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Abstract.  The importance of positive, healthy and reciprocal interactions 
between mother and infant cannot be understated as it leaves a lasting impact on 
the rest of the infant’s life. One way to identify a positive interaction between 
two people is the amount of nonverbal synchrony - or spontaneous coordination 
of bodily movements, present in the interaction. This work proposes a neural 
network and ensemble learning based approach to automatically labelling a 
mother-infant dyad interaction as high versus low by predicting the level of 
synchrony of the interaction. Bidirectional Long Short-Term Memory (BiLSTM) 
and Bidirectional Gated Recurrent Unit (BiGRU) models were trained and 
evaluated on a dataset consisting of 25 key body position coordinates of mother 
and infant extracted with an AI specialised tool called OpenPose, from 58 
different videos. Ensembles of 30 such bidirectional recurrent neural network 
base models were built and then post-processed via ROC analysis, to improve 
prediction stability and performance, both of which assessed in a Monte Carlo 
validation procedure of 30 iterations. The prediction performances on the unseen 
test samples for the ensembles of BiLSTM and ensembles of BiGRU models 
include a mean AUC of 0.781 and 0.796, a mean precision of 0.857 and 0.899, 
and a mean specificity of 0.817 and 0.872, respectively. In particular our models 
predict higher probability scores for the high synchrony class versus the low 
synchrony class in 80% of cases. Moreover the achieved high precision level 
indicates that 90% of mother-infant dyads predicted to be in the high synchrony 
class are predicted correctly, and the high specificity level indicates a detection 
rate of the mother-infant dyads with low synchrony in 87% of cases, suggesting 
these models’ high capability for automatically flagging cases that may be 
clinically relevant for further investigation and potential intervention.  

Keywords: Mother-infant synchrony detection, Recurrent neural networks, 
Bidirectional LSTM, Bidirectional GRU, Ensemble learning, Model post-
processing optimisation, Monte Carlo validation, Video classification 



2 

1 Introduction 

   The relationship with their mother is arguably the most important one in a person’s 
life. This relationship and the strength of it in infancy can shape the course of the 
person’s social, emotional and mental wellbeing for the rest of their life. The early 
stages of life are paramount for babies’ brain and emotional development, and the 
quality of interaction between mother and infant is critical in that period. If infants are 
denied attention and a positive interaction, they can struggle in later life with forming 
relationships, education and functioning in society [1, 10]. The strong bond and the 
early positive interactions between mother and infant can shape the social development 
of the latter [2]. On the other hand, infants who were neglected from the early stages of 
development face further social development difficulties [2, 21]. Moreover, authors of 
[22] found that parent-child closeness and affection are good predictors of adolescent 
mental health and self-worth.  
   One method to assess the quality of mother-infant interactions is nonverbal synchrony 
which is the spontaneous coordination of bodily movements. Synchrony can be a vital 
indicator of a positive, reciprocal mother-infant interaction and it also indicates a 
healthy relationship with familiarity between mother and infants, leading to positive 
developmental outcomes for the infant [23, 9]. In particular, research suggests that 
synchrony between the infant’s behaviour and their caregivers play many functions in 
the infants’ development, from co-regulations of exchanges in interactions to language 
acquisition [3]. A functional interaction between mother and baby is one in which the 
mother focuses her attention on the child and responds to their behaviour in a short 
time. Such an interaction can be described as synchronous. According to [4] synchrony 
between two people is defined as a state where they move together in the same or almost 
the same time with one another. Research suggests that synchrony in group interactions 
can have a later positive influence on forming social actions [5]. Synchrony is used to 
find patterns in movements of positive and negative interactions between mother and 
infant. Developing new methods for finding synchrony patterns can help to automate 
the process of assessing the mother-infant interaction quality.  

One of the problems of interest in this context is the expert’s assessment of the 
synchrony between mother and infant in videos capturing this interaction. Moreover, 
there is value in automating this assessment process using machine learning, as such 
automation could flag those videos which are more likely to capture a negative, lower 
synchrony between mother and infant. This would constitute a useful tool supporting 
specialists in an early intervention in problematic mother-infant interactions.  

Predicting synchrony between participants in videos using machine learning models, 
was previously tackled in literature including works such as [6], in which the authors 
successfully trained a model based on Long Short-Term Memory (LSTM) recurrent 
neural networks, on facial expressions data that had been extracted from pre-recorded 
videos representing a group of three interacting people. The proposed approach was 
used to predict synchrony score on a scale of 1 to 5, and the recurrent neural model’s 
predictions were validated by comparison with predictions based on a random 
permutations baseline. In another machine learning study proposing the prediction of 
synchrony between a human arm and a robot arm, the final position of the human arm 
was predicted also with recurrent neural networks based on LSTM models [7].  
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In the present study we propose an innovative machine learning approach to 
predicting the categorical level of dyadic synchrony – high versus low, for 58 mother-
infant dyads, based on a dataset comprising 58 records with body part coordinates 
extracted from 58 videos capturing the interaction of these dyads. The approach 
proposed in this paper is based on Bidirectional Long Short-Term Memory and 
Bidirectional Gated Recurrent Unit neural network models [8, 13, 14], denoted 
BiLSTM and BiGRU, which are used as baseline models to build ensembles models, 
denoted BiLSTMens and BiGRUens, that enhance the base models’ prediction 
performance and stability.  

The rest of the paper is organised as follows: Section 2 provides a further discussion 
on synchrony related work. Section 3 introduces our proposed prediction modelling 
methodology, including data pre-processing, prediction models training and evaluation, 
and Monte Carlo validation. Section 4 presents and discusses our results, and Section 
5 concludes the paper and indicates future research directions.    

2 Related work 

   Prior research has defined synchrony as the coordination of movements, patterns, 
rhythm and timing between two people in a well-established or budding relationship. It 
is known to aid in building rapport and understanding. Synchrony can also manifest 
itself as people imitating each other’s speech patterns, through a phenomenon termed 
speech convergence (or linguistic convergence) [24]. [3] by Delaherche et al. offers 
valuable additional details about synchrony that merits consideration. The authors 
propose the following formal definition of synchrony: “Synchrony is the dynamic and 
reciprocal adaptation of the temporal structure of behaviours between interactive 
partners”. A distinction is also made between mirroring and synchrony, stating that 
mirroring is the coordination of actions or behaviours, while synchrony is the 
coordination of behaviours at the same time. Mirroring and synchrony are interrelated, 
but not equal, with synchrony being more dynamic and fluid in time. With time being 
a pivotal factor for synchrony, the authors argue that there is but a limited window of 
time for a person to produce behaviour matching that of their partner, thereby achieving 
synchrony. Delaherche et al. [3] also delve into the topic of synchrony in mother-infant 
interactions. First, the authors state that a strong sense of synchrony with their mother 
is essential in early infancy as the infant uses these moments of connection with their 
mother to build confidence in their ability to interact with others. Synchrony with the 
mother also builds a sense of secure attachment in the infant and helps them learn 
languages. 
   Nguyen et al. [25] discuss neural synchrony between mother and infant. The authors 
define neural synchrony as “the temporal coordination of concurrent rhythmic brain 
activities between individuals”. Related research stated by the authors showed neural 
synchronisation of the left inferior frontal cortex during conversations, measured 
through a technology named hyperscanning. The main focus of [25] was to understand 
neural synchrony between mother and infant during conversations and to study the 
impact of factors like turn-taking and conversation topics on said synchrony. Wavelet 
Coherence was used to calculate synchrony. The work found mother and child to have 
synchronised brain activity during conversations, with turn-taking proving a strong 
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influence on increasing synchrony. This could be because, when the mother engages in 
proper turn-taking, she is listening intently and is allowing the child enough room to 
communicate and express themselves, thereby fostering good communication and 
synchrony. This study is enlightening on neural synchrony during mother-child 
conversations. 
   Egmose et al. in [26], investigated the impact of bodily movements including upper 
body, arms and head on synchrony between mothers and infants. The study included 
infants aged 4 months and 13 months old. An eight-camera optoelectronic motion 
registration system was used to capture the bodily movements of mothers and infants. 
The quality of interaction between the mother and infant was coded using the Coding 
Interactive Behaviour scale [27]. For data analysis purposes, Matlab and SPSS were 
used to process the data. The study found a few valuable insights. Firstly, it was found 
that when the mother coordinated her head movements with the infant’s, the interaction 
had a higher rating for synchrony. Secondly, the correlation between bodily movements 
and synchrony ratings was higher for 4-month-old infants compared to 13-month-old 
infants. 

3 Prediction modelling methodology 

3.1 Data pre-processing 

This work was based on a sample of 60 videos from the SPEAKNSIGN dataset [28, 
20], each lasting more than 10 minutes with 25 frames per second, capturing a session 
of free-play between 4-7-month-old infants and their mothers. The videos were scored 
by experts with a dyadic synchrony score ranging from 2 to 14. Out of the 60 videos 
available, 2 videos were discarded as they were lacking in clarity. The distribution of 
the synchrony scores of the remaining 58 videos is illustrated in Fig.1.  

The OpenPose library [19] was used to extract a 5D array including information such 
as the video number, camera number, frame number, number of people present in a 
video, pairs of x and y coordinates and their confidence intervals of 25 body keypoints. 
Fig. 2 illustrates a single frame of a mother-infant dyad interaction video, with body 
part keypoints extracted with OpenPose.  

 

 
Fig. 1. Distribution of the mother-infant dyad synchrony scores. 

 



5 

 

 
Fig. 2. Body part keypoints extracted with OpenPose from a single frame of an interaction video. 
 
    Out of the 3 available cameras from which data was available for each video, only 
data from camera one was retained. Moreover, only data belonging to mother and infant 
were preserved in two separate arrays. To keep the shape of the data consistent for each 
video in these two arrays for mother and infant, a total of 9000 frames of data, starting 
from frame 500 and ending with frame 9,500 were retained and the rest of the frames 
were discarded. Moreover, the x and y coordinates of body keypoints were preserved 
while the confidence intervals for each coordinate, which were also estimated by 
OpenPose, were removed as they were not necessary for this study. 3D arrays were 
finally obtained for each, mother and infant, comprising the record number 
corresponding to each video, the frame number, and the sum aggregation of the x and 
y coordinates for body keypoints. Data cleaning included also the treatment of missing 
values which were imputed via linear interpolation [11], and the detection and removal 
of outliers using criteria based on the range of 0.025 or 0.975 quantiles [15, 16]. Data 
was normalised using the L2 norm. 
    Records corresponding to videos were categorized in two classes by using the 
dyadic synchrony scores: class 1 – high synchrony, and class 0 – low synchrony, 
containing the highest 60% scores and the lowest 40% scores in the dataset, 
respectively. 

3.2 Classification and model post-processing via Receiver Operating 
Characteristic (ROC) analysis and optimisation 

   A bidirectional LSTM (BiLSTM) layer and bidirectional GRU (BiGRU) layer is a 
recurrent neural network layer that learns bidirectional long-term dependencies or 
patterns present in the input sequence data. They are based on Long Short-Term 
Memory (LSTM) and Gated Recurrent Unit (GRU) layers [12, 13, 14] whose 
computations are described by the equations below, which calculate the outputs y(t) 
from inputs x(t) as follows: 
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  LSTM layer equations: 

i(t) = σ(Wxi⊺x(t) + Wℎi⊺h(t – 1) + bi) 
f(t) = σ(Wxf⊺x(t) + Wℎf⊺h(t – 1) + bf) 
o(t) = σ(Wxo⊺x(t) + Wℎo⊺h(t – 1) + bo) 
g(t) = tanh(Wxg⊺x(t) + Wℎg⊺h(t – 1) + bg) 
c(t) = f (t) ⊗ c(t–1) + i(t) ⊗ g(t) 
y(t) = h(t) = o(t) ⊗ tanh(c(t)) 

 
GRU layer equations: 

z(t) = σ(Wxz⊺x(t) + Wℎz⊺h(t – 1) + bz) 
r(t) = σ(Wxr⊺x(t) + Wℎr⊺h(t – 1) + br) 
g(t) = tanh(Wxg⊺x(t) + Wℎg⊺(r(t) ⊗ h(t – 1)) + bg) 

      y(t) = h(t) = z(t) ⊗ h(t-1) + (1-z(t)) ⊗ g(t) 
 
where σ is the sigmoid function, W.. are the weight matrices, and b. are the bias terms. 
    For illustration purposes, an LSTM cell which is a more complex version of a GRU 
cell, is depicted in Fig. 3 below [17]: 

 
 

Fig. 3. An LSTM cell architecture where Input(t), Output(t), Cell state(t), and Hidden state(t) are 
the x(t), y(t), c(t), and h(t) quantities, respectively, appearing in the LSTM layer equations above.  
 
   Bidirectional LSTM (BiLSTM) and Bidirectional GRU (BiGRU) networks follow 
the general structure of a bidirectional recurrent neural network illustrated in Fig. 4 [13, 
14]. 
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Fig. 4. A bidirectional recurrent neural network architecture, in which information from an input 
sequence data x is fed and processed in both directions as indicated by the horizontal arrows from 
left to right and from right to left, in order to compute the network’s outputs y. 
 
   The two types of recurrent neural network architectures employed in this work 
comprised, in this order, an input layer, 3 BiLSTM layers (3 BiGRU layers, 
respectively) with a number of units between 300 and 350 (the same for all 3 layers), 
and 1 hidden dense layer with a number of units between 50 and 70 and with elu, gelu, 
mish, or swish activations. The networks had an output layer with 1 unit with sigmoid 
activation for binary classification. As loss functions we employed Binary focal 
crossentropy with default parameter values. The adam optimiser with default parameter 
values was used, together with the exponential learning rate scheduling starting with 
the base learning rate of 0.003 which was decreased by a factor of 0.85 per epoch. To 
prevent overfitting, early stopping with 4 steps of patience was used on the validation 
set, and a Gaussian noise layer with standard deviation of 0, 0.01 and 0.02 was inserted 
after the input layer. To tune the hyperparameters for the respective value ranges 
mentioned above, we performed a random search with 10 iterations. Optimal 
hyperparameter values in the two architectures introduced above, are not constant and 
depended on the multiple non-test datasets used in the Monte Carlo procedure 
introduced in the next subsection. But some typical values were: (a) for the BiLSTM 
based architecture: 310 units for the BiLSTM layers, 62 units and elu activation for the 
dense layer, and a standard deviation of 0.1 for the Gaussian noise layer; and (b) for the 
BiGRU based architecture: 300 units for the BiGRU layers, 60 units and elu activation 
for the dense layer, and a standard deviation of 0 for the Gaussian noise layer. 
    Due to the relatively reduced number of records available in the dataset, i.e. 58, 
which may increase the variance of the model performance and hence negatively affect 
the model stability, we built ensembles of 30 BiLSTM models, and ensembles of 30 
BiGRU models. We denote these ensemble models by BiLSTMens and BiGRUens, 
respectively. More precisely, BiLSTMens (BiGRUens) was built as follows: after 
splitting the dataset into test set and a non-test set, the base BiLSTM (BiGRU) models 
in each ensemble were obtained by first computing the optimal hyperparameter values 
using the non-test set as explained in the paragraph above, and then by further randomly 
splitting the non-test set into validation and train sets, 30 times, and by training 30 
BiLSTM (BiGRU) models with the determined optimal hyperparameter values. The 
predicted probabilities were averaged among the 30 BiLSTM (BiGRU) models. 
Regarding data splitting, the following proportions were used: 25% test set, 75% non-
test set. The non-test set was further split, 30 times, in 67% train and 33% validation. 
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For the BiLSTMens (BiGRUens) model post-processing, we utilised the Youden 
index maximisation method in a ROC analysis procedure [18, 29] for estimating the 
optimal probability threshold using the model’s ROC curve calculated on the non-test 
(i.e. training plus validation) data set of records. For each generic probability threshold 
t∈[0,1] of a model that discriminates 2 classes such as high synchrony versus low 
synchrony (t is 0.5 by default), there is a point P(t) on the model’s ROC curve computed 
on the non-test set, whose x and y coordinates are 1-Specificity(t), and Sensitivity(t), 
respectively [29]. In this case, for each probability threshold t∈[0,1], Sensitivity(t) and 
Specificity(t) indicate the model’s rates of detection of the high synchrony and low 
synchrony classes, respectively, on the non-test dataset. Similarly to [29], the 
probability threshold based Youden index Y(t) is defined as: 

 
  Y(t) = Sensitivity(t) + Specificity(t) -1   

 
   We maximised the distance D(t) from the point P(t) to the main diagonal of the ROC 
curve (D(t) is computed below and intuitively indicates how far our model is from the 
random guess model).  Hence, we optimised the probability threshold t as follows: 
  
 D(t) = sin(π/4) × Y(t);       p = argmax t∈[0,1] D(t) = argmax t∈[0,1] Y(t) 
 

We employed the optimal probability threshold p and took t=p to obtain the post-
processed model, which was used to compute the test accuracy, precision, sensitivity, 
specificity, and f1 performances [29]. Moreover, we computed Cohen's kappa statistics 
and Matthews correlation coefficient MCC, defined below, whose positive values, 
when sufficiently far from 0, indicate that the model predicts better than chance. In 
particular, kappa focuses more on the positive class while MCC treats classes equally. 
  

kappa = 2 × (TP × TN - FN × FP) / ((TP+FP) × (FP+TN) + (TP+FN) × (FN+TN)) 
MCC = (TP × TN - FP × FN) / ((TP+FP) × (TP+FN) × (TN+FP) × (TN+FN))0.5 
 
The model’s capability to predict better than chance was investigated also 

statistically, by running a one-side T-test, in order to prove that the model's general 
performance for binary classification, called Area Under ROC Curve, denoted simply 
by AUC, and defined with the conditional probability below, is significantly larger than 
0.5 which is the performance of a random guess model. More precisely: 

 
AUC = Pr(S(r1) > S(r2) | r1∈ H, r2 ∈ L) 

 
where r1 and r2 are arbitrary records from the high synchrony class H, and low 
synchrony class L, respectively, and S is the score (i.e. probability to belong to the 
positive/ high synchrony class) outputted by the model for each record. 

3.3 Monte Carlo validation for assessing models’ performance and stability 

   To assess our models’ predictive capability, we conducted a Monte Carlo validation 
based on 30 iterations, which allows to reliably evaluate the models’ performance and 
stability. 
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3.4 Software and hardware 

Videos were initially processed with OpenPose library to detect the body keypoints 
coordinates. Data preprocessing and prediction modelling [17] were conducted in 
Python with Numpy, Scipy, Pandas, TensorFlow, Keras, Sklearn and Seaborn libraries, 
using 5 Linux servers with up to 128GB RAM per machine, and Titan RTX 24GB, 
RTX 3090 24GB, and RTX 4090 24GB GPUs, for training the BiLSTM and BiGRU 
base models and building the BiLSTMens and BiGRUens ensemble models, as well as 
for assessing the models’ performances and stability in computationally intensive 
Monte Carlo validation procedures of 30 iterations.  

4 Results and discussion 

In this section we present and discuss the results of the analyses conducted following 
the lines of methodology introduced in Section 3. 

 
 

  

 

Fig. 5. Top: Boxplots (left) and histogram (right) of performances on the test data of Bidirectional 
LSTM ensemble models (BiLSTMens) in Monte Carlo validation of 30 iterations. Bottom: Mean 
performances, and one-tailed Student’s t-test proving the alternative hypothesis: mean AUC > 
0.5, demonstrating statistically the BiLSTMens models’ prediction capability. 
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    The distribution of classification performances of BiLSTMens models, provided as 
boxplots in Fig. 5 (top left), comprises performances computed in the 30 iterations of 
Monte Carlo validation. More precisely they are evaluated using the 30 BiLSTMens 
models, each of which produced in 1 iteration of the Monte Carlo validation procedure, 
and the corresponding 30 test sets issued from the stratified splitting of the dataset. The 
performances evaluated are the AUC (ens_auc_test), accuracy (acc_test), precision 
(prec_test), f1 (f1_test), Matthews correlation coefficient MCC (mcc_test), kappa 
statistic (kappa_test), sensitivity (sens_test) and specificity (spec_test). Moreover, for 
comparison, we included also the distribution of the mean AUC of the 30 BiLSTM base 
models (mean_auc_test) which are the components of one BiLSTMens ensemble 
model. The means of the above mentioned performances are provided in Fig. 5 
(bottom). On the other hand, the distribution of the AUC of the BiLSTMens models is 
represented additionally as a histogram in Fig. 5 (top right). The mean AUC of 0.781 
represents a good capability of the BiLSTMens models to distinguish between mother-
infant dyads with low vs. high synchrony. The distribution of AUC illustrated in Fig. 5 
(top right) indicates a substantial variation of this performance across the Monte Carlo 
validation’s 30 iterations, which may be explained by the relatively reduced number of 
records (videos) in the dataset that expectedly increases variance. When we conducted 
a one-tailed Student’s t-test for the null hypothesis: mean AUC ≤ 0.5 (Fig. 5, bottom), 
we obtained the significant p-value < 1.798e-15 proving statistically that the 
BiLSTMens models predict better than random guess models, which is also illustrated 
by the AUC performance distributions in Fig. 5 (top right), and by the kappa_test and 
mcc_test performances in Fig. 5 (bottom). 

 

Fig. 6. Sample of the Monte Carlo validation iterations: aggregation in 7 basic statistics, including 
mean, std, min, max and 25%, 50%, 75% quartiles of test AUC of the 30 BiLSTM base models 
grouped in one row, which are the components of one BiLSTMens model.  

Fig. 6 illustrates a sample of the 30 Monte Carlo iterations, each row representing 
the aggregation in 7 basic statistics including mean, standard deviation (std), min, max 
and the 25%, 50% and 75% quartiles, of test AUC of the 30 BiLSTM base models 
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which are the components of each ensemble BiLSTMens model produced in the Monte 
Carlo procedure. Note the substantial std of AUC across the 30 base models, especially 
in rows such as 11 with std around 0.1, (see Fig. 6), and the min AUC around 0.37 
which corresponds to a base model that is clearly counter-performing. On all rows of 
the table in Fig. 6, all the quartiles, max and mean values of AUC indicate figures 
substantially above 0.5 (which is the expected AUC of a random prediction model), but 
there are multiple rows with min AUC values under 0.5, which clearly demonstrates 
that a prediction modelling approach based on a single base model does not constitute 
a viable solution in this case. These aspects justify our choice to propose of a prediction 
modelling approach relying on ensembles of base models despite the higher volume of 
computation for training the 30 base models forming an ensemble. As Fig. 5 illustrates 
with the histogram of AUC of ensemble models, all AUC values are above 0.5 hence 
all ensemble models predict better than chance. Moreover, the ensemble models have 
a synergistic effect in this case, as their mean AUC of 0.781 is larger than the mean 
AUC of all the base models, which is 0.739 (see, in Fig. 5 bottom, ens_auc_test and 
mean_auc_test, corresponding to the ensemble models and base models, respectively).  

The results from the conducted analysis regarding the BiGRU base models and the 
BiGRUens ensemble models, are summarised and presented in Fig. 7 below, similarly 
to the presentation of BiLSTM and BiLSTMens models in Fig. 5. The explanations 
regarding the results in Fig. 7 are similar to those provided for the results in Fig. 5. The 
main difference between the BiLSTMens and BiGRUens models is that the latter 
achieve better performances in the Monte Carlo validation procedure on this dataset. 
Indeed, the BiGRUens models showed a better prediction capability on the test sets 
compared with BiLSTMens, including a mean AUC of 0.796 vs 0.781, a mean accuracy 
of 0.729 vs 0.687, a mean precision of 0.899 vs 0.857, a mean f1 of 0.715 vs 0.672, a 
mean Matthews correlation coefficient MCC of 0.518 vs 0.429 (indicating models’ 
performances are substantially different from just random prediction, from both 
classes’ perspective), a mean kappa statistic of 0.479 vs 0.394 (indicating again that 
models’ performances are substantially different from just random prediction), a mean 
sensitivity of 0.633 vs 0.6, and a mean specificity of 0.872 vs 0.817. In particular, the 
high AUC result of 0.796 entails that our BiGRUens models predict in average higher 
probability scores for the high synchrony class versus the low synchrony class in about 
80% of cases. Moreover, the achieved high precision level indicates that 90% of 
mother-infant dyads predicted to be in the high synchrony class are predicted correctly. 
On the other hand, the high specificity level of 0.872 of these models indicates a 
detection rate of the mother-infant dyads with low synchrony in about 87% of cases, 
suggesting these models’ high capability for automatically flagging cases that may be 
clinically relevant for further investigation and potential intervention. 

As a further remark on the BiGRU based models, the ensemble models have a 
synergistic effect in this case too, as their mean AUC of 0.796 is larger than the mean 
AUC of all the base models, of 0.685 (see, in Fig. 7 bottom, ens_auc_test and 
mean_auc_test, corresponding to the ensemble models and base models, respectively). 
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Fig. 7. Top: Boxplots (left) and histogram (right) of performances on the test data of Bidirectional 
GRU ensemble models (BiGRUens) in Monte Carlo validation of 30 iterations. Bottom: Mean 
performances, and one-tailed Student’s t-test proving the alternative hypothesis: mean AUC > 
0.5, demonstrating statistically the BiGRUens models’ prediction capability. 

5 Conclusion and future research directions 

In this paper we proposed a bidirectional LSTM and bidirectional GRU recurrent 
neural network approach to predicting mother-infant synchrony classes in 58 videos 
capturing the interaction between mother and their babies. To improve the level of 
prediction performance and stability, the base models have been integrated in ensemble 
models composed of 30 base models each, and we showed that this solution was an 
effective mitigation to the problem of substantial variation of the AUC performance of 
the base models due to the relatively reduced number of records (videos) in the dataset 
(i.e. 58). This research extends on previous work in [28] which proposed GRU 
ensemble based models for predicting high vs low mother-baby synchrony. In the new 
approach presented in this study, we explored bidirectional LSTM and bidirectional 
GRU base models and ensemble models, taking advantage of the bidirectional structure 
of these models which is suitable in this framework for analysing data extracted from 
the frames of the videos capturing the mother-infant interaction. Indeed, we detected 
better the patterns of synchrony in the mother-infant dyads by exploring, in both 
directions (i.e. in the normal sequence and reverse sequence of frames) the data 
extracted from the video. In the new approach presented here we improved the AUC, 
accuracy, precision, Matthews correlation coefficient, kappa statistics, and specificity, 
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the latter of which ensuring in particular a better rate of detection of the mother-infant 
dyads with low synchrony from 83% in [28] to 87% in this study, suggesting a higher 
models’ capability for automatically flagging cases that may be clinically relevant for 
further investigation and potential intervention. 
     Future research directions include: expanding the machine learning prediction 
modelling methodology with classes of autoencoders for (a) alternative, more effective 
feature extraction and representation, and for (b) researching an effective approach to 
synthetic data generation and data augmentation, given the relatively reduced number 
of videos (58) used in this research. Moreover, the methodology proposed here is to be 
further extended to the study of predicting the interaction between parents and children, 
in other activities such as book reading which makes the object of related research work 
we develop. 
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