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A B S T R A C T

Background: Accurate and interpretable models are essential for clinical decision-making, where predictions can 
directly impact patient care. Machine learning (ML) survival methods can handle complex multidimensional data 
and achieve high accuracy but require post-hoc explanations. Traditional models such as the Cox Proportional 
Hazards Model (Cox-PH) are less flexible, but fast, stable, and intrinsically transparent. Moreover, ML does not 
always outperform Cox-PH in clinical settings, warranting a diligent model validation. We aimed to develop a set 
of R functions to help explore the limits of Cox-PH compared to the tree-based and deep learning survival models 
for clinical prediction modelling, employing ensemble learning and nested cross-validation.
Methods: We developed a set of R functions, publicly available as the package “survcompare”. It supports Cox-PH 
and Cox-Lasso, and Survival Random Forest (SRF) and DeepHit are the ML alternatives, along with the ensemble 
methods integrating Cox-PH with SRF or DeepHit designed to isolate the marginal value of ML. The package 
performs a repeated nested cross-validation and tests for statistical significance of the ML’s superiority using the 
survival-specific performance metrics, the concordance index, time-dependent AUC-ROC and calibration slope.
To get practical insights, we applied this methodology to clinical and simulated datasets with varying com-
plexities and sizes.
Results: In simulated data with non-linearities or interactions, ML models outperformed Cox-PH at sample sizes 
≥ 500. ML superiority was also observed in imaging and high-dimensional clinical data. However, for tabular 
clinical data, the performance gains of ML were minimal; in some cases, regularised Cox-Lasso recovered much of 
the ML’s performance advantage with significantly faster computations. Ensemble methods combining Cox-PH 
and ML predictions were instrumental in quantifying Cox-PH’s limits and improving ML calibration. Tradi-
tional models like Cox-PH or Cox-Lasso should not be overlooked while developing clinical predictive models 
from tabular data or data of limited size.
Conclusion: Our package offers researchers a framework and practical tool for evaluating the accuracy- 
interpretability trade-off, helping make informed decisions about model selection.

1. Introduction

Digitization of healthcare records has given rise to clinical prediction 
modelling, while the advancements in machine learning (ML) have 
introduced more complex models to clinicians and researchers. Clinical 
prediction models deal with a wide range of outcomes, including disease 
risk, treatment efficacy, or mortality. Clinical models often estimate 

risks of future events, requiring longitudinal data where predictors are 
collected prior to the outcome. In such cases, survival analysis methods 
are typically preferred to make the full use of longitudinal data and 
accommodate censored observations [1–5]. Among these, the Cox Pro-
portionate Hazard model [6] is one of the most widely used. ML models, 
including XGBoost, Survival Random Forests, FastCPH, DeepHit, and 
DeepSurv, have been adapted for time-to-event data and offer more 
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flexible approaches [7–12].
While these models have been tested for their ability to predict 

clinical outcomes, there is often a focus on how newer, more complex 
models outperform Cox-PH [3,11,13]. However, interpretability has 
become a critical factor in model selection, for the lack of which ML 
models are often criticised. Interpretable models enable practitioners to 
assess whether the predictions align with clinical knowledge, mitigate 
concerns about algorithmic bias, and aid integration into clinical prac-
tice. Although post-hoc explanation methods such as LIME and SHAP 
[14,15] have been developed, many argue that complex methods should 
only be employed when classical models meet their limits [16,17]. 
Others directly call for interpretable models over black-box algorithms 
[18,19]. However, interpreting survival models poses additional chal-
lenges due to the time dimension involved, compared to non- 
longitudinal data. New methods like SurvLIME, SurvShap, and Surv-
NAM [20–22] have been adapted for survival data but are still at early 
stages of validation.

In light of these challenges, we aimed to develop a set of user-friendly 
functions that would help researchers determine if added ML’s 
complexity translates into a better prediction accuracy for a given 
dataset. The package evaluates model performances using repeated 
nested cross-validation, and the potential ML’s superiority is tested for 
statistical significance. Focusing on ML abilities to capture data com-
plexities beyond the Cox model, we selected a tree-based ensemble 
method, Survival Random Forest (SRF), and a deep-learning model, 
DeepHit, as ML alternatives to Cox-PH. SRF is particularly suited for 
handling interaction terms and dealing with outliers due to the tree 
structure. It also addresses non-proportional hazards by making pre-
dictions using Kaplan-Meier non-parametric survival curves in the final 
leaves. DeepHit, on the other hand, is a well-established deep learning 
model, which is not based on the Cox loss and does not rely on the 
proportional hazard assumption, unlike many other deep learning sur-
vival models [12].

To enhance the performance of the underlying models and provide 
an additional insight into the marginal contribution of ML over Cox-PH, 
we introduced two ensemble approaches. The first ensemble in-
corporates Cox-PH predictions as an additional feature in SRF or 
DeepHit, ensuring that ML models learn at least as much as Cox-PH does. 
Any improvement in performance in this ensemble can then be attrib-
uted to the ML’s ability to capture relationships that Cox-PH could not. 
The second ensemble stacks the Cox-PH and ML models, optimizing 
their linear combination, expressed as (1 − λ) Cox + λ ML, where λ ∈ [0,
1]. This setup allows us to quantify the ‘black box’ contribution needed 
to enhance the Cox-PH’s predictions.

To provide practical guidance on when Cox-PH reaches its limits, we 
applied this methodology to real-life and simulated medical datasets. 
These datasets represented a variety of health outcomes (mortality, new 
disease cases), settings (clinical trials, observational data), and data 
domains (socioeconomic and behavioural information, genetic bio-
markers, physical and mental health indicators, clinical imaging). 
Simulated data allowed us to explore ML’s superiority across a range of 
training set sizes (200–5000 cases), and complexities, including data 
with linear, non-linear, and interaction terms.

2. Methods

We first describe the underlying models and define the performance 
metrics. Then, tuning and validation methods are explained followed by 
a brief dataset description, and a code example. More details are given in 
the Supplementary Materials.

2.1. Models

Survival data is typically presented by a p-dimensional vector of 
predictors, x, and a pair of the outcome variables, (t,σ), where t is the 
observation time and σ is the binary outcome. If σ = 1, the event had 

occurred at t; if σ = 0, then no event was observed from 0 to t. Further, 
let T be a random variable representing time-to-event, then the survival 
function is the probability of being event-free past t, S(t|x) = P(T > t|x), 
and the hazard rate is an instantaneous rate of event:  

h(t|x) = lim
dt→0

1
dt

P(t⩽T < t + dt|T⩾t, x) = −
S’(t|x)
S(t|x)

. (1) 

2.1.1. Cox Proportionate hazards model (Cox-PH)
Cox-PH [6] is one of the mostly used survival models, celebrated its 

50-th anniversary in 2022. This semiparametric model does not make 
assumptions about the baseline hazard function, h0(t), but assumes that 
the risk factors act on it multiplicatively: 

h(t|x, β) = h0(t)⋅exp
(
βTx

)
. (2) 

From that it follows that Cox-PH is a linear regression in the log-hazard 
space. Another distinct feature of Cox-PH is the proportionality of haz-
ards (PH) assumption. Indeed, the ratio of two individual hazards is 
time-invariant, 

h(t|xi, β)
h
(
t
⃒
⃒xj, β

) = exp
(
βT ( xi − xj

) )
. (3) 

The regression parameters are estimated by maximisation of the partial 
likelihood [6]: 

Lpartial(β) =
∏

i:σi=1

h(Ti | xi, β)
∑

j:tj⩾ti

(
Tj

⃒
⃒ xj, β

). (4) 

2.1.2. Cox-Lasso
The regularized version of the Cox model, known as Cox-Lasso [23], 

incorporates an L1-norm penalty on the model’s parameters into the 
maximization process: 

LLLasso(β) = log
(
Lpartial(β)

)
− λ ‖ β‖L1, ‖ β‖L1 =

∑

i=1..p
|βi|. (5) 

Regularization is often used to reduce overfitting to training data by 
shrinking or eliminating the influence of weak predictors. It is especially 
useful for addressing ill-posed problems, where classical regressions fail, 
such as when the number of predictors exceeds the sample size, or there 
is multicollinearity among the predictors.

2.1.3. Survival random Forest (SRF)
SRF is an adaptation of Random Forests to survival outcomes. SRF 

aggregates predictions of many decision trees, grown in parallel on a 
bootstrapped version of the data. Each tree recursively partitions the 
data in the predictor space, splitting the data into homogeneous sub-
samples. Among the splitting rules proposed [24,25], the log-rank-based 
proved particularly effective [26]. Individual prognoses are made from 
the observations in the terminal leaves using a nonparametric survival 
estimate, such as Nelson-Aalen estimator, and averaging predictions 
across the trees. The advantages of SRF over Cox-PH is its ability to 
account for the predictor’s interaction and operate in nonproportionate 
hazards [27].

2.1.4. DeepHit
DeepHit [10] is a deep learning discrete-time survival model, based 

on a fully connected neural network, or several networks when handling 
competing events. The final layer contains several softmax outputs, 
modelling survival probabilities for different discrete time points, 
therefore estimating time-to-event’s probability distribution functions, 
P̂(T = t|x), and F̂(t|x) = P(T ≤ t|x). A distinctive feature of DeepHit is 
the loss function which combines the log-likelihood of the censored data 
(L 1) with the ranking loss (L 2). Simplifying [10] for a single outcome 
without competing risks, the loss is as follows: 
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L = L 1 + α⋅L 2,

L 1 = −
∑

i:σi=1
log(P̂(T = Ti|xi) ) −

∑

i:σi=0
log(1 − F̂(Ti|xi) ),

L 2 =
∑

i∕=j;σi=1,Ti<Tj
exp

(

−
1

σDH

(
F̂(Ti|xi) − F̂

(
Ti
⃒
⃒xj

) )
)

.

(6) 

Here, L 1 ties the estimated probability mass function to the observed 
event rates, while L 2 encourages higher risk estimates for observations 
experiencing the event earlier. This optimizes both discrimination and 
calibration during model fitting [28,29].

2.1.5. Ensemble 1: Sequential approach
In this ensemble, the out-of-sample Cox predictions are added to the 

ML model as an additional predictor (Fig. 1). This approach has two key 
benefits. First, this may help improve the overall performance, espe-
cially in smaller datasets where ML models are particularly prone to 
overfitting and may not capture linearity as effectively as linear models 
do. Second, by ensuring that the ML model learns at least as much as 
Cox, the performance difference can be viewed as the predictive value of 
the relationships that the Cox model could not capture. This ensemble 
was validated in our previous work [30] and for cross-sectional data in 
[31].

2.1.6. Ensemble 2: Stacking approach
The second ensemble employs a stacking technique [32] common in 

ML. The underlying models (Cox-PH and either SRF or DeepHit) are 
trained independently, after which a meta-learner is tuned that combines 
their predictions. The meta-learner is a linear combination of the 
models’ predictions, regulated by a tuning parameter λ (Fig. 1), 

Ŝstack(t) = (1 − λ)⋅ŜCoxPH(t) + λ⋅ŜML(t), λ ∈ [0,1]. (7) 

Equation (7) can be rewritten as ŜCoxPH(t)+ λ⋅(ŜML(t) − ŜCoxPH(t) ), 
therefore λ represents the share of ML’s outperformance over CoxPH’s 

contribution to the final predictions.
The condition λ ∈ [0, 1] ensures that predictions remain in the [0,1] 

range. The lambda is tuned using out-of-sample predictions and is 
similar to the meta-learner’s optimisation in Scikit-learn [33]. Fitting 
the ensemble involves: (1) using cross-validation to generate out-of- 
sample predictions from the underlying models, (2) selecting the 
lambda maximizing C-index from a set of 100 evenly spaced λ in [0,1]; 
3) re-fitting the underlying models to the data supplied and returning 
those models with the optimised lambda as the components of the final 
model.

2.2. Performance metrics

The models were assessed in discrimination and calibration [34]. 
Discrimination is how well a model separates high and low risk obser-
vations and is measured by Harrell’s concordance index (C-index) [35], 
and the time-dependent area under the receiver operating curve (AUC- 
ROC) [36]. The concordance index for predictions of a binary (1/0) 
outcome measures the probability of assigning a higher risk to an 
outcome of 1 compared to those with a 0 outcome, for a random pair of 
observations. It has been shown that the c-statistic is equivalent to the 
AUC-ROC for binary outcomes [37]. For survival data, Harrell’s C-index 
measures the model’s probability of assigning a greater risk of failure for 
an observation with the shorter survival time, while time-dependent 
AUC-ROC reflects the concordance of the predicted survival probabili-
ties by a certain time with the observed survival. The equivalence does 
not hold for these measures, and we compute both. 

c-index =
# concordant pairs
# permissible pairs

=

∑
i,j:Ti>Tj

I
(

ŷi < ŷj & σj = 1
)

∑
i∕=jI

(
Ti > Tj & σj = 1

) (8) 

Here, ŷi is an estimated risk score, such that a higher score indicates a 
shorter time-to-event. 

Fig. 1. Ensemble models description. The figure explains the underlying idea of the sequential ensemble and uses generic names such as “Linear” and “ML” models. 
In this paper and in the ‘survcompare’ package, we use Cox-PH or Cox-Lasso as the linear models, and Survival Random Forests, and DeepHit as nonlinear ML 
alternatives.
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AUCROC(t) =
∫ ∞

c=− ∞
Sensitivity(c, t) d(1 − Specificity(c, t) ),

Sensitivity(c, t) = P(ŷi> c|Di(t) = 1),
Specificity(c, t) = P(ŷi≤ c|Di(t) = 0).

(9) 

Here, Di(t) is the event status by time t. Cases are the observations with 
observed events by t, that is, Di(t) = 1 if Ti ≤ t and σi = 1. Controls are 
those observed past t with no events, Di(t) = 0 if Ti > t. It was shown 
that an inverse probability of censoring weights (IPCW) adjustment can 
increase stability of the AUC-ROC estimates across various censoring 
scenarios [38], which is implemented by Blanche et al, and utilised in 
our code [39].

Calibration is how well the estimated chances correspond to the 
observed event rates. For example, if estimates survival chances are 
0.85, it is expected that among the people with similar risk profiles the 
observed survival would also be 0.85. Calibration can be measured by 
the calibration slope [34]. For binary outcomes, it is computed by 
regressing observed outcomes on the model’s risk score and taking the 
slope coefficient. An ideal slope is 1; a lower value indicates overfitting, 
and vice versa. For survival data, we fix the time of interest and evaluate 
calibration slope with respect to the observed binary survival by this 
time. If ŷi(t) are predicted event probabilities by t, and we defined time- 
dependent cases and controls as Di(t) = 1 or 0 as in Equation (9), cali-
bration slope is the slope coefficient in the logistic regression of Di(t) on 
ŷi(t)[40], 

log
P(D(t) = 1 )

1 − P(D(t) = 1 )
= b0 + slope(t)⋅ŷt . (10) 

2.3. Model tuning and validation

Our code performs k1-fold cross-validation repeated r times, and 
model parameters were tuned using a k2-fold CV on the training data. CV 
involves splitting the data into k folds, training on all but one, and 
evaluating performance on the residual fold. The process rotates trough 
the folds, averaging performances. CV can also be employed for model 
tuning to identify the hyperparameters with the best averaged perfor-
mance. In nested CV both techniques are used simultaneously: the 
external loop defines testing data while internal CV tunes hyper-
parameters. Repeated CV splits the data differently each time to reduce 
the validation bias, and stratified CV ensures similar event rates across 
the folds. SRF and DeepHit are tuned by C-index across a wide grid of 
hyperparameters (see Supplementary Table 1); Cox-Lasso uses “glm” 
package. Our code allows random hyperparameter search with user- 
defined search sizes [41].

To compare the models, we validate them with the same number of 
repetitions, CV folds, and random seeds that define the data splits, 
ensuring the performance estimates corresponds to the same train/test 
sets. The superiority of one model is assessed with a one-sided paired 
Student’s t-test applied to the performance metrics, with p-value < 0.05 
considered significant, using the C-index to define the difference.

In the experiments for this paper, we used k1 = 5, k2 = 3, and r = 10, 
and the prediction time was set to the 0.90-th quantile of the observed 
event times. For clinical data, we set early stopping = 0, weight decay =

0, activation function = ’relu’, and performed a random grid search 
over 100 combinations for DeepHit tuning; n tree = 300 and random 
search over 25 combinations was used for SRF. For simulations, DeepHit 
hyperparameters were set to early stopping = FALSE, weight decay = 0,
epochs = 100, optimized learning rate from (0.001, 0.01, 0.1), batch size 
was 100 for datasets sized up to 500, and 250 for larger samples, 
mod alpha = 0.2, sigma = 0.1, num nodes was chosen from the combi-
nations of 1, 2, or 3 layers, containing 4, 8, or 16 nodes each. For the SRF 
we used n trees = 300, mtry = 3, n depth = 5.

2.4. Software employed

Our code relies on a number of R packages for fitting individual 
models and computing performance metrics. Namely, the package 
‘survival’ for Cox-PH fitting; ‘glm’ package for Cox-Lasso [42]; ‘ran-
domForestSRC’ for SRF with log-rank splitting [9]; ‘survivalmodels’ 
package for DeepHit [43]. C-index was computed using the ‘concor-
dance’ command from ‘survival’ package [44]. Time-dependent AUC- 
ROC computations utilised ‘timeROC’ [45]. All calculations were run 
using R version 4.3.1, on the Intel® Core™ i7-9700 K CPU, 3.60 GHz 
processor, 16 GB RAM.

2.5. Code example

The full version of our package ‘survcompare’ can be downloaded or 
installed from GitHub [46]. A shorter version, supporting SRF but not 
DeepHit, is available from the Comprehensive R Archive Network 
(CRAN) [47] and can be installed as ‘install.packages(“survcompare”)’. 
In this example, we simulated a dataset using the function ‘simu-
late_nonlinear(N = 200)’, with the columns ‘time’ and ‘event’ defining 
the survival outcome, as required by the package. The function surv-
compare() performs a repeated CV for Cox-Lasso and SRF, and returns an 
output, similar to that in Fig. 2. The map of the package functions and 
other code examples are provided in the Supplementary materials.

2.6. Datasets

We employed six clinical datasets (Table 1). 

• English Longitudinal Study of Ageing (ELSA) is an ongoing multi-
disciplinary study of the older UK residents (aged > 50) with publicly 
available data [48,49]. We utilised processed data from the [50] for 
the outcome of new diagnoses of type 2 diabetes.

• Alzheimer’s Disease Neuroimaging Initiative data (ADNI) is an 
ongoing longitudinal study (https://adni.loni.usc.edu/about/) pro-
moting Alzheimer’s disease research [51]. We analysed the pro-
cessed data used in [3] available from the authors by request and 
after getting the ADNI approvals.

• Foot ulcer study (FUS). The data were collected by Ismail and col-
leagues [52] for the original study investigating the impact of 
depression on mortality among the people diagnosed with diabetic 
foot ulcer.

• Worcester Heart Attack Study (W500) included 500 patients 
admitted to Worcester’s hospitals, USA, between 1975 and 2001 
with an acute myocardial infarction to investigate mortality risk. We 
analysed data stored in scikit-learn package.

• Study to Understand Prognoses and Preferences for Outcomes and 
Risks of Treatments (SUPPORT) [53]. The data is available in the 
‘pycox’ Python package [54] and includes information of 8873 
severely ill hospitalised adults and 14 predictors for the risk of death.

• Head and neck squamous cell carcinoma data (HNSCC). HNSCC data 
were collected by the Anderson Cancer Center Head and Neck 
Quantitative Imaging Working Group [55]. We used a processed 
HNSCC dataset analysed by Yang et al. [13].

• Simulated datasets. The generating function was the same as 
described in our previous work [30], and largely similar to simula-
tions in the ‘survivalmodels’ package [43]. We simulated datasets of 
the sizes 200 to 5000, and validated model performances on an 
independently simulated testing dataset (n = 5000). The experiment 
was repeated 50 times to compute the means and standard deviations 
of the performance metrics.

More detailed information can be found in the Supplementary 
Materials.
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Fig. 2. Code example.

Table 1 
Dataset descriptions.

Dataset Event description N Events observed Predictors Mean observation time Data domains

ELSA Type 2 diabetes 5957 456 (8 %) 13 8.7 years Epidemiological
SUPPORT Hospital mortality 8873 6036(68 %) 14 479 days Clinical
ADNI Alzheimer’s disease 285 34 (12 %) 55 33 months Imaging
FUS Death 253 92 (32 %) 10 35 months Clinical
W500 Death 500 215 (43 %) 16 2.4 years Clinical
HNSCC Death 451 56(12 %) 107 6.6 years Imaging
Linear simulated up to 5000 20 % 4 10 −

Non-linear simulated up to 5000 20 % 4 10 −

Cross-terms simulated up to 5000 20 % 4 10 −
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3. Results

3.1. Clinical data analysis

Table 2 and Fig. 3 present the results of repeated nested cross- 
validation for six prognostic clinical models using Cox-PH, Cox-Lasso, 
SRF, DeepHit, and their ensembles, showing the C-index. Table 3 dis-
plays the calibration slopes. Machine learning (ML) models out-
performed the Cox models in 3 out of 6 datasets, with significant 
variation. No difference was observed for ELSA, W500, and FUS studies, 
while differences in the C-index were 0.0384 for SUPPORT, 0.0606 for 
ADNI, and 0.1057 for HNSCC (detailed in Supplementary Table 2).

Calibration was generally better in the models that also showed 
better discrimination (Table 3). In datasets where Cox-PH was not out-
performed (ELSA, FUS, W500), Cox models’ calibration slopes were 
nearly perfect. SRF and DeepHit tended to underfit (slope > 1), but this 
improved when ensembled with Cox-PH. The ensembled approach 
worked better with DeepHit, while SRF sequential ensemble (Ensemble 
1) underfit considerably with calibration slope close to 2. Where ML 
models outperformed (SUPPORT, HNSCC), SRF ensembles demon-
strated better calibration than other models. DeepHit was overfit, 
especially in smaller datasets (ADNI, HNSCC). Worth highlighting Cox- 
Lasso’s close-to-optimal calibration in the SUPPORT and ADNI datasets. 
However, Cox-Lasso did not show good discrimination in ADNI, and it is 
important to consider both metrics.

3.2. Analysis of the stacked ensembles of clinical and simulated data

As described in the methods, alternative analysis of the ML out-
performance is possible by computing the lambdas in the stacked en-
sembles of Cox-PH and ML models (Equation (7). Fig. 4 and 
Supplementary Table 2 show lambdas for all datasets across the splits in 
repeated nested CV. In simulated data, both DeepHit and SRF stacked 
ensembles correctly learned to rely on Cox-PH predictions in the linear 
(lambda < 0.1), and on ML predictions in the non-linear and cross-terms 
datasets (lambda > 0.90). In clinical data, low lambdas were seen in the 
clinical datasets with no ML outperformance: mean lambda for ELSA 
was 0.14. 0.32 for FUS and 0.20 for W500 for SRF stacked ensemble. In 
accordance with ML’s outperformance in C-index, the contribution of 
the ML to the stacked ensemble predictions was high (> 0.70) in the 
SUPPORT and HNSCC datasets. In ADNI, DeepHit’s lambda was 0.40, 
while SRF’s was 0.97, indicating a better fit of SRF compared to DeepHit, 
also seen in the C-index results.

3.3. Learning curves of the ML models in the simulated data

Fig. 5 presents the simulated learning curves for DeepHit and SRF. 
Each subplot shows the mean performance of Cox-PH, ML models, and 
Cox-PH ensembles on linear, nonlinear, and cross-terms data. As ex-
pected, ML models consistently outperformed Cox-PH on nonlinear and 
cross-terms data, even with small sample sizes (≥500). For linear data, 
Cox-PH was always superior, though the difference diminished with the 
sample size increase.

3.4. Computational time

We estimated computational times required for the 10 repeats of 5- 
fold nested CV with 3 internal folds and 100 random grid searches for 
DeepHit and 25 for SRF (Supplementary Table 4). Averaging across the 
datasets and normalizing to 1000 observations, Cox-PH and Cox-Lasso 
could be validated in 3 seconds, SRF and its ensembles in under 10 
minutes, DeepHit and its sequential ensemble in 1–1.3 hours, and its 
stacked ensemble in 6 about hours due to additional out-of-sample 
computations to tune lambda.

4. Discussion

Accurate and interpretable models are essential for clinical decision- 
making, which is increasingly acknowledged by the healthcare pro-
fessionals, regulators, and patients [18,19]. Generalized Linear models 
(GLMs) are considered transparent and interpretable, while “black-box” 
state-of-the-art ML models handle complex data and can achieve higher 
accuracy [11,30,56]. We focused on time-to-event medical data and 
evaluated the performance of Survival Random Forest (SRF) and 
DeepHit against the traditional Cox-PH and Cox-Lasso models, exam-
ining the trade-offs between model complexity and transparency. To 
facilitate this, we developed a set of R functions to perform nested cross- 
validation and compare the predictive performance of these models.

Our analysis of the clinical data revealed that the superiority of ML 
models was largely domain and size dependent. Imaging datasets 
benefited significantly from the ML, as well as a larger non-imaging 
data, that included prediction of cancer mortality for HNSCC study, 
Alzheimer’s disease progression in the ADNI data, and hospital mortality 
in the SUPPORT study. However, in other epidemiological studies 
(prediction of diabetes in ELSA, cancer mortality in W500, and mortality 
in FUS), Cox-PH performed comparably to the ML. The ensemble 
models, combining Cox-PH with ML predictions, provided another 
quantification of the potential ML’s ability to capture data complexities 
beyond Cox-PH. For example, in the SUPPORT and HNSCC studies, the 
stacked ensembles mostly relied on the ML component, with λ > 0.70. 

Table 2 
Validated performances of the SRF, DeepHit, their ensembles with Cox-PH, and their outperformance of the baseline Cox models.

C-index, 
mean (SD)

Cox-PH Cox-Lasso SRF SRF Ens1 SRF Stack 
Ens2

DeepHit DeepHit 
Ens1

DeepHit 
Stack Ens2

ML 
outperformed

ELSA 0.7522 
(0.0029)b

0.7523 
(0.0028)

0.7344 
(0.0042)

0.7292 
(0.0042)

0.7529 
(0.0029)

0.7469 
(0.003)

0.7406 
(0.0068)

0.7524 
(0.0032)

NO

FUS 0.7240 
(0.0100)b

0.7232 
(0.0088)

0.7138 
(0.0147)

0.7089 
(0.0109)

0.7163 
(0.0092)

0.7184 
(0.0121)

0.7195 
(0.0112)

0.7254 
(0.0126)

NO

W500 0.7715 
(0.0046)b

0.7699 
(0.0064)

0.7692 
(0.0053)

0.7694 
(0.0054)

0.7762 
(0.0043)

0.7587 
(0.0084)

0.7616 
(0.0088)

0.7710 
(0.0050)

NO

SUPPORT 0.5706 
(0.0007)b

0.5715 
(0.0006)

0.609 
(0.0012) ***

0.6093 
(0.0012) ***

0.6088 
(0.0011) ***

0.5914 
(0.0049) ***

0.5825 
(0.0048) ***

0.5916 
(0.0063) ***

YES

ADNI 0.5576 
(0.0489)

0.7120 
(0.0501)b

0.7726 
(0.0178) ***

0.7708 
(0.0182) ***

0.7684 
(0.0184) **

0.7263 
(0.0529)

0.7164 
(0.0587)

0.7301 
(0.0371)

YES

HNSCC 0.547 
(0.0462)

0.6109 
(0.0496)b

0.7189 
(0.0104) ***

0.7165 
(0.0114) ***

0.7130 
(0.0140) ***

0.6833 
(0.0240) ***

0.6983 
(0.0238) ***

0.6925 
(0.0245) ***

YES

*** − p-value < 0.001, ** − p-value < 0.01, * − p-value < 0.05; SD- standard deviation
b- baseline model, Cox-PH for ELSA, SUPPORT, FUS, W500, and Cox-Lasso for ADNI and HNSCC.
The table shows the mean and standard deviation of the validated C-scores over the 10 repeated 5-fold CVs. The stars indicate statistical significance of the out-
performance of the ML model over the baseline Cox model.
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Fig. 3. Validated C-scores for the clinical datasets. Estimated mean C-index with the 95% confidence intervals for the mean estimated from the 10 repeated 5-fold 
cross-validations.

Table 3 
Validated calibration slopes of the Cox-PH, SRF, DeepHit and their sequential and stacked ensembles.

Calib slope, median (SD) Cox-PH Cox-Lasso SRF SRF Ens1 SRF Stack Ens2 DeepHit DeepHit Ens1 DeepHit Stack Esn2

ELSA 0.92 (0.02) 1.16 (0.02) 1.26 (0.37) 2.28 (0.28) 0.95 (0.05) 0.86 (0.46) 0.69 (0.05) 0.91 (0.02)
FUS 0.74 (0.07) 0.95 (0.08) 1.45 (0.2) 1.78 (0.27) 1.02 (0.22) 1.38 (1.67) 1.01 (0.17) 0.94 (0.19)
W500 0.81 (0.08) 1.30 (0.04) 1.50 (0.28) 2.26 (0.51) 1.23 (0.17) 0.86 (0.48) 0.89 (0.16) 0.89 (0.1)
SUPPORT 0.98 (0.01) 1.04 (0.01) 0.96 (0.06) 1.12 (0.03) 0.96 (0.03) 0.66 (0.08) 0.71 (0.06) 0.84 (0.04)
ADNI 0.03 (0.03) 1.13 (1.26) 0.75 (0.11) 0.77 (0.15) 0.74 (0.13) 0.39 (0.3) 0.41 (0.17) 0.77 (0.38)
HNSCC 0.05 (0.05) 0.37 (0.38) 0.71 (0.04) 0.68 (0.08) 0.68 (0.08) 0.87 (0.16) 0.93 (0.18) 0.96 (0.23)

Median and standard deviation of the validated calibration slopes over the 10 repeated 5-fold CV (apart from ELSA and SUPPORT with 3-fold CVs). In bold are the 
calibration scores which correspond to the models with the highest C-index, as indicated in Table 2.

Fig. 4. Share of the ML predictions in the stacked ensembles of Cox-PH (lambda parameter) with SRF and DeepHit.
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Conversely, in ELSA and W500, the share of ML’s contribution to the 
stacked ensemble was minimal (0.1–0.3), reinforcing that Cox-PH 
captured the majority of the predictive information.

The investigation of the learning curves revealed that the Cox models 
can achieve near-optimal performance even with relatively small sample 
size (200–500 observations). In contrast, ML models required larger 
datasets (1000–5000 observations) to fully leverage their feature 
transformation capabilities. Notably, the benefit of incorporating Cox- 
PH predictions into more complex models, such as SRF, was evident in 
smaller datasets, where ML models struggled to capture the general-
isable data’s complexity.

4.1. Our findings in the context of previous research

Other studies also reported that classical methods can perform as 
good as ML models in predicting health outcomes, or only marginally 
inferior. A systematic review by De Silva et al. (2020) [57] found that 
among 27 ML models of type 2 diabetes, the pooled C-index for neural 
networks was 0.825, closely followed by logistic regression at 0.815. If 
interpretability is favoured, such minor differences may not justify 
choosing ML models over logistic regression, particularly given longer 
computation times. Nusinovici et al. (2020) [58] and Wu et al. (2023) 
[59] found that in low-dimensional settings logistic regression per-
formed on par with ML models. The preference of Cox-PH in low sample 
size was also reported in the simulation study by Baralou et al. (2023) 
[56]. We further found that simple solutions such as opting for Cox- 
Lasso could recover a part of ML’s outperformance in high- 
dimensional data such as ADNI, and HNSCC. Similarly, Baralou et al. 
advocates for the inclusion of splines in Cox-PH to handle potential non- 
linearity [56].

Further, our results align with previous analyses of the SUPPORT, 
ADNI, and W500 data [11,13,60]. Some variations could be due to the 
differences in model tuning, data heterogeneity and randomness of 
train-test splits. Unlike some prior studies, our code averages perfor-
mance estimates over multiple splits (50 test performances are gener-
ated by 10 repeated 5-fold CVs), which provides a more robust 
assessment of the model performance and its stability. The variability of 
results is further illustrated in the histograms of C-index differences 
(Supplementary Fig. 1).

4.2. Calibration for clinical prediction modelling

While good discrimination enables the identification of high-risk 
individuals, calibration, or accurate probability estimates, are crucial 
for medical decision-making, yet calibration measures are rarely re-
ported [28,29,61]. Traditional models like Cox-PH, or Logistic Regres-
sion, typically exhibit good calibration, as they are optimized to match 
observed event rates. ML models such as SRF may luck inherent cali-
bration mechanisms. Other studies highlight the importance of higher 
sample size for calibration of the ML models [62]. In our analysis, the 
Cox models resulted in better calibration in the data with limited ML 
outperformance, while the ensembles incorporating Cox-PH predictions 
into SRF have shown improved calibration where SRF itself had failed 
(Table 3).

4.3. Future directions and methodological considerations

This study focused on SRF and DeepHit as ML alternatives to the Cox 
regression. Other survival models can be tested, and our code can offer a 
basis for such extensions. Second, external validity, such as performance 
assessment in data collected from different geographic locations, or time 
periods, remained untested and can be further explored [5,63], 
including validation in synthetic data [64]. Third, we acknowledge the 
emergence of the interpretable ML models such as rule-based, proto-
type-based, and ensemble methods [30,65]. Such models may offer both 
interpretability and predictive superiority, though GLMs could still 
challenge them in computational efficiency and prediction stability. 
Future research could include the comparisons of the Cox-PH with such 
models. Finally, future package versions will include missing data 
handling.

4.4. Conclusion

We presented a systematic approach for assessing the predictive 
value of complex data relationships in survival analysis. The findings 
indicate that Cox-PH or Cox-Lasso may be sufficient in many clinical 
applications, while embedding Cox-PH predictions into the ML models 
such as SRF or DeepHit may help assessing the predictive advantage of 
the ML and improve calibration. Our methodology and R package 

Fig. 5. Learning curves of Cox-PH, SRF, and their ensembles for the simulated datasets.
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“survcompare” offer researchers a practical framework for diligent 
model validation and assessing the necessity of complex models in 
clinical prediction settings.

5. Code availability

Code: The full version of our R package ‘survcompare’ can be 
downloaded or installed from GitHub page, https://github.com/dianash 
ams/survcompare/tree/DeepHit [46]. A shorter version, supporting SRF 
but not DeepHit, is available from CRAN https://github.com/cran/survc 
ompare [47] and can be installed in a standard way.

The data used in this project were publicly available apart from the 
FUS as described below. The secondary analyses of the anonymised data 
performed in this study did not need ethical approval. Here, we provide 
the approval information for the original studies and data collections. 

• English Longitudinal Study of Ageing. The ELSA data are managed by 
the UK Data Services [66] and is publicly available from htt 
ps://www.elsa-project.ac.uk/. All participants gave informed con-
sent, ethical approvals were received for each data collection wave as 
detailed in https://www.elsa-project.ac.uk/ethical-approval.

• Alzheimer’s Disease Neuroimaging Initiative data. The ADNI data 
used in preparation of this article were obtained from the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) database (adni.lon 
i.usc.edu). As such, the investigators within the ADNI contributed to 
the design and implementation of ADNI and/or provided data but 
did not participate in analysis or writing of this report. Data collec-
tion and sharing for this project was funded by the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) (National Institutes of 
Health Grant U01 AG024904) and DOD ADNI (Department of 
Defence award number W81XWH-12–2-0012). The study declared 
compliance with the ethics principles derived from international 
ethics guidelines, including the Declaration of Helsinki and Council 
for International Organizations of Medical Sciences (CIOMS) Inter-
national Ethical Guidelines. The study further complied with Title 21 
of the United States Code of Federal Regulations (US 21 CFR) 
regarding clinical studies, including Part 50 and Part 56 concerning 
informed consent and IRB regulations and applicable sections of US 
21 CFR Part 312. All participants gave informed consent. The data is 
accessible as detailed in https://adni.loni.usc.edu/data-samples/acc 
ess-data/.

• Foot ulcer study data. The study protocol was approved by the ethics 
committees of King’s College London, and the local participating 
National Health Service Trusts; all participants provided written 
informed consent. The presented secondary analysis of the anony-
mized data does not require separate approval. The anonymized data 
can be shared with approved researchers upon request, ethical 
approval, and permission.

• Worcester Heart Attack Study. The data were used in the textbook by 
Hosmer and Lemeshow [67] and publicly available from https://we 
b.archive.org/web/20170517071528/http://www.umass.edu/sta 
tdata/statdata/data/whas500.txt, or using Python’s scikit-survival 
package and the function ‘sksurv.datasets.load_whas500()’ https:// 
scikit-survival.readthedocs.io/en/stable/api/generated/sksurv.data 
sets.load_whas500.html.

• Head and neck squamous cell carcinoma data. The data were 
collected by the Anderson Cancer Center Head and Neck Quantita-
tive Imaging Working Group [55] and are publicly available at The 
Cancer Imaging Archive [68] as detailed in https://www.canceri 
magingarchive.net/collection/hnscc/. In this project, we used a 
pre-processed HNSCC dataset analysed by Yang et al. (2022) [13]
and can be downloaded from https://github.com/lasso-net/lasso 
net/tree/master/examples/data [69].

• Study to Understand Prognoses and Preferences for Outcomes and 
Risks of Treatments (SUPPORT) [53]. The data is available in the 

‘pycox’ Python package and includes information of 8873 severely ill 
hospitalised adults and 14 predictors for the risk of death [54].
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