

Wilson, 1990) and honey bees. These recruitment strategies are used to attract other members of the 

society to gather around one or more desired areas, either for foraging purposes or for moving to a new 

nest site. 
 

In general, there are many different forms of recruitment strategies used by social insects; these may take 

the form of global or local strategies, one-to-one or one-to-many communication, and deploy stochastic or 

deterministic mechanisms. The nature of information sharing varies in different environments and with 

different types of social insects. Sometimes, the information exchange is quite complex where, for 

example it might carry data about the direction, suitability of the target and the distance; sometimes, the 

information sharing is instead simply a stimulation forcing a certain triggered action. What all these 

recruitment and information exchange strategies have in common is distributing useful information 

throughout their community (Meyer, Nasuto, & Bishop, 2006). 
 

In many hive-based (flock-based) agents – like the ones used in this chapter – the benefits of memory and 

communication seem obvious, but as argued in (Schermerhorn & Scheutz, 2009), these abilities are not 

beneficial in every environment, depending on the way resources are clustered throughout the 

environment and on whether the quality of the food sources is sufficiently high.  
 

The algorithms used in this chapter rely both on memory and communication and the communication 

methods deployed are less greedy than the one presented in (Schermerhorn & Scheutz, 2009), thus 

allowing the agents to explore various parts of the search space. Nevertheless, the effect communication 

has on the artistic performance of swarm-based algorithms on this work is under further investigation. 
 

The parable of the blind men and the elephant suggests how social interactions can lead to more 

intelligent behaviour. This famous tale, set in verse by John Godfrey Saxe (Saxe, Lathen, & Chief, 1882) 

in the 19th century, characterises six blind men approaching an elephant. They end up having six different 

ideas about the elephant, as each person has experienced only one aspect of the elephant’s body: wall 

(elephant’s side), spear (tusk), snake (trunk), tree (knee), fan (ear) and rope (tail). The moral of the story 

is to show how people build their beliefs by drawing them from incomplete information, derived from 

incomplete knowledge about the world (J. F. Kennedy et al., 2001). If the blind men had been 

communicating about what they were experiencing, they would have possibly come up with the 

conclusion that they were exploring the heterogeneous qualities that make up an elephant. 
 

Birds: Particle Swarm Optimisation 

 

Particle Swarm Optimisation (PSO), first developed in 1995 by Kennedy and Eberhart (J. Kennedy & 

Eberhart, 1995, Eberhart & Kennedy, 1995), is a population-based, optimization technique which came 

about as a result of an attempt to graphically simulate the choreography of fish schooling or birds flocking 

(e.g. pigeons, starlings, and shorebirds) flying in coordinated flocks that show strong synchronisation in 

turning, initiation of flights and landing. Despite the fact that members of the swarm neither have 

knowledge about the global behaviour of the swarm nor a global information about the environment, the 

local interactions of the swarms triggers a complex collective behaviour, such as flocking, herding, 

schooling, exploration and foraging (Reynolds, 1987, Mataric, 1994, Bayazit, Lien, & Amato, 2002, 

Janson, 1998). 
 

A high-level description of PSO is presented in form of a social metaphor – The Lost Child in Jungle  – 

demonstrating the procedures through which the information exchange is facilitated between members of 
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the swarm in its simplest possible form. Formal explanation and mathematical equations of standard/basic 

PSO will be presented in the next section. 

 
The Lost Child in Jungle 
 

A group of villagers realise that a child is lost in the jungle nearby and set off to find him. Each one 

of the villagers is given a mobile phone equipped with GPS that can be used to communicate with 

the head of the village. Each villager is also provided with a diary to record some data, as explained 

below. 
The villagers should log the location where they find the best information so far about the 

child in their diaries (Personal Best position) and inform the head of the village about it. 

Whenever they find something better that might lead to the location of the child (a location 

with a better fitness than their current Personal Best position), they should provide the head of 

the village with the update. 
The head of the village is responsible to compare all the Personal Bests he has received so far 

from all the villagers and pick the best one (Global Best position). The resulting Global Best 

position is communicated back to the villagers. 
Therefore, each villager should log the following three in his diary throughout the search:  

 
� current position  
� speed in walking  
� Personal Best position (which is also called memory)  

� Global Best position  

 
In the next step, when villagers decide about their next move from their current position, they 

need to consider their two bests (Personal and Global) and their current speed. 
Thus, while each villager does not neglect his personal findings, he has extra knowledge 

about its neighbourhood through Global Best position (the topology of the metaphor 

presented here is global neighbourhood); therefore, preserving a balance between exploration 

of the search space (e.g. jungle, in this case), and exploitation of potentially good areas 

around each villager’s Personal Best.  
 

In this example, villagers are metaphorically analogous to particles in PSO, where optimisation is based 

on particles’ individual experience (Personal Best) and their social interaction with the particle swarms 

(via Global Best). Algorithm 1 describes the metaphor chronologically: 

 
ALGORITHIM 1 

Villagers spread in the jungle     

         

While ( the child is not found )     

   For all villagers     

      Evaluate the fitness of the current location   

          (how good the current location is   

          to lead to the child)  

 

      If (current location is better than personal best)     

         Personal Best = current location     

      If (Personal Best is better than Global Best)     

         Global Best = Personal Best     

      Villager decides about his next move  

      (using information logged in the diary)  

   End For    

End While 
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At the end of the search, villagers will most likely congregate over the area where the child is likely to be 

found and hopefully, using this algorithm, the child will be brought back to his family in the village! 

 

Standard PSO 

 

A swarm in PSO algorithm is comprised of a number of particles and each particle represents a point in a 

multi-dimensional problem space. Particles in the swarm explore the problem space searching for the best 

(optimal) position, which is defined by a fitness function. The position of each particle, x, relies on the 

particle’s own experience and those of its neighbours. Each particle has a memory, containing the best 

position found so far during the course of the optimisation, which is called personal best (pbest or p); 

whereas the best found position so far throughout the population, or the local neighbourhood, is called 

global best (gbest or p
g
) and local best (lbest or p

l
) respectively. 

 

The standard PSO algorithm defines the next position of each particle by adding a velocity to the current 

position. Here is the equation for updating the velocity of each particle: 
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where w is the inertia weight whose optimal value is problem dependent (Shi & Eberhart, 1998) and it is 

set to 0.5 for the work presented here; v 
rt−1

id  is the velocity vector of particle i in dimension d at time step 

t−1; c
1,2

 are the learning factors (also referred to as acceleration constants) for personal best and 

neighbourhood best respectively (they are generally constant and are usually set to 2); r
1,2

 are random 

numbers adding stochasticity to the algorithm and they are drawn from a uniform distribution on the unit 

interval U ( )0,1 ; p 
r

id
 is the personal best position of particle x

i
 in dimension d (initially set to the value of 

particle x
i
 in dimension d); and p

gd
 is global best (or neighbourhood best), initially set to a random 

particle. 
 

Therefore, PSO optimisation is based on the particles’ individual experience and their social interaction 

with the particle swarms. After updating the velocities of the particles, their new positions are determined.  

 
ALGORITHM 2 

Initialise particles    

       

While ( stopping condition is not met )    

   For each particle    

      Evaluate fitness of particle 

 

      If (current fitness < pbest)    

         pbest = current fitness   

  

      If (pbest < global (or local) best)    

         global (or local) best = pbest   

  

      Update particle velocity (Eq 1 or 3) 

      Update particle position (Eq 2) 

   End For   

End While 
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In this chapter, Clerc-Kennedy PSO (PSO-CK) is used: 
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where χ=0.72984 is reported to be working well in general (Bratton & Kennedy, 2007). The values of 

other variables are reported earlier (Equation 1). 

Algorithm 2 summarises the behaviour of PSO algorithm for a minimisation problem. 

 

 

Ants: Stochastic Diffusion Search 

 

This section briefly introduces a multi-agent global search and optimisation algorithm called Stochastic 

Diffusion Search (SDS) (Bishop, 1989), whose behaviour is based on the simple interaction of agents. 

 

Chemical communication through pheromones forms the primary method of recruitment in ants. However 

in one species of ants, Leptothorax acervorum, where a ‘tandem calling mechanism’ (one-to-one 

communication) is used, the forager ant that finds the food location recruits a single ant upon its return to 

the nest, and therefore the location of the food is physically publicised (Moglich, Maschwitz & 

Holldobler, 1974). In SDS, direct one-to-one communication (which is similar to tandem calling 

recruitment) is utilised.  

 

SDS presents a new probabilistic approach for solving best-fit pattern recognition and matching problems. 

SDS, as a population-based multi-agent global search and optimisation algorithm, is a distributed mode of 

computation utilising interaction between simple agents (Meyer, Bishop, & Nasuto, 2003). 

 

Unlike many nature inspired search algorithms, SDS has a strong mathematical framework, which details 

the behaviour of the algorithm by investigating its resource allocation (Nasuto, 1999), convergence to 

global optimum (Nasuto & Bishop, 1999), robustness and minimal convergence criteria (Myatt, Bishop, 

& Nasuto, 2004) and linear time complexity (Nasuto, Bishop, & Lauria, 1998). A social metaphor, the 

Mining Game (al-Rifaie & Bishop, 2010), is used to explain the mechanism through which SDS allocates 

resources. 

 

The Mining Game  

 

This metaphor provides a simple high-level description of the behaviour of agents in SDS, where 

mountain range is divided into hills and each hill is divided into regions:  

 

A group of miners learn that there is gold to be found on the hills of a mountain range but 

have no information regarding its distribution. To maximize their collective wealth, the 

maximum number of miners should dig at the hill which has the richest seams of gold (this 

information is not available a-priori). In order to solve this problem, the miners decide to 

employ a simple Stochastic Diffusion Search.  

 

� At the start of the mining process each miner is randomly allocated a hill to mine (his 

hill hypothesis, h).  

� Every day each miner is allocated a randomly selected region of the hill to mine.  

 

At the end of each day, the probability that a miner is happy is proportional to the amount of 

gold he has found. Every evening, the miners congregate and each miner who is not happy 
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selects another miner at random for communication. If the chosen miner is happy, he shares 

the location of his hill and thus both now maintain it as their hypothesis, h; if not, the unhappy 

miner selects a new hill hypothesis to mine at random.  

 

As this process is structurally similar to SDS, miners will naturally self-organise to congregate over hill(s) 

of the mountain with high concentration of gold. 

 

In the context of SDS, agents take the role of miners; active agents being ‘happy miners’, inactive agents 

being ‘unhappy’ miners and the agent’s hypothesis being the miner’s ‘hill-hypothesis’. Algorithm 3 

presents the metaphor chronologically: 
 

ALGORITHM 3 

Initialisation phase    

Allocate each miner (agent) to a random     

  hill (hypothesis) to pick a region randomly    

       

While (not all/most miners congregate over the highest  

   concentration of gold)    

 

   Test phase 

      Each miner evaluates the amount of gold     

        they have mined (hypotheses evaluation) 

      Miners are classified into happy (active)     

        and unhappy (inactive) groups    

       

   Diffusion phase    

      Unhappy miners consider a new hill by     

        either communicating with another miner     

        or, if the selected miner is also     

        unhappy, there will be no information     

        flow between the miners; instead the     

        selecting miner must consider another     

        hill (new hypothesis) at random    

End 

 

SDS Architecture 
 

The SDS algorithm commences an optimisation or search by initialising its population, which are the 

miners, in the mining game metaphor. In any SDS search, each agent maintains a hypothesis, h, defining a 

possible problem solution. In the mining game analogy, the agent hypothesis identifies a hill. After 

initialisation, the following two phases are iterated (see Algorithm 3 for these phases in the mining game; 

for high-level SDS description see Algorithm 4):  

 

� Test Phase (e.g. testing gold availability)  

� Diffusion Phase (e.g. congregation and exchanging of information)  

 
ALGORITHM 4 

Initialising agents()    

While (stopping condition is not met)    

   Testing hypotheses()    

   Diffusion hypotheses()    

End 
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In the test phase, SDS checks whether the agent hypothesis is successful by performing a partial 

hypothesis evaluation which returns a boolean value. Later in the iteration, contingent on the precise 

recruitment strategy employed, successful hypotheses diffuse across the population and in this way 

information on potentially good solutions spreads throughout the entire population of agents. 

 

In the Test phase, each agent performs partial function evaluation, pFE, which is some function of the 

agent’s hypothesis; pFE=f(h). In the mining game, the partial function evaluation entails mining a random 

selected region on the hill which is defined by the agent’s hypothesis, instead of mining all regions on that 

hill.  

 

A simple example that SDS’s partial function evaluation can be illustrated is text search, where the 

position of the first letter of each word in the text is a hypothesis (hill). In order to use partial function 

evaluation, one letter within a word (region within a hill) is compared against the letter in the word which 

is sought; this way, a full comparison of all the letters is not required. An example of text search using 

SDS is given in (Bishop, 1989). 
 

In the Diffusion phase, each agent recruits another agent for interaction and potential communication of 

hypothesis. In the mining game metaphor, diffusion is performed by communicating a hill hypothesis. 

 

Standard SDS and Passive Recruitment  
In standard SDS (which is used in this chapter), passive recruitment mode is employed. In this mode, if 

the agent is inactive, a second agent is randomly selected for diffusion; if the second agent is active, its 

hypothesis is communicated (diffused) to the inactive one. Otherwise, there would be no flow of 

information between agents; instead a completely new hypothesis is generated for the first inactive agent 

at random (see Algorithm 5). 
  
ALGORITHIM 5 

For ag = 1 to No_of_agents     

   If (ag.activity() == false)    

      r_ag = pick a random agent()    

      If (r_ag.activity() == true)    

         ag.setHypothesis(r_ag.getHypothesis())    

      Else    

         ag.setHypothesis(randomHypothsis()) 

      End If-Else 

   End If 

End 

 

Cooperation: Birds and Ants 

 

In an ongoing research, an initial set of experiments aimed to investigate whether the information 

diffusion mechanism deployed in SDS (‘ants’) on its own improves PSO (‘birds’) behaviour. Early results 

show the high potential of this integration. For detailed theoretical work and statistically analysis, refer to 

(al-Rifaie, Bishop & Blackwell, 2011). 

 

In the hybrid algorithm, each PSO particle (villager, in the Lost Child metaphor) has a current position, a 

memory (personal best position) and a velocity; each SDS agent (miner, in the Mining Game metaphor), 

on the other hand, has hypothesis (hill) and status (happy or unhappy). 
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ALGORITHM 6 

 Initialise pAgents     

         

 While ( stopping condition is not met )     

    For i = 1 to No-of-pAgent     

       Evaluate fitness value of each particle     

         

       If ( evaluation_counter MOD n == 0 )*   

          // START SDS     

          // TEST PHASE     

          For pAg = 1 to No-of-pAgents      

             r_pAg = pick-random-pAgent()     

             If ( pAg.pbestFitness() <= r_pAg.pbestFitness() )     

                 pAg.setActivity (true)     

             Else     

                 pAg.setActivity (false)     

             End If-Else     

          End For     

         

          // DIFFUSION PHASE     

          For ag = 1 to No_of_pAgents      

             If ( pAg.activity() == false )     

                r_pAg = pick-random-pAgent()     

                If ( r_pAg.activity() == true )     

                   pAg.setHypo( r_pAg.getHypo() )  

                Else     

                   pAg.setHypo( randomHypo() )   

                End If-Else 

             End If     

          End For     

       End If     

       // END SDS     

        

       If (current fitness < pbest)     

          pbest = current fitness     

 

       If (pbest < gbest)     

          gbest = pbest     

 

       Update particle position (Eq 1 or 3)   

    End For    

 End While 

 

* Each time PSO evaluates the fitness of a particle, evaluation_counter is incremented by 1. The value 

of n is problem dependent. If n is smaller, SDS is run more often than when the value of n is larger. 

 

In the experiment reported here, every particle in PSO is an SDS agent too – together termed pAgents. In 

pAgent, SDS hypotheses are defined by the PSO particle positions, and an additional Boolean variable 

(status), which determines whether the pAgent is active or inactive (see Figure 1). 
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Figure 1. pAgent 

 
This figure illustrates the structure of pAgent. (© 2011, al-Rifaie. Used with permission.). 

 

The behaviour of the hybrid algorithm in its simplest form is presented in Algorithm 6. 

  
In Algorithm 6, when the pAgents are initialised, pbest are initially set to the position of the particles and 

gbest is set to one of the particles randomly; evaluation counter counts the number of function evaluations 

in PSO and n is set to 3000 in this work. Therefore, SDS algorithm is run after every 3000 PSO function 

evaluations.  

 

Test and Diffusion Phases in the Hybrid Algorithms 

 

In the Test Phase of a stochastic diffusion search, each agent has to partially evaluate its hypothesis. The 

guiding heuristic is that hypotheses that are promising are maintained and those that appear unpromising 

are discarded. In the context of the hybrid PSO-SDS algorithm, it is clear that there are many different 

tests that could be performed in order to determine the activity of each pAgent. A very simple test is 

illustrated in Algorithm 6. Here, the Test Phase is simply conducted by comparing the fitness of each 

pAgent’s particle’s personal best against that of a random pAgent; if the selecting pAgent has a better 

fitness value, it will become active. Otherwise it is flagged inactive. On average, this mechanism will 

ensure 50% of pAgents remain active from one iteration to another
i
. 

 

In the Diffusion Phase, each inactive pAgent picks another pAgent randomly; if the selected pAgent is 

active, the selected pAgent communicates its hypothesis to the inactive one; if the selected pAgent is 

inactive too, the selecting pAgent generates a new hypothesis at random from the search space. 

 

As outlined in the pseudo-code of the hybrid algorithm (see Algorithm 6), after each n PSO function 

evaluations, one SDS cycle
ii
 is executed. The hybrid algorithm is called SDSnPSO, where n refers to the 

number of PSO function evaluations before an SDS cycle should run. 

 

The next section gives a brief introduction of the mechanism of blood vessels. 

 

The Simplified Mechanism of Blood Vessels 

 

In this part, three different features of blood vessels will be explained in physiological and mechanical 

terms as they occur in the body. These aspects of the blood vessel mechanism have been imitated to 

collectively cooperate with the swarms in order to draw. In the presented drawings (see the figures in the 



 11 

next sections), each member of the swarm takes the shape of the blood vessels, as if the vessels are cut in 

order to see their calibre, thickness, etc. The main focus of attention will be on:  

 

� Vessel calibre, which is affected by the blood flow and its shear stress  

� Blood vessel thickness 

� Geometrical heterogeneity of endothelial cells lining the vessels 

 

Each of these will be explained independently and details on how these mechanisms influence the 

drawings of the swarms will be provided at the end of this section.  

 

Blood Flow Shear Stress and Vessel Calibre 

 

Hemodynamic forces of the blood flow have been identified as factors regulating blood vessels (Kamiya 

& Togawa, 1980, Lowell & O’Donnell, 1986) and influencing development of vascular pathologies such 

as atherosclerosis (Zarins et al., 1983), and aneurysms (Kerber, Hecht, Knox, Buxton, & Meltzer, 1996). 

The flow of blood on the luminal vessel wall and endothelial surface creates, by virtue of viscosity, a 

frictional force per unit area known as hemodynamic shear stress (Fung, 1997, LaBarbera, 1990). Shear 

stress has been shown to be a critical determinant of vessel calibre (Lowell & O’Donnell, 1986, 

LaBarbera, 1990, Kamiya, Bukhari, & Togawa, 1984), as well as an important factor in vascular 

remodeling (Zarins, Zatina, Giddens, Ku, & Glagov, 1987, Gibbons & Dzau, 1994) and pathobiology 

(Zarins et al., 1983, Kerber et al., 1996). 

 

The luminal surface of the blood vessel and its endothelial surface are constantly exposed to 

hemodynamic shear stress (Fung, 1997). The magnitude of the shear stress can be estimated in most of 

the vasculature by Poiseuille’s law (Fung, 1997), which states that shear stress is directly proportional to 

blood flow viscosity, and inversely proportional to the third power of the internal radius (LaBarbera, 

1990, Kamiya et al., 1984, Zamir, 1976). 

 

In equation Eq 4, Poiseulle’s law states that the flow rate Q is also dependent upon fluid viscosity η, pipe 

length L and the pressure difference between the ends P by: 

 

 Q= 
πr

4
P

8ηL
 (Eq 4) 

 

Measurements using different modalities show that shear stress ranges from 1 to 6 dyne/cm2 in the venous 

system and between 10 and 70 dyne/cm
2
 in the arterial vascular network. Studies have shown that shear 

stress actively influences vessel wall remodeling (Kamiya & Togawa, 1980, Lowell & O’Donnell, 1986, 

Kraiss, Kirkman, Kohler, Zierler, & Clowes, 1991). Specifically, chronic increases in blood flow, and 

consequently shear stress, lead to the expansion of the luminal radius such that mean shear stress is 

returned to its baseline level (Kamiya & Togawa, 1980, Girerd et al., 1996).  

 

This is clearly demonstrated in the radial artery of dialysis patients proximal to their arteriovenous fistula 

(Girerd et al., 1996) or in feeder arteries supplying cerebral arteriovenous malformations (Rossitti & 

Svendsen, 1995), both of which lead to the expansion of the blood vessels calibre as a result of increased 

shear stress in the vessel lumen. Conversely, decreased shear stress resulting from lower flow or blood 

viscosity induces a decrease in internal vessel radius (Lowell & O’Donnell, 1986). The net effect of these 

endothelial-mediated compensatory responses is the maintenance of mean arterial hemodynamic shear 

stress magnitude at approximately 15 to 20 dyne/cm
2
 (Girerd et al., 1996, LaBarbera, 1990). This shear 

stress– stabilizing process is dependent on intact endothelial function (Lowell & O’Donnell, 1986). 
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The effect of this mechanism on the drawing is discussed later in the chapter. In simple terms a 

proportional correspondence between the speed of drawing on a canvas and the size of the discs’ diameter 

in the drawing (which represents the vessel calibre) is demonstrated. 

 

Remodeling of Vessel Wall Structure and Blood Pressure 

 

Various studies have demonstrated that increased blood pressure is one of the major contributing factors 

to blood vessel remodeling (Baumbach & Heistad, 1989, Short, 1966). A fundamental tool to understand 

the varying structure of different blood vessels including their wall thickness is the Laplace law. This law, 

which can be applied to any tubular element with cylindrical geometry, relates intramural stress (σ), wall 

thickness (W), lumen radius (r), and transmural pressure (P, or the difference between luminal and 

extraluminal pressures) according to the following equation: 

 

 σ= 
Pr

W
 (Eq 5) 

 

which may be rewritten in terms of the W to lumen diameter (D) ratio as: 

 

 σ=0.5 
P

 ( )W/D
 (Eq 6) 

 

Laplace law dictates vascular structure to maintain σ within a relatively tight domain. Within an 

individual, there is high plasticity of vascular structure, which continuously adapts to accommodate for 

the changing conditions. 

 

Blood Pressure and the Concept of Small Vessel Remodeling. Early studies (Baumbach & Heistad, 1989, 

Short, 1966) have shown that hypertension (or high blood pressure) could be associated with changes in 

the structure of resistance vessels, such that the vessels had a decreased lumen and increased media:lumen 

ratio (lumen is the hollow part of the vessel through which the blood passes, and media is the major and 

the thickest layer of the blood vessel wall), but no change in media cross-sectional area (or volume). 

(Baumbach & Heistad, 1989) used the term remodeling for the fist time to describe these changes. 

 

Vessel Remodeling Classification. It was proposed that the term remodeling should only be used in 

situations where there is a structurally determined change in lumen diameter. A detailed classification that 

categorized the remodeling into the six changes is proposed in (Mulvany, Baumbachand, Aalkjær, & al., 

1996). It was suggested that remodeling should be termed:  

� Inward remodeling: decrease in the vessel lumen  

� Outward remodeling: increase in the vessel lumen  

 

Furthermore, since remodeling can result in either increase, no change, or decrease in the amount of 

vessel wall, there should be a sub-classification into hypertrophic, eutrophic, and hypotrophic 

remodeling, respectively:  

� Hypertrophic remodeling: increase in the amount of blood vessel wall  

� Eutrophic remodeling: no change in the amount of blood vessel wall  

� Hypotrophic remodeling: decrease in the amount of blood vessel wall  

 

This classification provided a framework for defining various modes of vascular remodeling in order to 

discuss the mechanisms involved. It is worth mentioning that only certain remodeling categories are used 

and imitated in this chapter. 
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Examples of the Different Types of the Remodeling. In this part, the impact of blood flow on the blood 

vessel remodeling is discussed by giving examples of different types of remodeling: 

 
Primary Hypertension and Inward Eutrophic Remodeling  

Histological studies demonstrated increased media:lumen ratios in the small vessels of patient with 

primary hypertension
iii
 (Suwa & Takahashi, 1971, Furuyama, 1962, Nordborg, Ivarsson, Johansson, & 

Stage, 1983). In another study, it was shown that the media:lumen ratio of resistance vessels was 

increased in hypertensive patients, but that this was not associated with any increase in the cross-sectional 

area of the media (measured normally to the longitudinal axis) (Short, 1966). Thus, the available evidence 

indicates that in primary hypertension the resistance vessels have experienced inward eutrophic 

remodeling. Furthermore, the size of the individual smooth muscle cells within the media is also normal 

(Korsgaard, Aalkjaer, Heagerty, Izzard, & Mulvany, 1993), while the functional responses of the smooth 

muscle are slightly affected (Aalkjaer, Heagerty, Petersen, Swales, & Mulvany, 1987). 

 
Secondary Hypertension and Inward Hypertrophic Remodelling   

In contrast to the above inward eutrophic changes in primary hypertension, in human secondary 

hypertensioniv due to renal causes, the reduction in vessel lumen diameter is accompanied by an increase 

in media cross-sectional area leading to an inward hypertrophic response (Rizzoni et al., 1996). 

 
Blood Pressure Treatment and Outward Remodeling  

Outward remodelling of resistance vessel structure is in general seen during anti-hypertensive treatment 

and in situations with increased flow. Thus, with a certain class of anti-hypertensive medication called 

ACE-inhibitor
v
, the abnormalities indicated in the previous paragraph (inward eutrophic and inward 

hypertrophic) are reversed (Thybo et al., 1995, Skov, Fenger-Gron, & Mulvany, 1996) and the 

remodeling will take the following shape: outward eutrophic and outward hypertrophic remodelling. 

 

The way in which remodeling in blood vessels shapes the drawings are discussed later in the chapter. 

 

Blood Flow and the Heterogenic Geometry of Endothelial Cells  

 

It has been proposed that an important determinant of arterial disease is the local geometry of arteries, 

which in turn regulates the hemodynamic force distribution that acts on the endothelial cells covering the 

inner surface of blood vessels (Davies, 1995, 2008). In regions with unstable flow such as curvatures, 

branches and bifurcations in the arterial circulation, steep temporal and spatial gradients of shear stress 

are associated with an oscillatory flow that act on the endothelial cells. In these regions of disturbed 

oscillatory flow, multidirectional forces act on the cells, and as a result, the endothelium, unlike elsewhere 

in the arterial circulation, lacks preferential cell alignment and often expresses a polygonal morphology 

(Davies et al., 2010). Disturbed flow regions correlate closely with susceptibility to pathological change 

such as atherosclerosis in arteries and calcific sclerosis in heart valves. 

  

The action of the oscillatory blood flow that causes a polygonal alignment of the endothelial cells has 

been imitated in regions of the canvas where the speed of drawing is higher than others; in these regions 

the discs exhibit a wave-like feature unlike other areas where the lines are unidirectional (see Figure 7). 

 

 

THE DRAWING MECHANISM 

 

To begin with, this section explains how a sketch is provided to the hybrid swarm algorithm (PSO-SDS) 

and how the hybrid swarms make a drawing based on the original sketch. Afterwards, the influence of the 

blood flow and blood vessels mechanisms is explored in this context. 
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Birds and Ants Set off to Draw 

 

In the experiment setup of this work, a sketch is made on a screen with a mouse. Once the swarm (birds 

and ants) are presented with this sketch, which is a vector of (x,y) coordinates corresponding to the points 

constituting the sketch (see Figure 2), they use it as an ‘inspiration’ and start making a drawing, which is 

based on the sketch, but utilises the swarms ‘style’. 

 

 

Figure 2: Sketch 

 
The sketch whose constituting points are used as input to the hybrid swarms. (© 2011, al-Rifaie. Used 

with permission.). 

 

 

Each one of the points (constituting the sketch and representing the lost child and the richest hill) is traced 

by the swarms (e.g. of villagers and miners, or birds and ants) as described in Algorithm 6. When the 

mouse pointer moves on the digital canvas to make a sketch, it is equal to the moving of the child (in the 

Lost Child metaphor) and to the change of the position of the richest hill (in the Mining Game metaphor). 

Each member of the swarms has the shape of a disc (with the centre representing the position of the 

particle) and as they move, their former position is connected to the current one with an arrow. It can be 

said that ‘the trace of the birds’ / ‘the footprint of the ants’ stay on the canvas, creating a drawing inspired 

by the initial sketch (see Figure 3). 

 

Therefore, the search space of the swarms is the canvas (a two dimensional array corresponding to the 

width and height of the canvas in pixels), where they are initialised, and the goal of their performance is 

to trace the constituting points of the sketch. The swarms search on the canvas is terminated when they 

reach the end of the sketch (in other words, when there are no more points to consider). 

 

In this context, gbest is the closest (fittest) particle to the point (of the sketch) being considered at any 

time. The hypotheses are the positions of each disc. The method used to determine whether an agent is 

active or inactive, and whether there should be information exchange, can be found in the test phase and 

diffusion phase of Algorithm 6 respectively. SDS cycle is carried out after each n PSO function 

evaluations. Thus, each disc on the canvas represents a pAgent, which is a PSO particle (i.e villager, or 

bird) and an SDS agent (i.e. miner or ant) at the same time. Twenty pAgents were used in all the drawings 

of this chapter. 
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Figure 3: Drawing of the Hybrid Swarms 

 
The Drawing of the Hybrid Swarms (PSO + SDS). (© 2011, al-Rifaie. Used with permission.). 

 

How Blood Flow and Blood Vessels Shape the Drawing 

 

The simplified impact of blood pressure on blood vessels is used in the drawing to reflect the relation 

between the time spent for drawing each part (e.g. each line) and the form of the discs (e.g. diameter and 

thickness), which are visible around each member of the swarm. 

 

The size of the discs is affected in either of the following ways (see Figure 4 which shows three types of 

outward remodeling types, two of which are used for the drawings):  

a) Outward Eutrophic Remodeling: Enlarging the lumen (hallow part of the disc) without influencing 

the media (thickness of its wall) 

b) Outward Hypertrophic Remodeling: Enlarging the media while keeping the lumen intact 

 

 

Figure 4: Outward Remodeling Types 

 
Top: Outward hypertrophic remodeling; middle: outward eutrophic remodeling; bottom: outward 

hypotrophic remodeling. (© 2011, al-Rifaie. Used with permission.). 
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Here, the concept of speed in drawing a line is analogous to the idea of the blood pressure in the 

mechanism of blood vessel remodeling. Since blood pressure affects the calibre of the blood vessels (see 

the earlier sections on blood vessel, blood flow and Eq 4-6), in this context, it implies that the quicker a 

line is drawn, the bigger the size of the discs around each member of the swarm. In other words, when a 

line is drawn faster than the other in a drawing, the size of the discs while drawing that line is bigger; but 

when a line is drawn slower, it will have smaller discs (see Figure 5). 

 

Figure 5: Blood Vessels on High and Low Blood Pressure on Drawing a Line 

 
The speed of drawing the line decreases as it goes towards the right. Top: Demonstrating eutrophic 

remodeling. Bottom: Demonstrating hypertrophic remodeling. (© 2011, al-Rifaie. Used with 

permission.). 

 

In terms of vessel remodeling, a combination of two concepts are imitated to aid the drawing swarms: 

� outward eutrophic remodeling in small blood vessels that are treated with ACE-inhibitors  

� blood vessel lumen expansion in areas that experience a constant high blood flow 

 

These mechanisms are used simultaneously so that the speed of the drawing ‘pen’ (mouse) exhibits both 

the duration of treatment with ACE inhibitor for high blood pressure and the shear stress of the blood 

flow. For example when the pen speed is high on the canvas (high blood pressure), the disc becomes 

wider without any change in the disc thickness (see Figure 6-top).  

 

In another approach, in the swarms’ drawings, the outward hypertrophic remodeling is imitated by 

keeping the diameter of the hollow part (lumen) of the discs constant, whereas the thickness of the wall 

(media) of the discs is in a linear relationship with the speed of the drawing pen on the canvas. For 

instance, in areas where the speed of the drawing pen is high, the media is thicker than areas where the 

pressure is low (see Figure 6-bottom). 
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Figure 6: The Drawings of the Hybrid Swarms with Blood Vessels Mechanism 

 
This figure shows the effect of the blood pressure on the disk’s lumen and its media respectively (top: 

Eutrophic bird remodeling; bottom: Hypertrophic bird remodeling). (© 2011, al-Rifaie. Used with 

permission.). 

 

Earlier in the chapter, oscillatory blood flow has been described. In order to implement the oscillatory 

flow in the drawing, the equation of the simple sine wave or sinusoid is used: 

 

 y ( )t =A.sin ( )ωt+α  (Eq 7) 

 

where A is the amplitude, ω is the angular frequency, specifying the number of oscillations in a unit time 

interval in radians per second and α is the phase which determines where the oscillations begin in its 

cycle at t=0. In this chapter, the main variables are A and ω (α is always set to 0). 

 

Using this equation, when a line is drawn faster than a threshold, the flow of the lines will be oscillatory 

(e.g. higher angular frequency in Equation Eq 7). Few approaches to implement the oscillations of blood 

flow in the drawing are listed below: 

 

a) Lines are straight when the drawing speed is below the threshold, and slightly oscillatory when the 

threshold is crossed (A is a factor of speed and ω is set to 3). See Figure 7-top.  

b) Lines are straight when the drawing speed is below the threshold, and highly oscillatory when the 

threshold is crossed (A is a factor of speed and ω is set to 0.3). See Figure 7-middle.  

c) The flow is slightly oscillatory when the drawing speed is below the threshold (A is a factor of 

speed and ω is set to 3), and highly oscillatory when the threshold is crossed (A is a factor of speed 

and ω is set to 0.3). See Figure 7-bottom.  
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Figure 7: Blood Flow Oscillation in Drawing 

 
This figure shows few implementations of the oscillations of blood flow in the drawings. (© 2011, al 

Rifaie. Used with permission.). 

 

The next section presents a brief discussion on creativity, followed by a summary on whether swarms can 

show creativity in the ‘artwork’ they produce. 
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Discussion on Creativity 

 

The goal of this section is to discuss whether the hybrid swarm algorithms have the potential to exhibit 

‘computational creativity’ in what they draw. In our discussion, we emphasise on the importance of what 

we later define as ‘Swarm Regulated Freedom’ (SR freedom) – cf. Gaussian Constrained Freedom (GC 

freedom) – and the combinatorial creativity of the hybrid swarm system. Then we contrast it with 

examples of potential non-human assessment of aesthetic judgment and suggestions of creativity in 

natural distributed systems. Our modest conclusion would be that SR freedom (vs. GC freedom) – as for 

example exhibited in the hybrid bird, ant and blood vessel mechanism presented herein – can be useful in 

generating interesting and intelligible drawing outputs. 

 

On Freedom and Art 

 

For years, it has been discussed that there is a relationship between art, creativity and freedom, among 

which is the famous German prose, by Ludwig Hevesi at the entrance of the Secession Building in 

Vienna:  

“Der Zeit ihre Kunst 

Der Kunst ihre Freiheit” 

 

That is: “To Time its Art; To Art its Freedom”. 

 

Or a quote by Aristotle (384-322 BCE) (Etzioni, Ben-Barak, Peron, & Durandy, 2007), which emphasises 

on the link between creativity and freedom (here, having “a tincture of madness”):  

 

“There was never a genius without a tincture of madness.” 

 

Boden, in (Boden, 2010), also argues that creativity has an ambiguous relationship with freedom: 

 

“A style is a (culturally favoured) space of structural possibilities: not a painting, but a way 

of painting. Or a way of sculpting, or of composing fugues... and so on. It’s partly because of 

these thinking styles that creativity has an ambiguous relationship with freedom.” 

 

Among several definitions that have been given to creativity, around sixty of which (as stated by Taylor 

(Taylor, 1988)) belong to combinational creativity, which is defined as “the generation of unfamiliar 

combinations of familiar ideas” (Boden, 2007), a category that the presented work might fit in. 

Considering the existence of many influencing factors in evaluating what is creative, might, among other 

things, raise the argument about how humans evaluate creativity, their aesthetic capacity and that of other 

animals (e.g. in mate selection). Galanter (Galanter, 2011) suggests that perhaps computational equivalent 

of a bird or an insect (e.g. in evaluating mate selection) is “all” that is required for computational aesthetic 

evaluation:  

 

“This provides some hope for those who would follow a psychological path to computational 

aesthetic evaluation, because creatures with simpler brains than man practice mate 

selection.”   

 

In this context, as stated in (Dorin & Korb, 2011), the tastes of the individual in male bowerbirds is 

visible when they gather collections of bones, glass, pebbles, shells, fruit, plastic and metal scraps from 

their environment, and arrange them to attract females (Borgia, 1995):  

 



 20 

“They perform a mating dance within a specially prepared display court. The characteristics 

of an individual’s dance or artefact display are specific to the species, but also to the 

capabilities and, apparently, the tastes of the individual.”   

 

The question of whether ‘mate selection behaviour in animals implies making a judgment analogous to 

aesthetic judgment in humans’ is perhaps (pace Nagel’s famous discussion in Philosophical review 

(Nagel, 1974) of ‘What it is like to be a bat?’) a question whose answer will never be clear. 

 

In contrast, the role of education (or training) in recognising ‘good’ and ‘bad’, ‘creative’ and ‘non-

creative’ has been more experimentally probed. A suggestive study investigating this topic, set by 

(Watanabe, 2009), gathers a set of children’s paintings, and then adult humans are asked to label the 

“good” from the “bad”. Pigeons are then trained through operant conditioning to only peck at good 

paintings. After the training, when pigeons are exposed to a novel set of already judged children’s 

paintings, they show their ability in the correct classification of the paintings.  

 

This stresses out the role of training and raises the question on whether humans are trained (or “biased”) 

to distinguish good and/or creativity work. 

 

Another tightly related topic to swarm intelligence in this context is the creativity of social systems. Bown 

in (Bown, 2011) indicates that our creative capabilities are contingent on the objects and infrastructure 

available to us, which help us achieve individual goals, in two ways:  

 

“One way to look at this is, as Clark does (Clark, 2003), in terms of the mind being extended 

to a distributed system with an embodied brain at the centre, and surrounded by various other 

tools, from digits to digital computers. Another way is to step away from the centrality of 

human brains altogether and consider social complexes as distributed systems involving more 

or less cognitive elements.”   

 

Discussion on creativity and the conditions which make a particular work creative have always been 

among the heated debates for scientists and philosophers (Rothberg & Hausman (eds), 1976). A dated but 

excellent source on creativity theory is (Sternberg (ed), 1988), where the authors try to answer questions 

on the conditions of creativity, systems view of creativity, cognitive approaches, etc.  

 

Although this chapter does not aim to tackle any of these issues or suggest that the presented work fits in 

the category of creative realm, it attempts to investigate the performance of the swarms in this context. 

 

On the “Creativity” of the Swarms 

 

As stated in the introduction of the chapter, there are several relevant attempts to create creative computer 

generated artwork using Artificial Intelligence, Artificial Life and Swarm Intelligence. 

 

Irrespective of whether the swarms are considered creative or not, their similar individualistic approach is 

not totally dissimilar to those of the “elephant artists” (Weesatchanam, 2006)):  

 

“After I have handed the loaded paintbrush to [the elephants], they proceed to paint in their 

own distinctive style, with delicate strokes or broad ones, gently dabbing the bristles on the 

paper or with a sweeping flourish, vertical lines or arcs and loops, ponderously or rapidly 

and so on. No two artists have the same style.”   
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Similarly, as it will be discussed next, if the same sketch is given to the swarms several times, the output 

drawings, made by the swarms, are not the same twice. In other words, even if the hybrid swarm 

mechanism (of birds, ants and blood vessel) processes the same sketch several times, it will not make two 

identical drawings; furthermore, the outputs it produces are not merely randomised versions of the input. 

This can be demonstrated qualitatively by comparing the output of the hybrid swarm system with a 

simple randomised tracing algorithm, where each point in the sketch is surrounded with discs (similar to 

the pAgents) at a Gaussian random distance and direction  (contrast Figures 8 with Figure 9). The reason 

why the hybrid swarm drawings are different from using random lines and discs following the points of a 

sketch, is the underlying algorithms and physiological mechanism [which is used to coordinate the 

concentrations at any particular point on the canvas] employing proven swarm intelligence techniques; a 

method which is better (more ‘loyal’ to the original sketch) than a simple randomisation, but which still 

has enough ‘freedom’ to ensure originality in the resulting drawing (i.e. the swarm mechanisms ensure 

high-level fidelity to the input without making an exact low-level copy of the sketch). 

 

Thus, despite the fact that the swarms are constrained by the rules they follow (rules that were defined 

earlier in the chapter), the stochastic parts of the algorithms allow them to demonstrate a “regulated 

difference” rather than a simple “random difference”. 

 

Swarm Regulated Freedom versus Gaussian Constrained Freedom 

 

The drawings in Figure 8 (top and middle) show two outputs from the simple randomised algorithm when 

configured with limited ‘artistic’ freedom (i.e. there is only small Gaussian random distance and direction 

from the points of the original sketch – Gaussian Constrained Freedom or GC freedom); comparing the 

two drawings, we note a lack of any significant difference between them. Furthermore, when more 

‘artistic freedom’ is granted to the randomised algorithm (by further increasing the variance in the 

underlying Gaussian, which allows the technique to explore a wider areas of the canvas), the algorithm 

begins to deviate excessively from the original sketch. For example excessive randomisation results in a 

poor - low fidelity - interpretation of the original sketch (Figure 8-bottom). In contrast, although the 

agents in the hybrid ‘birds, ants and blood vessel swarms’ are free to access any part of the canvas, they 

naturally maintain recognisable fidelity to the original input. Thus, it can be seen that simply extending a 

basic swarm mechanism by giving it more randomised behaviour (giving it more ‘artistic freedom’) fails 

to demonstrate that more creative drawings would be produced. 

 

The Swarm Regulated freedom (SR freedom) or ‘controlled freedom’ (or the ‘tincture of madness’) 

exhibited by the hybrid swarm algorithm (induced by the stochastic side of the algorithms) is crucial to 

the resultant work and is the reason why having the same sketch does not result in the system producing 

identical drawings. This freedom emerges, among other things, from the stochasticity of SDS algorithm in 

picking agents for communication, as well as choosing agents to diffuse information (see Algorithm 3); 

the tincture of madness in PSO algorithm is induced via its strategy of spreading villagers in the jungle as 

well as the stochastic elements in deciding the next move of each villager (see Algorithm 1). Although the 

algorithms (PSO and SDS) and the mechanism (blood flow) are nature- and physiologically-inspired, we 

do not claim that the presented work is an accurate model of natural systems. Furthermore, whilst 

designing the algorithm there was no explicit ‘Hundertwasser-like’ attempt – by which we mean the stress 

on using curves instead of straight lines, as Hundertwasser considered straight lines not nature-like and 

‘godless’ and tried not to use straight lines in his works – to bias the style of the system’s drawings. 
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Figure 8: The Drawings of the Swarms with Random Behaviour 

 
This figure shows the drawings made with a simple randomized tracing algorithm, using Gaussian 

random distance and direction from the points of the original sketch. The variance of the figures on top 

and in the middle is the same. When variance (‘freedom’) is increased (in the bottom figure), the drawing 

gradually loses its original ‘identity’. (© 2011, al Rifaie. Used with permission.). 
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Figure 9: Different Drawings of the Hybrid Swarms (and eutrophic remodeling) off a Single Sketch 

 
This figure shows the drawings generated off the same initial sketch. (© 2011, al Rifaie. Used with 

permission.). 

 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

 

This specific work is the artistic outcome of the marriage between the two swarm intelligence algorithms 

(PSO and SDS) – whose scientific value is currently being investigated on many benchmarks (al-Rifaie, 

Bishop & Blackwell, 2011) – and the simplified mechanisms of the blood vessel and blood flow. 

Nevertheless, the difference between using Gaussian Constrained Freedom (GC freedom) and Swarm 

Regulated Freedom (SR freedom), which uses known swarm intelligence techniques, is highlighted by 

emphasising on regulated difference versus random difference.  

 

This chapter discusses the possible inputs of physiologically-inspired mechanisms in computer-generated 

artwork. Following this theme, we aim to specifically investigate other physiological mechanisms (e.g. 

eye lens, bones, HIV virus, etc) and the role they can potentially play herein. We raise the question on 

whether integrating swarm intelligence algorithms (inspired by social systems in nature) and 

physiologically inspired mechanisms could possibly lead to a different way of producing ‘artworks’. 

Additionally, the application of the presented nature and physiologically inspired algorithm in producing 

music is currently being investigated in an ongoing research. 
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KEY TERMS & DEFINITIONS  

Stochastic Diffusion Search (SDS): A multi-agent global search and optimisation algorithm, which is 

based on the simple interaction of agents 

Particle Swarm Optimisation (PSO): A population based optimisation technique, which came about as 

a result of an attempt to graphically simulate the choreography of fish schooling or birds flying 

Swarm Intelligence (SI): A decentralised, collective approach to solve problems, where intelligence 

emerges through the simple interactions of the members of the swarm 

Blood Vessel Remodelling: A process referring to the reshaping of the blood vessel that is caused by 

blood pressure 

Visualisation: A technique deployed in different scientific fields to better understand the behaviour of 

certain mechanisms by visualising their performance 

Optimisation: A simple example of optimisation is when a car is about to be parked; in this case, 

different parameters should be considered and the best (optimal) choice should be made with regard to the 

following: the distance of the parking location from the current place, the suitability of the place and 

probably the duration in which the car be kept parked. In optimisation, these cases are compared against 

each other and the goal is to balance the trade-off between these parameters. Swarm intelligence 

algorithms have shown to be of significance in solving optimisation problems. 

Metaheuristics: They are computational methods used to optimise problems by iterative attempts to 

improve the quality of a candidate solution considering a performance measure. 

Swarm Regulated Freedom (SR freedom): A method used to constrain the freedom of the swarm or 

their movements by using swarm intelligence algorithms 

Gaussian Constrained Freedom (GC freedom): A process used to generate new points by applying 

Gaussian random distance and direction from the already existing points of an original sketch  

                                                 
i
 NB. In standard SDS such high average activity would not be useful as it entails most agents will continue to 

exploit their current hypothesis rather than explore the search space, however in the hybrid algorithm the 

randomised subsequent behaviour of each pAgent offsets this effect. 

 
ii
 A full SDS cycle includes:  

• one Test Phase which decides about the status of each pAgent, one after another  

• one Diffusion Phase which shares information according to the algorithm presented 

 
iii

 Primary hypertension is the major type of high blood pressure in humans and accounts for almost 95% of the 

hypertension cases in the human population and it is of unknown cause. 

 
iv

 Secondary hypertension is the type of hypertension where a cause for the high blood pressure is identifiable, this 

type accounts for about 5% of high blood pressure in the population. 

 
v
 Angiotensin-converting enzyme inhibitor (ACE-inhibitor) is a class of medications used for the treatment of raised 

blood pressure. ACE inhibitors act by interfering with the action of the enzyme responsible for converting the 

inactive angiotensin 1 protein into the active Angiotensin 2, this active form causes increased blood pressure. 

Angiotensin converting enzyme (ACE) is present in the lung, whereas the Angiotensin type 1 is produced in the 

liver by the action of rennin. (Renin is an enzyme produced by the kidney in response to stress that might be caused 

by various stimuli). Angiotensin1 is transported in the blood when it passes through the vessels in the lung the ACE 

convert it into Angiotensin 2. ACE inhibitors interfere with this process and help treat raised blood pressure. 


