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Abstract—Solar power, a clean and renewable energy source,
plays a pivotal role in achieving sustainable development goals by
offering affordable, reliable, modern energy solutions and miti-
gating energy-related emissions and pollutants. Current studies
predominantly focus on solar potential analysis derived from ma-
chine learning-based rooftop area segmentation. However, these
studies reveal an overestimation of usable area for solar output
calculations in terraced houses, due to failing to distinguish
individual households within terraced structures. This research
delineates state-of-the-art Machine Learning and computer vision
techniques applied on remote-sensing images obtained via the
Google API [1]. The dataset, manually annotated and augmented
to include 5000 training images and 1000 validation images, is
focused on the UK, particularly terraced house areas. The stand-
alone Convolutional Neural Network used to segment terraced-
structure rooftop areas reaches an intersection over union of
69.11%. The model uniquely addresses the segmentation of
contiguous terraced houses in the UK, which is pivotal for the
solar installation assessments in the UK’s residential landscape.
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I. INTRODUCTION

Solar energy is one of the most abundant and clean alterna-
tives to conventional hydrocarbon fuels, and one of the most
promising for facilitating global access to economic, reliable,
and secure energy.

In 2015, the United Nations (UN) launched an agenda
encompassing 17 Sustainable Development Goals (SDGs)
aimed at fostering global sustainable development and pros-
perity [2]. Solar energy, as a renewable source with reduced
carbon emissions compared to fossil fuels, holds significant
promise in meeting the escalating energy demands, thanks to
advancements in technology and cost reductions.

While numerous studies and tools have been developed to
assess potential solar output on specific rooftops, a significant
lack arises in countries like the UK, where terraced houses

constitute a major portion of housing. 26.3% [3]. A terrace,
terraced house (UK), or townhouse (US) is a kind of medium-
density housing built as part of a continuous row in a uniform
style.

Existing machine learning models missed out this structural
fact leading to a lack of segment individual rooftops of terraced
houses. This oversight potentially leads to underutilization
of solar panels due to decreased household interest as the
inaccessibility of solar assessment of their own rooftops. By
resolving this issue, our approach not only provides solar po-
tential estimates for a broader range of housing types but also
supports the UK’s ambitious target of achieving 40 gigawatts
of solar generation capacity by 2030[4]. In the next section
a detailed discussion of existing studies in this area is given,
what are their strengths, as well as why segmenting terraced
houses to individual level is important for current machine
learning driven tool to assess solar potential of rooftops.
Figure 1 below is a typical type of terraced houses in the
UK. An example satellite image is given in Figure 6.

Fig. 1: UK Terraced Houses

A. Existing Studies

Numerous studies have been undertaken to analyze the po-
tential of rooftop solar installations. Izquierdo et al. (2008)[5]
initiated this research trajectory by assessing available rooftop



areas, a critical preliminary step in understanding the spatial
capacity for solar installations. Subsequent research expanded
on this by incorporating detailed building characteristics to
estimate solar potential from a bottom-up perspective, as
demonstrated by the works of Korfiati et al. (2016)[6].

A notable advancement in this domain is the introduction
of the SolarNet framework by Qingyu Li (2023)[7], which
utilized CNNs for comprehensive rooftop segmentation and
solar potential analysis from aerial imagery. This framework
proposes a simplified representation of roof geometries, re-
ducing the number of classes to mitigate class imbalance and
ease annotation efforts, thus streamlining the solar potential
analysis process.

Recent advancements in the field of rooftop solar potential
analysis have leveraged high-resolution imagery and sophis-
ticated machine learning algorithms to enhance accuracy and
efficiency. A notable study utilized object-based image clas-
sification combined with the normalized difference vegetation
index (NDVI) and digital surface models (DSMs) to estimate
rooftop solar photovoltaic potential accurately. This method
was validated using high-resolution imagery from Beijing,
demonstrating its effectiveness in identifying suitable rooftops
for solar panel installation and estimating their photovoltaic
potential with considerable precision[8].

Another innovative approach employed a two-stage pro-
cess for estimating solar photovoltaic potential on build-
ing rooftops. Initially, rooftops were detected using satellite
images processed through a series of image pre-processing
algorithms alongside machine learning techniques, specifically
Support Vector Machine (SVM) and Naı̈ve Bayes (NB). The
subsequent stage of solar PV potential estimation utilized tools
like the PVWatts calculator, PVGIS, and ArcGIS. Applied
to the B6 division of Madinaty City in Egypt, this method
achieved high metrics in precision, recall, and F1-score for
rooftop detection and provided robust estimates of the annual
photovoltaic potential, underscoring the method’s utility in
supporting sustainable energy initiatives[9].

In the specific realm of rooftop area estimation, method-
ologies utilizing aerial imagery have emerged as a prominent
approach due to their ability to provide current and high-
resolution data. Among these, Lee et al. (2019)[10], Huang et
al. (2019)[11] has made significant strides in roof segmentation
using aerial images. However, while effective in delineating
roof boundaries, these methods often neglect the intricate
details like roof tilts and orientations, which are pivotal for
precise solar potential calculations.

Lee et al.[10] partially addressed this challenge by em-
ploying convolutional neural networks (CNNs) to classify
roof segments according to their orientations, a method that,
while innovative, faced difficulties with complex annotation

requirements and class imbalance issues. These challenges
were further tackled by Krapf et al.[12] by proving a roof
information dataset which can be leveraged as the dataset for
CNNs for roof segmentation. However, Krapf also pointed out
the risks of biased network learning due to imbalanced data.
Rodrigo et al.[13] has taken the advantage of the dataset pro-
vided by Krapf et al.[12], which was collected in Wartenberg,
Germany, to train a roof segmentation CNNS model with an
intersection over union (IoU) 0.49.

B. The problem remains unsolved

Rooftop solar installations represent a significant frontier
in the quest for sustainable energy solutions. The accuracy
of rooftop detection for solar panel placement is crucial
for maximizing energy efficiency and viability. However, the
challenge of accurately assessing all various rooftop types with
varied rooftop configurations prevail.

As indicated in Fig.3, current methodologies predominantly
approach rows of terraced houses as singular entities, thereby
neglecting the necessity of segmenting individual households.
This oversight is particularly significant in regions such as
the United Kingdom, where terraced housing constitutes a
major portion of residential structures [3]. Such a generalized
approach can lead to substantial inaccuracies in estimating the
solar output potential for a vast number of residences.

The literature reveals a gap in the segmentation accuracy
of these models, particularly regarding their application in the
nuanced context of terraced housing prevalent in regions like
the UK. For example, studies have often treated contiguous
rooftop arrays of terraced houses as single units, thereby
skewing potential solar capacity estimates [7].

Fig. 2: Scattered houses solar potential(Yellow bounding box)
and terraced houses overestimated solar potential(Red bound-
ing circle) taken from [7]

This mistreatment of terraced houses rooftops potentially
compromises the motivation of households of terraced houses
from converting to solar energy due to the lack of accessibility
to their individaulised rooftop solar potential estimate drivied
from exising solar potential estimating tools such as Project
Sunroof from Google[14]. As reveals in figure 3, any one
of the three households(bounded by green boxes) in this
particular terraced house was not able to get an estimate of
how much solar energy its own rooftop can produce(bounded



by cyan boxes) if they decide to install solar panels from
existing tools. This is because the exiting studies and tools
treat the three connected terraced houses as one(bounded
by red box)which could potenrially leads to a compromised
motivation to install solar panels on their rooftops.

Fig. 3: A example of terraced houses seperation problem

Rodrigo et al.[13]has conducted a study dedicated in 2023
to resolved this issue discussed above, however, due to the
imbalanced distribution of the dataset used, a relatively low
IoU of 0.49 was achieved.

The study proposed in this paper seeks to address the
gap discussed in Section I-B and provides an enhanced as-
sessments of solar energy potential for individual terraced
households by leveraging a CNN machine learning model
trained on a more enhanced dataset. Next session discusses
the data collection and data processing of the data using in
this study.

II. DATA COLLECTION AND PRE-PROCESSING

In the realm of semantic segmentation of roof segments,
the literature primarily cites two benchmark datasets: the
DeepRoof dataset [10] and the RID dataset [12]. DeepRoof
encompasses annotations for 2,274 buildings, while RID fea-
tures 1,880 annotated buildings. Notably, both datasets pre-
dominantly represent data outside the UK and incorporate a
diverse array of universal roof types.

To address these limitations and focus specifically on UK
terraced roofs, we have developed a tailored validation dataset.
This dataset was meticulously constructed through manual
annotation of satellite images sourced from Google Maps Plat-
form API[1], specifically images showcasing terraced rooftops
with discernible “gaps” between individual households. The
annotation process was conducted using the Computer Vision
Annotation Tool (CVAT) [15] .

To enhance the dataset’s utility and representativeness,
we employed image augmentation techniques[16], effectively

scaling the dataset to approximately 2,000 images. First, we
randomly flip it horizontally, vertically or rotate it by 90
degrees: this increased by eight times the dimension of our
dataset. Second, we randomly crop each image to a 248x248
size, which helps in detecting rooftops lying at the edges of the
image. Third, we randomly add uniform and Gaussian noise to
avoid model overfitting[17]. This augmentation ensures a more
robust and varied dataset, facilitating more comprehensive
model training and validation.

It is crucial to note that our study is distinctly focused on
the segmentation of connected rooftop structures, such as those
found in terraced houses. Consequently, our validation set is
deliberately designed to exclude other aspects of semantic roof
segmentation, such as the geometric configuration of rooftops
and the orientation of individual roof segments. This focused
approach is in line with our specific research objectives and
helps in refining the accuracy of our segmentation model for
the targeted application of terraced house roof separation. This
proposed methodology is discussed in the next section.

III. METHODOLOGY

Convolutional Neural Network : We adapt the U-Net ar-
chitecture[18], a CNN developed for biomedical images seg-
mentation, to our task and inputs. The network originally
comes with two parts. A contracting path (encoder) extracts
features at different levels through a sequence of convolutions,
filters, activation functions and pooling layers, allowing to
capture the context of each pixel. Then a symmetric expanding
path (decoder) upsamples the results, increasing the resolution
of the detected features. The output of each stage of the
down-sampling phase is fed directly to the corresponding up-
sampling phase to avoid separate training of encoder and
decoder. U-Net has shown great performances with only a
limited number of training images. In order to detect the
available rooftop area to install RPV modules, we slightly
modify the original architecture. We restrict the output of the
model to a pixel-wise binary classification (suitable rooftop
area or not suitable) and we adapt the number of filters and
the input size in order to match the 512x512 pixels. Figure 1a
shows the modified architecture, which has in total 14’788’929
parameters. For each node we choose the Rectified Linear Unit
activation function followed by batch normalisation. Since we
are interested in the segmented area of an image, the output
vector has a sigmoid activation function, which sets for each
pixel the probability that it belongs to an area in the image
suitable for RPV installation (positive class). Each pixel is
then attributed to the positive class when its value exceeds a
probability threshold, which is set at 50%.

Model training :The whole dataset is split into three sets:
80% of images for the training, 10% for validation, and 10%
for testing. We train the U-Net architecture starting from a
random set of weights. The model is trained on small batches



of two images at a time. Since the goal is to classify each
pixel either as available or not for solar RPV installation, the
binary cross entropy loss is the natural choice. The proportion
of pixels that are labelled as available is low compared to
non-available ones, creating an unequal distribution of the
two classes. We overcome this potential bias by applying
weighted binary cross entropy loss, setting the weight for
the less frequent class to 4. Accuracy is the standard metric
for classification tasks. Given the uneven class frequency in
images, we apply Intersection Over Union (IoU or Jaccard
Index) discussed in Section IV, which is a more suited metric
for unbalanced datasets. We rely on IoU in order to evaluate
the training performance of our model. In the literature an IoU
larger than 0.5 is considered a good prediction. As gradient-
based optimization algorithm, we use Adam[19], commonly
known in computer vision tasks to speed up the convergence,
setting the default first and second moment estimates to 0.9
and 0.999. We start from a learning rate equal to 0.0008 and
we further reduce it by a factor 0.8 every 10 epochs. An
example mask produced by the model trained on learning rate
of 0.0008 is shown in Figure 4As observed in Figure 5, 10
epochs are sufficient to allow the IoU on the validation set
to converge. The final metrics obtained on training, validation
and test set are reported in Table I in in Section V.

Fig. 4: Example mask with 0.0008 learning rate after color
processing

A. Technical Details

The U-Net model, originally conceived for biomedical
image segmentation[18], is adept at capturing multi-scale
features crucial for delineating complex rooftop geometries.
This paper extends this model within the proposed framework,
leveraging its encoder-decoder architecture for robust feature
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Fig. 5: Evolution of the IoU with respect to the number of
epochs

extraction and contextual interpretation. Specifically, the U-
Net’s encoder component, derived from a VGG-16 backbone,
is employed for hierarchical feature extraction, characterized
by the encoding sequence given in Equation 1.

E(x) = {e1(x), e2(x), · · · , e(x)} (1)

where E(x) represents the encoded feature set for an input
image x, and ei(x) denotes the feature maps at encoding
layer i. These feature maps are subsequently utilized in the
decoder phase to reconstruct the segmented rooftop profile
with enhanced spatial resolution given in Equation 2 below:

D(E(x)) = dn(en(· · · (d2(e2(d1)) · · · )) (2)

where D(E) signifies the output from the decoder, leverag-
ing the contextual and spatial information encapsulated within
E(x).

The integration with UNetPlusPlus, a sophisticated iteration
of the U-Net model[20], introduces an augmented set of
skip pathways, enhancing feature propagation and reducing
semantic gaps across the encoder-decoder interface. This
modification is paramount in refining the model’s sensitivity
to rooftop edges and textures, facilitating a more granular
segmentation output.

IV. VALIDATION

The validation process is a critical component in assessing
the performance of our terraced house roof segmentation
framework. We employ a combination of established and
innovative validation methodologies to ensure the robustness
and accuracy of our model.



• Metric - Mean Intersection Over Union (mIOU):
mIOU is a pivotal metric in our validation process. It
quantifies the overlap between our model’s predictions
and the ground truth annotations, providing a reliable
measure of segmentation accuracy. The use of mIOU
is crucial for objectively evaluating the model’s perfor-
mance across various scenarios.

• Annotation and Dataset Creation: The creation of
a high-quality validation dataset is foundational to our
validation strategy. Utilizing the Computer Vision An-
notation Tool (CVAT)[15] ensures precise and consistent
annotations. This meticulous annotation process lays the
groundwork for a valid comparison between the model’s
predictions and the ground truth.

• Data Source and Diversity: Our validation dataset is
sourced from a wide range of satellite images across
the UK, encompassing diverse terraced house roof types
and urban landscapes. This diversity is key to evaluating
the model’s generalizability and effectiveness in different
real-world scenarios.

• Validation Procedure: The validation involves a thor-
ough comparison of the segmented outputs against the
manually annotated ground truth. The computation of
mIOU scores for each image in the dataset offers a
detailed assessment of segmentation precision.

V. RESULTS AND DISCUSSION

The CNN-based model presented in this study is validated
as discssed in the last section. The proposed model has
achieved an Intersection over Union (IoU) 69.11%, as shown
in Table I. This enhancement is particularly significant in
the context of solar potential analysis, where precision in
identifying and segmenting rooftops, especially in complex
urban landscapes like terraced housing, is crucial. The model
effectively addresses the challenge of potential compromised
motivation of converting to solar energy due to mistreatment of
terraced houses in the existing studies by providing a separated
rooftop detection for terraced houses from remote imagery,
Figure 9 is an example mask of successful case of our model
separating terraced house rooftops. This mask was processed
by our model on Figure 6, the colored area in the Figure 7
is the targeted rooftops waiting to be separated. Figure 8 is
model mask overlaid on Figure 6.

In short, The highlighted areas in Figure 7 are the wanted
separating area. After being processed by our model on Figure
6, Figure 9 is produced, each colored segment represents an
individual household in the targeted separating areas.

TABLE I: Performance of the CNN evaluated on the training,
validation and test sets.

IoU Accuracy Recall Precision
Training 0.8823 0.9794 0.9299 0.9437
Validation 0.6911 0.9264 0.8360 0.8508
Test 0.6420 0.9307 0.7522 0.7874

Fig. 6: An example terraced houses satellite image in the UK

Fig. 7: Targeted houses to separate

The Table II below illustrates the IoU performance compar-
ison of existing studies in rooftop segmentation in segments
and our model:

Study IoU Performance (%) Dataset Region
Krapf et al.[12] 49 Wartenberg, Germany
Our Model 69 UK

TABLE II: IoU performance comparison across various studies

The main contribution of this paper compare to other
existing studies is to introduce a model to address the issue



Fig. 8: Separated individual households

Fig. 9: The mask of separated individual households

of individual roof segmentation of terraced houses, which
increases the accessibility to the household of terraced houses
to an individual level, while maintain the high accuracy of
detection which has been achieved by other studies already.
By providing this enhanced individual level segmentation of
terraced houses, a larger portion of terraced house household
pivoting to solar energy is expected.

VI. CONCLUSION

In this work we present a novel method to estimate the
available rooftop surfaces for terraced houses by using state-
of-the-art ML and computer vision techniques based on aerial

images. The model is built on a dataset that distinctly focused
on the segmentation of connected rooftop structures, such as
those found in terraced houses. The model is validated on
a dataset designed to exclude other aspects of semantic roof
segmentation, such as the geometric configuration of rooftops
and the orientation of individual roof segments. Based on this,
the available rooftop areas of terraced houses are detected
with an IoU of 69% and an accuracy of 92%. Assuming this
CNN model based on aerial images yields realistic results, we
compare it with an existing large-scale estimate of available
roof area, our model is able to separate rooftops of row-
structure houses such as terraced houses while maintain a
same level of accuracy. Such an estimate at the resolution
of individual roofs may provide valuable insights for the real
world application to provide an individual-level solar estimate
to a large portal houses in the counties such as UK, potentially
contributes to the UK government to achieve its goal to reach
to a solar generation capacity by 2030.
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