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1. INTRODUCTION

This paper focuses on the effective sampling distribution of
particle swarm optimisation (PSO). PSO is a population-
based global optimisation technique. The algorithm is
made of two essential steps: particle movement (dynamics)
through a search space of solutions and an indirect parti-
cle interaction which is mediated by information sharing
within a social network. Particles place personal “attractors”
in the search space at positions corresponding to the best lo-
cation (as determined by the evaluation of an objective func-
tion) that they have visited. The dynamical update rule which
specifies the acceleration of a particle i is a sum of an attrac-
tion towards a personal attractor and an attraction towards
the best attractor amongst other particles in i’s social neigh-
bourhood [1–3]. The particle acceleration is added to parti-
cle velocity in a discretisation of particle kinematics; the ve-
locity is added in turn to particle position and a new trial
solution is achieved. Despite the simplicity of this scheme,
the algorithm is effective over the standard benchmark prob-
lems and has increasing numbers of real-world applications.
However, little is known about how a PSO achieves its results.

The sampling distribution provides the probability den-
sity of particle placement between and around fixed attrac-
tors. This scenario occurs when the swarm “stagnates,” the
swarm is not improving, the network of attractors is fixed,
and the particles are moving independently of each other,
that is, the particles decouple. Stagnation can occur in the

full model, or can be imposed for the purposes of the oretical
analysis. In general, particles are expected to search in the im-
mediate vicinity of the attractors, and indeed this behaviour
is necessary for convergence. The central portion of the sam-
pling distribution is therefore coincident with this region.
However, the swarm must retain an ability to explore outside
the attractor vicinity if premature convergence, a problem in
complex environments, is to be avoided. This exploration is
due to the finite tail of the sampling distribution; there is a
small probability that a particle will be displaced far from the
region of convergence, and this probability increases with tail
fatness.

Some insights into the PSO sampling distribution have
been provided by a study of “bare bones” formulations [4].
In this work, Kennedy replaced the particle update rule with
sampling from a Gaussian distribution with mean at the cen-
troid of the personal and neighbourhood best positions of
each particle, and standard deviation was set to the sepa-
ration between them. Performance comparisons with a few
benchmark problems were disappointing (later confirmed
in [5]), but the addition by hand of particle “bursts” ame-
liorated the situation somewhat, indicating that the tails of
this Gaussian distribution function are too thin to enable es-
cape from stagnation. Further evidence for this conclusion
has been provided by a study of Lévy bare bones [5] where
more extensive trials showed that fat tails, as provided by the
Lévy distribution, improve bare bones performance so that
it becomes effectively equivalent to standard PSO. A recent
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0. initialise swarm
FOR EACH particle i

randomise !vi, !xi, set !pi = !xi
FOR EACH particle i

1. find neighbourhood best
!gi = arg min ( f (pj), j ∈ Ni)

FOR EACH dimension d
2. move particle

F(p) : xid ← xid
3. update memory

IF f (!xi) < f (!pi) THEN
!pi ← !xi

END
END

Algorithm 1: Particle swarm opimisation.

theoretical analysis of bare bones PSO has been given in [6].
However, a Gaussian bare bones version of a “fully informed”
particle swarm (FIPS) was able to deliver good performance
over a small testbed of functions [7], which suggests that par-
ticle tails might not be so important, at least for FIPS.

It is known that decoupled PSO exhibits bursts of outliers
[8]. Bursts are temporary excursions, along a coordinate axis,
of the particle to large distances from the attractors. A burst
will typically grow to a maximum and then return through
a number of damped oscillations to the region of the attrac-
tors. The addition of bursts to Gaussian bare bones increases
the chance of particle displacement away from the attractors,
fattening the tail of the overall sampling distribution. Lévy
distributions also produce particle outliers, but these outliers
are not correlated; they do not occur in sequence along a
single axis. At the moment, the circumstances, when a se-
quence of correlated outliers (as manifest, for example, in
PSO bursts) might prove to be fortuitous, are unknown. This
paper investigates the tail of the PSO sampling distribution.
Our results show that this tail is described by power laws and
is therefore fatter than Gaussian. This fattening is indeed due
to bursting, the origin of which is concluded to lie in a pro-
cess known as multiplicative randomness.

Bursting is already known to occur in first-order stochas-
tic difference equations [9]. This paper generalises the first
order results to second order difference equations with mul-
tiplicative randomness, a class of equations that includes
standard PSO. Since the amount of bursting is dependent on
the range of the probability distributions, the paper begins by
discussing possible parameter regimes. This is accomplished
by a formulation of PSO as a finite difference equation. The
paper continues with a series of experiments which reveal the
power law tails of the sampling distribution. Section 4 intro-
duces multiplicative randomness and power law tails in first-
order processes and extends these results to second-order dif-
ference equations. A competitive reformulation PSO without
multiplicative randomness has recently been proposed (re-
combinant PSO, [10]). Section 5 investigates decoupled re-
combinant PSO and demonstrates the consequent thinness
of the distribution tail. The results of this paper are drawn to-

gether in a concluding section and some open research ques-
tions are outlined.

2. PSO AND STOCHASTIC DIFFERENCE EQUATIONS

This section recasts PSO as a stochastic difference equation
(SDE). Since this is an unfamiliar form of PSO, a few re-
lations from the literature governing parameter choice are
gathered together and presented here.

Each PSO particle i in the swarm has dynamic variables
position and velocity, !xi and !vi, and a memory !pi of a past
position visited. Furthermore, each particle is embedded in
a social, rather than spatial, neighbourhood Ni of informers.
The algorithm is outlined in Algorithm 1. A general dynamic
rule F(p) for a single particle position update is

vid(t + 1) = wvid(t) +
K∑

j=1

Φ j(t)
(
pjd − xid(t)

)
,

xid(t + 1) = xid(t) + vid(t + 1).

(1)

The sum in (1) is over K informers pi and for each di-
mension d. In standard PSO [11], however, K = 2 and the
two attractors pi and pgi are the personal and neighbourbood
best positions. In this case,

Φ1,2 = φ1,2u1,2, (2)

where φ1,2 are “acceleration” constants and u1,2∼U(0, 1) are
random numbers drawn from the uniform distribution on
the unit interval. This “inertia weight” (IW) formulation of
PSO [12] derives its name from the parameter w which imi-
tates inertia in the sense that it weights the tendency to move
in a straight line at constant speed (w = 1) to the tendency to
move erratically about the attractors Φ. Other formulations
of PSO include Kennedy and Mendes’ [13] fully informed
particle swarm (FIPS), wherein a particle is influenced by
K > 2 neighbours, Φ j = (1/K)φ ju j , and the “constricted”
Clerc-Kennedy (CK) swarm [14] which is equivalent to (1)
with the identification χ = w, φ1,2 = χφCK

1,2 .
At stagnation, we only need to consider a single parti-

cle in one dimension, so particle labels i will be dropped. By
virtue of v(t) = x(t) − x(t − 1), (1) can be rewritten as a
second-order stochastic difference equation (SDE)

x(t + 1) + a(t)x(t) + bx(t − 1) = c(t) (3)

with

a(t) =
∑

j

Φ j(t)−w − 1,

b = w,

c(t) =
∑

j

Φ j(t)pj ,

(4)

where the parameters a and c are stochastic variables because
of the presence of random numbers in (2). (However, they
are not independent because the same random numbers u1

and u2 appear in a and c.)
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Constant parameter SDEs have been studied by many
authors in a number of domains (e.g., [15] gives references
to population dynamics, epidemics, ARCH(1) processes, in-
vestment portfolios, immigrant populations, and internet
usage). A constant parameter second-order difference equa-
tion, a(t) = a, c(t) = a, Φ(t) = Φ, is obtained by replac-
ing the random variables u1,2 by a constant u. Stability con-
ditions can then be found by substituting the trial solution
x = λt into (3) and considering roots of the resulting char-
acteristic equation λ2 + aλ + b = c (see, e.g., [16]). Stability
then requires |λ| < 1. Complex, and therefore oscillatory, so-
lutions are found if

0 < b < 1,

a2 < 4b,
(5)

and stable real soutions exist for

|a| < 1 + b,

ca2 ≥ 4b.
(6)

The stability conditions can be combined:

|b| < 1,

|a| < 1 + b.
(7)

In order to relate these stability conditions to the stochas-
tic model of (3) and (4), a number of authors have suggested
replacing the random variable u1,2 by its maximum, that is,
u = 1 [14, 17, 18]. In terms of PSO parameters w and Φ
(assumed constant), this gives

|w| < 1,

0 <
∑

j

Φ j < 2(1 + w). (8)

Poli and Broomhead [19] has extended this analysis by
retaining randomness and deriving stability relations for the
expectations of the first and second moments of position.
The relation for the expected value of x is equivalent to the
above analysis with u = 0.5, so the upper bound on the ac-
celeration parameters φ is therefore twice the u = 1 bound.

Standard PSO is implemented with equal acceleration
parameters so that φ1 = φ2. Defining φ1 + φ2 = φ, the
dynamics for the inertia weight (IW) or the Clerc-Kennedy
(CK) formulations is

IW : v(t + 1) = wv(t) +
φIW

2
[
u1
(
pi − x(t)

)
+ u2

(
p2 − x(t)

)]
,

(9)

CK:v(t + 1) = χv(t) + χ
φCK

2
[
u1
(
pi−x(t)

)
+u2

(
p2 − x(t)

)]
.

(10)

Equation (8) gives, at u = 1,

0 < φIW < 2(1 + w), (11)

0 < φCK <
2(1 + χ)

χ
. (12)

The CK condition for complex eigenvalues and oscilla-
tion, a2 < 4b, becomes a = χφ, b = χ,

|χ| < 1,

1 +
1
χ
− 2
√χ < φCK < 1 +

1
χ
− 2
√χ .

(13)

In order to simplify the choice of χ and φCK, Clerc and
Kennedy suggest a single relation φCK = φCK(χ),

φCK = 1
χ

+ χ + 2 (14)

which can be simply rewritten as

χφCK = (χ + 1)2 (15)

and can be easily seen to satisfy (13). This relation is usually
inverted in the literature,

χCK = 2

φ − 2 +
√
φ2 − 4φ

, φ > 4, (16)

and a common choice is φCK = 4.1, χ ≈ 0.73.
As φCK→4, χ→1, the system becomes unstable, and as φCK

grows from 4, χ decreases from 1 and the system is increas-
ingly damped. In terms of the inertia weight formulation,
these parameters correspond to w ≈ 0.73 and φIW ≈ 3.0.
Many trials of PSO over commonly used test functions have
found that best performance is attained at φ close to the
u = 1 stability condition. The reason behind this can be elu-
cidated by considering the statistical distribution of x(t).

3. DISTRIBUTION TAIL

This section presents an experimental investigation of the
tail of sampling distribution for decoupled PSO. In each ex-
periment described here, x(1) and x(2) are random starting
positions between the two fixed attractors, p1 = −0.5 and
p2 = 0.5. Henceforth, only the IW form of PSO will be con-
sidered (the Clerc-Kennedy form is a simple parameter re-
definition) and the suffix IW will be dropped for ease of no-
tation.

Figure 1 shows the development of a spectacular burst for
the system defined by (9) at w = 0.75, φ = 3.0. The particle
is close to the u = 1 instability condition since, from (11),
φmax = 3.5. Figure 1 shows a burst of two orders of magni-
tude, as measured in units of the intrinsic scale |p1 − p2|.

Figure 2 shows the frequency N of particle distance r =
|x| for the same system as Figure 1 for a run of 106 itera-
tions. A logarithmic scale (all logs in this paper are to base
10) has been used for the y-axis so that the infrequent but
large bursts are visible on the plot. For this single run, the
mean distance was 0.747 (standard deviation 1.05) and all
distances are in the interval [1.01×10−6, 105]. Many updates
are therefore over very small distances from the origin, which
is the fixed point 〈c〉/(1 + 〈a〉+ b) of the expectation value of
x. Although the standard deviation is of the order of the at-
tractor separation, r can range over 8 orders of magnitude.
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Figure 1: A burst of outliers in decoupled PSO.
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Figure 2: Frequency N of particle distances r from the origin for
106 iterations of decoupled PSO.

Bursts would be expected to fatten the tail of the par-
ticle distance distribution p(r) when compared to distri-
butions with exponential falloffs such as a Gaussian. Evi-
dence for possible power law fattening of the distribution
tail, p(r)∼ r−α, where p(r)dr is the probability of a parti-
cle at distance r, would be revealed in a plot of the loga-
rithm of the cumulative distribution function, P(r), where
P(R) = prob (r > R). A cumulative plot (also known as a
rank/frequency plot [20]) reduces sampling errors in the tail
of the plot, even with logarithmic binning [21]. A relation
p(r)∼ r−α corresponds to P(R)∼ r1−α and a plot of log (P)
against log (r) would show a straight line with gradient 1−α.

Figure 3 shows cumulative distributions for 50 runs of
105 iterations, once more for the decoupled PSO defined by
w = 0.75, φ = 3.0, p1,2 = ± 0.5, x(1), x(2) = U(p1, p2).
All runs have been plotted on this figure to give an idea of
the deviations between runs. The straight portion in Figure 3
is evidence for a power law (although the underlying distri-
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Figure 3: Cumulative probability distribution P versus particle dis-
tance r from the origin. The plot shows 50 runs.
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Figure 4: Cumulative probability distribution of particle distances
r for various values of acceleration parameter φ.

bution might be log-normal; see discussion in the following
paragraphs).

Figure 4 shows cumulative probability distribution plots
for four values of φ at w = 0.75. This data is collected over
50 runs of 106 iterations for each value of φ. Each line shows
a straight central part. The lines curve inwards towards the
end of the sample where probabilities are small (<10−5) and
there are just a few events. Once more, a large part of the dis-
tribution is concentrated in the region between the attrac-
tors, r < 1. The power laws become established by r ≈ 1.0,
the separation of the attractors. At φ = 4.0 the power law is
evident for some 4 orders of magnitude.

Putative power laws as revealed by log-log plots are
hardly distinguished from log-normal laws p(x)∼ exp
(−ln (x − µ)2) over four or less orders of magnitude [21].
These plots therefore only show that the tails might be
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Figure 5: Power-law tails at various values of acceleration parame-
ter φ.

modelled by a power-law distribution. The underlying dis-
tribution could be power law or another distribution, such as
the log normal, whose tail can be approximated by a power
law over some range.

Figure 5 plots the same data as Figure 4 but over the in-
terval 10−4 < P(r) < 10−1 where the power laws are becom-
ing established. For clarity, every 1000th r in this range
has been plotted. The gradients and correlation coeffi-
cients of the four lines are −3.94(−0.987), −3.74(−0.998),
−1.08(−0.999), and −0.73(−0.999) for φ = 2.5, 3.0, 3.5, 4.0,
respectively. (A correlation coefficient of −1.0 indicates per-
fect negative correlation.)

If the sampling distribution p(r) does follow a power law
falloff, p(r)∼ r−α for r > rmin (as these results suggest), then
〈r〉 is well defined only for α > 2 because

∫∞
rmin

r p(r)dr di-
verges for α < 2. According to these experiments, at φ = 3.5,
the tail falls off as p∼ r−2.08, so 〈r〉 is finite at this value (and
at smaller values) of φ, but 〈r〉 diverges at larger values. This
edge is just at the u = 1 stability condition. Lower values of
u, and hence higher values of φ, lead to systems whose em-
pirical mean over a finite number of iterations will be finite
but will nevertheless vary enormously, sometimes taking on
large values, in order to respect the formal divergence of the
mathematical mean.

From the condition P(r) = 0.1, Figure 5 shows that 10
per cent of the particle positions are at distances greater than
0.21, 0.32, 0.92, and 56.8 from the origin for φ = 2.5, 3.0, 3.5,
and 4.0, respectively. This indicates that good coverage of the
region p1 < r < p2 is attained for φ = 2.5, 3.0 and 3.5. On the
other hand, there is no coverage outside this interval for φ =
2.5, showing that this PSO concentrates all its search between
the attractors. At φ = 3.0, particles will move outside this
region, enhancing exploration away from the fixed points in
the interactive model (where p1 and p2 can be updated). At
φ = 3.5, 4.0, the frequent bursts often take r far from the

attractors. These large bursts cannot help with convergence,
but they might help diversify the fully coupled system.

An analysis of the data for the 50 runs at φ = 4.0,w =
0.75 found a probability of 10 per cent for positions of at
least 1040. φ = 4.0 is between the u = 1 and u = 0.5 stability
conditions (3.5 and 7.0, resp.). Although none of these runs
exploded, bursts of extremely high amplitude were common.
The inference from these experiments is that the u = 1 sta-
bility condition corresponds to power law tails with bounded
mean. Moving φ beyond the u = 1 condition leads to un-
bounded mean displacements and little exploration of the
region between the attractors. This may explain the popular
empirical choices w ≈ 0.73 and φIW ≈ 3.0.

4. MULTIPLICATIVE RANDOMNESS

The PSO dynamics can produce, under stagnation, outly-
ing particles. However, these outliers particles are not iso-
lated; rather, large excursions exist in bursts or sequences
of increasing and then decreasing amplitudes away from
the origin. This must be true because arbitrarily large steps
r(t + 1)− r(t) are prohibited;

r(t + 1) <
∣∣− a(t)x(t)− bx(t − 1) + c(t)

∣∣

< max
(
|a|
)
r(t) + br(t − 1) + max

(
|c|
)
.

(17)

(This is in contrast to a bare bones formulations which
sample from a probability distribution N . N might itself has
fat tails but outliers need not be correlated and arbitrarily
large steps r(t + 1)− r(t) are possible. Bursts are a feature of
the finite difference equations.)

The previous section presented an evidence that the de-
coupled PSO shows power-law behaviour when close to
constant-u instability. Power-law tails are found in many nat-
ural systems. Well-known examples include the distribution
of earthquake magnitudes, frequency of words in a language,
wealth of the richest people, and physical quantities close to a
phase transition. Although power laws have been regarded as
an indicator of self-organisation (e.g., [22]), this explanation
is not necessary [21, 23].

Other possible explanations of bursts include resonance.
Certainly, (3) has a driving term c(t) and a spring-like term
Φ(t)(pi−x(t)), (1), and might be expected to resonate. How-
ever, the system does not have a well-defined resonant fre-
quency because the spring constants Φ are themselves ran-
dom.

Intermittent chaotic systems show periods of constant
amplitude punctuated by erratic bursts [24]. However, de-
coupled PSO is not chaotic in the stable regime. Another sim-
pler explanation for power laws can be found in the theory of
random multiplicative processes [9].

4.1. First-order SDE

Considering the first order SDE

x(t + 1) = −a(t)x(t), (18)

then x(t) = (−)ta(t − 1)a(t − 2) · · · a(0)x(0). The distribu-
tion of x is therefore given by the distribution of products of
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random numbers. The logarithm of x(t) is equal to a sum
of logarithms of random numbers, and by the central limit
theorem, the distribution of log (x) will be normal. The dis-
tribution of x(t) is therefore log normal, and log-normal laws
are well approximated by power laws over intervals of four or
less orders of magnitude [21]. This simple argument shows
that fat, power-law tails can derive from first-order multi-
plicative processes.

However, (18) is a very poor approximation to PSO. The
second-order SDE defined by (3) reduces to the first-order
SDE considered above for b = 0, c(t) = 0. This corresponds
to a PSO with w = 0 and

∑
Φi pi = 0. This implies that u1 =

u2 and p1 + p2 = 0; giving a PSO,

x(t + 1) = x(t) +
φ
2
[(
p1 − u3x(t)

)
+
(
p2 − u3x(t)

)]
r,

(19)

where u3 is a random value. (19) was tested over a suite of 14
objective functions, duplicating the test conditions of [11],
with very poor results.

The first-order SDE with additive noise,

x(t + 1) + a(t)x(t) = c(t), (20)

has been studied by Sornette and other workers (e.g., see
[9] for a(t) < 0). This system contains both multiplicative
a(t) and additive c(t) randomness. Decoupled PSO reduces
to (20) if the inertia weight is set to zero, w = 0,

x(t + 1) = x(t) +
φ
2
[
u1
(
p1 − x(t)

)
+ u2

(
p2 − x(t)

)]
.

(21)

Once more, performance of the fully coupled version of
(21) is very poor over the above test function set. Without ve-
locity, these PSOs cannot move through the search space and
are doomed to local exploration around the initial particle
configuration.

Equation (20) exhibits a regime of power-law behaviour.
With c(t) = 0, we recover model (18) which is log normal
in its central part [25]. For c finite, iterating (19) gives the
solution of (19) as

x(n) =
(n−1∏

l=0

a(l)

)
x(0) +

(n−2∑

l=0

c(l)
n−1∏

m=l+1

a(m)

)
+ c(n− 1)

(22)

which shows that the fate of x is determined by the multi-
plications over a. The surprising feature is that (21) exhibits
interesting behaviour in the stable regime 〈a〉 < 1 [9]. This
behaviour, namely intermittent bursts and power law tails to
the distribution of x, is contingent on max (a(t)) > 1 so that
amplification is possible, and upon the injection of noise,
c /= 0 so that convergence to the fixed point is prevented.

Rewriting the w = 0 PSO as

x(t + 1) +
[
φ
2
(
u1 + u2

)
− 1
]
x(t) = φ

2
(
u1p1 + u2p2

)

(23)
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a ∼ U(−1.75, 1.25)

Figure 6: Investigation of stochastic first-order equation for various
ranges of random variables a(t).

facilitates the comparison with (20). The fixed- u stability
condition is 0 < φu < 2. Without loss of generality, we can
place p1 = 1.0, p2 = 0 so that c(t) = (φ/2)u1. From the u = 1
stability condition, φ < 2, c(t)∼U(0, cmax), cmax < 1. Fur-
thermore, a(t) ∈ [−1,φ], although the distribution within
this interval is triangular rather than uniform. This means
that the w = 0 PSO differs from (20) in two respects: a(t)
can become positive and c and a are not independent. In-
deed, a(t) = [c(t) + (φ/2)u2 − 1].

These changes were investigated by trials on Sornette
and Cont’s original system, (20) with a∼U(amin, amax) and
c(t)∼U(0, 1). The results are shown in Figure 6. The plots
depict average distances r = |x| from the origin over 50 runs
of 106 iterations and show results for four uniform distribu-
tions of a, each with |〈a〉| < 1.0 and max (|a| > 1). Line (i),
a∼U(−1.48,−0.48), corresponds to the system previously
studied by Sornette and Cont [26], line (ii), a∼U(−1.5, 1.5),
is a symmetrical distribution with 〈a〉 = 0, and line (iii),
a∼U(−1.75, 1.25), has 〈a〉 = −0.25.

The plot shows the fat power-law tail for the Sornette-
Cont system. The results also show thin tails when the mean
a is close to zero (lines (ii) and (iii)). This can be explained
by the relative drop in probability of amplification, |a| > 1.
In SDEs (ii) and (iii), prob (|a| > 1) = 1/3, whereas in the
Sornette-Cont system, prob (|a| > 1) = 0.48. The second
term of (22) can be ignored during a large burst |x(n)| -
|x(0)|- max (c),

x(n) ≈
n−1∏

l=0

a(l)x(0). (24)

Sequences of a(l) with large products will occur less of-
ten in (ii) and (iii) compared to (i), and the distribution
tail is quenched. A comparison of SDEs (ii) and (iii) re-
veals a slightly fatter tail for (iii). This is because max (|a|) is
larger in this system, and amplification is increased because
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products of a’s of a given length n,
∏ n−1

l=0 a(l)x(0), can attain
higher values.

In summary, power-law tail behaviour is possible in first-
order SDEs, although the fatness of the tail will depend
on the choice of parameters; fattening bursts are possible
if max (|a|) > 1 and the distribution assumes a power-law
tail for finite c. Standard PSO is badly approximated by a
first-order SDE (however, a novel first-order PSO variant, a
simplified version of recombinant PSO, does produce good
search behaviour [27]). The next section examines second-
order SDEs which provide a much closer model of standard
PSO.

4.2. Second-order SDE

The second-order stochastic system with uniform distribu-
tions

x(t + 1) + U(al, au)x(t) + bx(t − 1) = U(cl, cu) (25)

has not, to our knowledge, been studied in the burst regime
max (|a|) > 1. (25) is closely related to the decoupled PSO
with p1 = 1, p2 = 0:

x(t + 1) +
[
φ
2
(
u1 + u2

)
−w − 1

]
x(t) + wx(t − 1) = φ

2
u1.

(26)

Replacing u1 + u2 with a uniform distributions leads to

x(t + 1)+U(−w − 1, φ −w − 1)x(t)+wx(t − 1)=U
(

0,
φ
2

)

(27)

and in particular, for the φ = 3.0, w = 0.75 system,

x(t + 1) + U(−1.75, 1.25)x(t) + 0.75x(t − 1) = U(0, 1.5).
(28)

Figure 7 shows the cumulative distribution r = |x| for
(28) for 50 runs of 106 iterations. Comparison with the first-
order SDEs of Figure 6 shows that this second-order SDE has
very fat tails with 10% of all positions at distances of 4× 105

or more from the origin. The frequent and large bursts are
not well modelled by a power law.

This behaviour is in contrast to the decoupled PSO of
(26), plotted in Figure 3, which shows a very much more re-
strained tail. The principle difference between (26) and (28)
is the replacement of the triangular-shaped random num-
ber distribution by a uniform distribution. Although 〈a〉 and
max (|a|) are identical, the uniform distribution increases
prob (|a| > 1), leading to an increased probability of large
products

∏ n−1
l=0 a(l).

The contribution of such products to a burst can be seen
by formally deriving a solution for x(t) as a sum over prod-
ucts of random variables. Rewriting (25) as

xn =
(
Lan − bL2)xn + cn, (29)

where L is the lag operator Lxj = xj−1, L2xj = xj−2, Laj =
aj−1L, a(t) = −aj , and iterating back in time,

xn =
(
La− bL2)(La− bL2)xn +

(
La− bL2)cn + cn. (30)
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x(t + 1) + U(−1.75, 1.25)x(t) + 0.75x(t − 1) = U(0, 1.5)

Figure 7: Investigation of a stochastic second-order equation.

Hence, after m iterations,

xn =
(
La− bL2)mxn +

(m−1∑

j=0

(
La− bL2) j

)
cn. (31)

Equation (31) reduces to the solution of the first-order
difference equation, (22), for m = n, b = 0.

During a large burst |xn|- xn−2m - max (c),

xn ≈
(
La− bL2)mxn

=
(
(La)m − (La)m−1b− (La)m−2b(La)− · · ·

)
xn

(32)

which shows that the amplification of the burst is enhanced
compared to a first-order burst (24), by the terms in b. The
validity of this remark depends on the relative sign of each
term appearing in (32). To estimate just how big the en-
hancement might be, suppose that all the a’s are positive
and the x’s alternate in sign. The probability distribution
function Pm(A) of the product of the random multipliers
A = a1a − 2 · · · am is approximated by Pm(A) = (p(A1/m)m

(see, e.g., [9]) for large A, where p(a) is the distribution of
a. Then, for large A, we can replace each random variable a
in (31) by the geometric mean a= A1/m. This gives an upper
bound to xm, xm < ((a +|b|)mxm−1 where (by assumption)
xn−1 > xn−2m. This second order burst is boosted in compar-
ison to a first-order burst xn = amxm−n. Although such large
bursts will be rare, they will contribute to the overall prob-
ability distribution of x because, although exponentially un-
likely, they are of exponential size (see, e.g., the argument of
Redner [25] for the product of a binary sequence xyxxyxyy).

The oscillatory pattern of any large burst can be deduced
by considering xn+1 = anxn − 0.75xn−1 where |xn+1| > |xn| >
|xn−1| - max (c). Suppose, for the sake of argument, that
xn−1 is positive. Then |xn+1| will be maximised if anxn < 0
with the result xn+1 < 0. Hence, xn+1 and xn−1 differ in sign.
xn might be positive or negative; in either case, we expect xn+2

to be of the reverse sign in a large burst. The conclusion is
that large bursts are likely to follow a pattern sign (x) = {+ +
− − + + −−} as demonstrated in a close-up of the burst of
Figure 8.
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Figure 8: Start of a large burst, with deviations {+ +− − + + −−}
about x = 0.

5. ADDITIVE RANDOMNESS

If distribution tails in SDEs are caused solely by multiplica-
tive randomness, a second-order SDE with only additive ran-
domness, that is, a, b = const., c = c(t) should be tail free.
Recently, a novel PSO variant, recombinant PSO (DR), has
been proposed with only additive randomness [10]. Recent
work tests PSO-DR for various neighbourhoods and param-
eter choices with impressively competitive results over a suite
of 14 common benchmarks [28]. PSO-DR is similar to the
PSO-IW, (9), except that one of the informers is replaced by a
discrete recombination of a particle’s immediate neighbours
in a ring topology,

DR : v(t + 1) = wv(t) +
φDR

2
[(
p1 − x(t)

)
+
(
p2 − x(t)

)]
,

(33)

where p2 = ηpl + (1 − η)pr , η = U{0, 1}, and pl and pr are
left and right neighbours and p1 is either the personal best
position of particle i, or the best position in i’s neighbour-
hood, depending on the particular formulation of PSO-DR.
The stability condition from (11) is 0 < φDR < 2(1 + w).

Figure 9 reports on the cumulative distribution of par-
ticle separation r for (33). The distributions for w =
0.5 and various φ up to the maximum stable value of
φ = 3.0 were collected for 50 runs of 106 iterations with
x(1), x(2)∼U(−0.5, 0.5), p1 = −0.5, pl = 0.5, pr = 1.0.

The cumulative distributions are flat for small r, and then
drop vertically at a cutoff r − c, suggesting p(0 ≥ r ≥ rc) =
U(0, rc) (although the log-log plot is not sensitive enough to
show variations from uniformity). The noncritical systems
φ ≤ 2.9 place the majority of the positions between the at-
tractors. At subcriticality, φ = 2.99, the system is inclined to
explore beyond the attractors, rc > 1. At instability, rc is be-
tween 50 and 100. A vertical drop-off beyond rc would be an
evidence that additive-SDE does not develop tails, and this is
confirmed by these plots, except perhaps for φ = 2.99 which
appears to have a finite, but very large slope.

In fact, PSO models such as (33) might produce tails
from a resonance effect. This is because the spring constants
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Figure 9: Plot of cumulative probability r for PSO-DR.

are fixed and the system has a defined natural frequency. For
the case of PSO-DR, setting p3 = (p1 + p2)/2 gives a simple
oscillator with force law F = φ(p3−x) and natural frequency
ω =

√
(φ). The periodic time, T = 2π/ω for φ = 1 (this

is empirically a good value for interacting PSO-DR [28]), is
therefore about 6 with the implication that an oscillating p3

on the timescale of 6 iterations could drive the oscillator and
amplify x. This could happen from a shifting neighbour best
position p1, or from an oscillation between pl and pr in the
p2 term, or by a combination of the two.

6. CONCLUSIONS

This paper has investigated the position distribution of de-
coupled PSO. Particular attention has been paid to the tail of
this distribution, a regime dominated by power laws. The ori-
gin of these tails lies with the phenomenon of particle bursts.
Bursts occur at all scales with decreasing probability for in-
creasing size. The accumulation of bursts of all sizes results
in distribution tail fattening. In order to study how these
bursts might develop, decoupled PSO has been formulated
as a second-order stochastic difference equation. Fat distri-
bution tails, well modelled by power laws (although the un-
derlying distribution might be log normal, or some other dis-
tribution with a power-law regime), arise from multiplicative
randomness, a phenomenon previously encountered in first-
order SDEs, and generalised here to second order processes.

This conclusion is valid for first- or second-order SDEs
where the multiplicative random variable a is capable of am-
plification (max (|a|) > 1), but does not permit system ex-
plosion (〈|a|〉 < 1). According to the theoretical analysis pre-
sented here, bursting in a second-order SDE is built from a
sum of multiplicative stochastic processes, and the burst size
is boosted by the second-order parameter b. This result ex-
plains the observation that the particle distribution shifts as
more iterations are collected. The distribution is dominated
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by large but rare events that are only manifest after many it-
erations.

A stability condition for the PSO parameters w and φ can
be achieved by replacing the random variables in the differ-
ence equation by a constant u. The inference from a set of ex-
periments is that the u = 1 stability condition leads to power-
law tails with bounded mean. Moving φ beyond this condi-
tion leads to unbounded mean displacements. The popular
φ = 3.0,w = 0.75 PSO, is within the stable region and has
weak power-law tails, which enhance exploration, yet also has
good coverage of the region close to the attractors, enabling
convergence.

There is a tantalising possibility that the removal of
stochasticity from the dynamics might render PSO amenable
to further theoretical analysis. A recombinant PSO, which is
demonstrably competitive to standard PSO, almost achieves
this miracle. The acceleration parameters are constant in
PSO-DR, but randomness, and hence diversity regeneration,
is manifest in a jiggling of the attractor components. This jig-
gling will persist even at times of stagnation. PSO-DR, replete
with just additive randomness of this sort, does not, accord-
ing to the theoretical and empirical arguments supplied here,
enjoy bursting activity. It is conjectured that this transfer of
randomness from the dynamics to the information network
generates enough noise to mitigate against premature con-
vergence in the coupled model, despite the thin tails of the
decoupled equations. These issues are taken up in [27, 28].
(See also [29].)

PSO bursts differ from the outliers generated by bare
bones swarms in two respects: the outliers occur in sequence,
and they are one dimensional. Bursting will therefore pro-
duce periods of rectilinear motion where the particle will
have a large velocity parallel to a coordinate axis. Whether
bursts are generally beneficial, or a hindrance, to a fully in-
teractive PSO and under what circumstances, is the subject of
ongoing research [28]. What does appear to be certain is that
a distribution of outliers which decreases slower than a Gaus-
sian tail is important if PSO is to escape premature conver-
gence in difficult environments. Standard PSO achieves this
through multiplicative randomness and this occurs even in
the decoupled system; recombinant PSO can only, however,
gain its outliers through the interaction of the particles.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of EP-
SRC XPS Project (GR/T11234/01).

REFERENCES

[1] A. Engelbrecht, Fundamentals of Computational Swarm Intel-
ligence, John Wiley & Sons, New York, NY, USA, 2005.

[2] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in
Proceedings of the IEEE International Conference on Neural Net-
works, pp. 1942–1948, Perth, Australia, 1995.

[3] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm opti-
mization: an overview,” Swarm Intellligence, vol. 1, no. 1, pp.
33–57, 2007.

[4] J. Kennedy, “Bare bones particle swarms,” in Proceedings of the
IEEE Swarm Intelligence Symposium (SIS ’03), pp. 80–87, Indi-
anapolis, Ind, USA, April 2003.

[5] T. Richer and T. Blackwell, “The Lévy particle swarm,” in IEEE
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