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Abstract
We describe the development of the Singing Ability Assessment (SAA) open-source test environment. The SAA captures 
and scores different aspects of human singing ability and melodic memory in the context of item response theory. Taking 
perspectives from both melodic recall and singing accuracy literature, we present results from two online experiments 
(N = 247; N = 910). On-the-fly audio transcription is produced via a probabilistic algorithm and scored via latent vari-
able approaches. Measures of the ability to sing long notes indicate a three-dimensional principal components analysis 
solution representing pitch accuracy, pitch volatility and changes in pitch stability (proportion variance explained: 35%; 
33%; 32%). For melody singing, a mixed-effects model uses features of melodic structure (e.g., tonality, melody length) 
to predict overall sung melodic recall performance via a composite score  [R2c = .42;  R2m = .16]. Additionally, two 
separate mixed-effects models were constructed to explain performance in singing back melodies in a rhythmic  [R2c 
= .42;  R2m = .13] and an arhythmic  [R2c = .38;  R2m = .11] condition. Results showed that the yielded SAA melodic 
scores are significantly associated with previously described measures of singing accuracy, the long note singing accu-
racy measures, demographic variables, and features of participants’ hardware setup. Consequently, we release five R 
packages which facilitate deploying melodic stimuli online and in laboratory contexts, constructing audio production 
tests, transcribing audio in the R environment, and deploying the test elements and their supporting models. These are 
published as open-source, easy to access, and flexible to adapt.

Keywords Singing test · Melodic memory · Similarity measurement · Music assessment · Melodic recall · Music 
psychology

It is almost too obvious to state: music must be produced 
to be perceived. Why then, have musical production tests, 
which capture enacted musical behaviors, been relatively 
underutilized compared to other forms of musical ability 
tests, which tend to focus on listening? Not only do percep-
tual musical ability tests disregard the participatory nature 
of music as an embodied activity (Leman & Maes, 2014), 
they may also discard useful information about the internal 
representations of a research participant (Silas & Müllen-
siefen, 2023). In this way, it has recently been emphasized 

that understanding the production of music is crucial to 
understanding musical ability in general (Okada & Slevc, 
2021; Silas & Müllensiefen, 2023).

The general answer to the question we have posited is 
methodological: as outlined below, assessing produced 
musical behavior in a meaningful way is a difficult prob-
lem. The purpose of the present paper is to document 
the development of an archetypal form of music pro-
duction test: a singing test. In doing so, we utilize it to 
better understand musical ability and, in turn, provide 
useful tools for music education. In order to do this, we 
bring together different perspectives and computational 
tools developed over the last few decades into one open-
source, accessible framework. This should make music 
production research easier to conduct, and, consequently, 
help to understand musical abilities more comprehen-
sively than before.
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Background

The main reason for the relative lack of studies of music 
production has been due to methodological limitations. 
Tests of music production are typically more difficult to 
implement and utilize for meaningful assessments of musi-
cal behavior, mainly due to the problem of so-called “dirty 
(or messy) data” (Müllensiefen & Wiggins, 2011; Silas & 
Müllensiefen, 2023; Sloboda & Parker, 1985). The primary 
issue with such data is obtaining useful symbolic repre-
sentations of sound and music from recorded audio files. 
However, thanks to advances in technology (e.g., Ras et al., 
2010), and the rise of open-source software in general, it 
is now possible to measure produced musical behavior in 
an objective and automated way, much more easily than 
before, and only contemporarily, across the Internet.

Since much of the general population do not play musical 
instruments on a regular basis (ABRSM, 2022), but almost 
everyone has some degree of musical ability (Honing, 2019; 
Müllensiefen et al., 2014), one inclusive way of assessing 
musical abilities in the general population is through the 
recording of singing. Research which employs singing, 
recorded as audio, as the main unit of analysis, generally 
has two separate strands in the research literature. In melodic 
recall research (Müllensiefen & Wiggins, 2011; Ogawa et al., 
1995; Oura & Hatano, 1988; Silas & Müllensiefen, 2023; 
Sloboda & Parker, 1985; Zielinska & Miklaszewski, 1992), 
singing is used as a test of memory for melodies and can help 
understand how such memory develops over time. Alterna-
tively, singing accuracy research (Pfordresher et al., 2010; 
Pfordresher et al., 2015; Russo et al., 2020; Tan et al., 2021) 
is generally concerned with the ability to sing accurately and 
how such knowledge can help improve singing education.

However, research into melodic memory or singing 
accuracy is usually conducted in isolation, without much 
interchange of knowledge between these two research 
areas. Yet, this is curious considering that the two domains 
are fundamentally connected. It may not be immediately 
obvious, but, like many other issues in music psychology 
(Silas et al., 2022), the causal relationships between sing-
ing ability and melodic memory can be argued in both 
opposing directions, depending on the perspective taken: 
a) lower-level singing abilities are required to sing pitches 
in tune, and hence, accurately demonstrate the melodic 
object held in memory (i.e., better singing produces a better 
melodic recall score) vs. b) in order to sing a melody well 
(or at all), one must be able to hold it in memory (i.e., bet-
ter melodic memory produces better singing). Whilst b) is 
a plausible explanation from a cognitive perspective, from 
a data-driven and descriptive perspective, a) is important 
too, especially in the context of studying melodic memory, 
insofar as the ability of a participant to demonstrate their 
melodic memory is contingent on the accuracy of their 

singing. Consequently, we contend that, in order to under-
stand melodic memory and/or singing accuracy well, both 
perspectives must be taken into account simultaneously. 
Furthermore, this should be the case with regards to both 
a testing framework and a supporting statistical modeling 
framework. We now briefly review the relatively disparate 
literatures in singing accuracy and melodic recall.

Singing accuracy

The singing accuracy literature (e.g., Cohen, 2015; 
Pfordresher et al., 2010; Russo et al., 2020) is generally 
concerned with an individual’s ability to sing and what 
constitutes “good” singing. There have been several nota-
ble singing tests presented in the literature. The most 
well-known procedure is probably the Seattle Singing 
Accuracy Protocol (SSAP; Pfordresher et al. 2015) which 
is “intended to be both brief and highly specific in its 
focus” with respect to singing measurement (Pfordresher 
& Demorest, 2020). It is designed to measure how accu-
rately one can reproduce musical pitches through singing, 
in the context of pitch-matching and also singing songs 
from memory. The procedure consists of participants com-
pleting the following tasks: i) vocal warmup tests com-
prised of singing a familiar song as well as a comfortable 
pitch, which is used to estimate a comfortable range for 
the participant to sing in; ii) singing ten pitches in their 
vocal range in relation to a vocal example; iii) singing a 
further ten pitches in relation to a piano tone; iv) imitat-
ing six four-note melodies; and v) singing a well-known 
melody. The SSAP incorporates other perceptual tests and 
questionnaires as part of the battery too. However, it is not 
open source, and as far as we are aware, is unavailable.

Similarly, in the Sung Performance Battery (Berkowska 
& Dalla Bella, 2013), first an assessment of participants’ 
vocal range is made, followed by five tasks: (i) single-pitch 
matching, (ii) pitch-interval matching, (iii) novel-melody 
matching, (iv) singing from memory of familiar melodies 
(with lyrics and on a syllable), and (v) singing of familiar 
melodies (with lyrics and on a syllable) at a slow tempo 
indicated by a metronome. Likewise, the AIRS Test Bat-
tery of Singing Skills (ATBSS) (Cohen, 2015; Cohen et al., 
2020) measures the following abilities, to: i) sing interna-
tionally familiar songs (Brother John, Frère Jacques) as 
well as learn a new song; ii) perform short melodic frag-
ments; iii) sing lowest and highest notes; iv) improvise the 
ending of a song, and v) create an entirely new song. In 
addition, several verbal recall tasks are included1.

1 Note that the Singing Ability Assessment test presented in this paper 
has already been adapted to work in the context of the AIRS battery 
(Gallant, 2022)
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More recently, and particularly relevant to our research, 
Tan et al. (2021) assessed a singing task’s validity and reli-
ability in an online setting. This procedure included: i) sing-
ing Happy Birthday; ii) matching five notes and iii) singing 
unfamiliar seven-note melodies as well as including addi-
tional perceptual tests and questionnaires. Very recently, 
and innovatively, large-scale singing research has been also 
conducted online outside of the context of Western music 
(Anglada-Tort et al., 2022). Anglada-Tort et al. (2022)’s 
approach also uses automated scoring and an online testing 
environment, with the main task being to sing back short 
melodies as immediate recalls.

There is much overlap between the task procedures 
described above: single-note singing, familiar song singing, 
and melodic singing. The tasks we describe here share some 
similarities (e.g., single-note singing, melodic items), but 
have some differences. For instance, while possible in our 
framework, we do not ask participants to sing a familiar song 
in our default procedures. We also use a substantially larger 
and much more heterogeneous database of melodic items, 
from which we randomly sample, within constraints (e.g., 
a given melody length). These choices to maximize item 
feature variance reflect our interest in connecting melodic 
features to task performance via item response theory (De 
Boeck et al., 2016).

An important point to note is the fact that singing accu-
racy research is more concerned with fine-grained pitch con-
trol compared to melodic memory research, which is about 
understanding high-level melodic mental representations. 
However, even singing accuracy appears to comprise two 
slightly disparate skills: accuracy (proximity to a target) and 
precision (consistency of reproduction) (Pfordresher et al., 
2010). This highlights the need to not only measure singing 
accuracy and melodic memory via sung recall simultane-
ously but also several constructs related to singing accuracy 
simultaneously.

Melodic recall

In contrast to singing accuracy tests, the melodic recall para-
digm was designed as a test of melodic memory, with the 
most cited early example being Sloboda and Parker (1985). 
The melodic recall paradigm is used to make inferences about 
melodic memory, its errors, and how melodic representations 
build up over time (Müllensiefen & Wiggins, 2011; Silas 
& Müllensiefen, 2023). It does not usually include specific 
metrics related to singing accuracy. There have been several 
studies using this paradigm as a melodic memory test (e.g., 
Silas and Müllensiefen, 2023; Ogawa et al., 1995; Oura and 
Hatano, 1988; Zielinska and Miklaszewski, 1992) and several 
insights can be drawn from this research: 1) when learning a 
melody, harmony may be extracted more readily than rhythm 

or interval information (at least for participants with a sub-
stantial amount of prior musical training); 2) over successive 
attempts, participants store more notes in memory and try 
to recall more on each attempt; 3) participants generally get 
better at singing melodies over multiple attempts (Silas & 
Müllensiefen, 2023).

“Dirty” musical data and similarity assessment

Despite the importance of produced actions in musical 
behavior, there is a relative dearth of research investigat-
ing musical recall and production compared to studies using 
purely perceptual paradigms to investigate melodic pro-
cessing (e.g., Idson and Massaro 1978; Dowling and Fuji-
tani 1971). One proposed reason for the scarcity of melodic 
recall studies is that melodic production data is relatively 
“dirty” (i.e., not easy to clean and analyze) and difficult to 
model (Müllensiefen & Wiggins, 2011) since it requires the 
transcription of a recorded signal to a symbolic representa-
tion (e.g., musical notation or numerical representations) 
from audio files. However, thankfully, in recent years, much 
progress has been made in this domain (Kim et al., 2018; 
Mauch & Dixon, 2014).

As originally conveyed by Sloboda and Parker (1985), 
and more recently articulated by Müllensiefen and Wiggins 
(2011), so-called “dirty” data usually requires “expert inter-
pretation. Participants are required to sing, and their singing 
may be inaccurate; in some places, it is necessary to infer 
which note(s) they meant to sing. The participants’ sing-
ing is recorded, and it is possible that the recording may be 
imperfect”. Such imperfect singing is also surely related to 
the amount of effort expended by a participant, a perennial 
issue for performance research in general (Silm et al., 2020). 
The issue of effort and motivation affecting performance 
outcomes is very difficult, or impossible, to entirely mitigate, 
especially in the context of online research.

Furthermore, issues beyond audio transcription arise, once 
symbolic representations have been created: how should 
somebody’s recall be assessed with respect to a target melody, 
especially when sung recalls may greatly differ in length from 
the target melody for comparison (Müllensiefen & Wiggins, 
2011; Silas & Müllensiefen, 2023)? To approach this issue, 
Müllensiefen and Wiggins (2011) and Silas and Müllensiefen 
(2023) utilized a computational approach which quantified 
sung recall performance in terms of a melodic similarity met-
ric, providing a more objective and transparent approach than 
the prior approach of using human judgements to assess the 
similarity between target melody and (imperfect) recalls, or 
utilizing accuracy measures (Sloboda & Parker, 1985), which 
are inadequate (Silas & Müllensiefen, 2023). Likewise, as 
articulated in detail in Experiment 2, we propose the opti3 
melodic similarity metric (Müllensiefen & Frieler, 2004a) as 
being a suitable metric for scoring melodic sung recall data.
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In addition, our framework mitigates the impact of dirty 
data early in the stage of data collection through several fea-
tures of the online test interface, such as real-time signal-to-
noise (SNR) measurement of a participant’s environment, to 
triage participants with noisy rooms, as well as transposing 
stimuli into the computed singing range of a participant, to 
ensure that their ability is not underestimated by presenting 
out-of-range stimuli (see Table 11 for a list of technical and 
procedural features for reducing noise in the collection of 
singing data online).

Integrating singing accuracy and melodic recall

To integrate singing accuracy and melodic recall perspec-
tives, Pfordresher et al. (2015)’s cognitive model of sing-
ing accuracy provides a useful framework for understanding 
accurate singing and melodic production. At the low level, 
this model comprises an auditory feedback loop. In this loop, 
first, external auditory input is processed as low-level per-
ceptual representations of sound (pitch, duration, timbre, 
loudness). Such low-level representations are used as input 
to a translation model, which relates auditory input to senso-
rimotor action that is relevant to singing. Hence, this enables 
the guidance of a singer’s sensorimotor plans to adjust their 
singing (e.g., to be in tune), in response to auditory feedback. 
Such changes in sensorimotor actions comprise physical 
processes like respiration, phonation, and articulation. The 
lower-level auditory representations are also used as input to 
higher levels of cognition, which hold mental templates about 
music (e.g., its features, such as its tonality), stored in long-
term memory (Baddeley et al., 2009). These templates allow 
auditory content to be categorized, forming more sophisti-
cated representations of it, taking on musical domains such 
as representations of (melodic) features like tonality and con-
tour, as well as segmenting melodies into coherent perceptual 
chunks. These formed higher-level representations can in turn 
be used as input back to the lower-level auditory feedback 
loop and further inform sensorimotor planning. Hence, the 
overall architecture of Pfordresher et al. (2015)’s cognitive 
model is bidirectional: both “top down” and “bottom up”. 
Altogether, this system enables a singer to fulfill objectives 
related to sung recall (i.e., hearing stimuli, representing its 
musical features mentally, responding through singing, and 
adjusting behavior to fulfill the goal sufficiently).

Our focus in the current paper is on the higher-level 
aspects: memory for melodic representations. However, we 
also simultaneously seek to take lower-level singing accu-
racy into account. In this way, we aim to draw the litera-
ture from both research areas described above and integrate 
them comprehensively, as Pfordresher et al. (2015)’s model 
suggests. To meet this objective formally, we invoke item 
response theory (IRT; De Boeck et al., 2016) as a psycho-
metric modeling framework.

Cognitive modeling via item response theory

Performance on an ability test can vary as a function of 
individual differences (i.e., some participants have a higher 
ability than others), but also as a function of items them-
selves (i.e., some items may be more difficult than others). 
In our study, there are two broad trial types: single long note 
singing and melodic singing. If long notes are presented in 
the vocal range of a participant (as we do here), the “item” 
effect of long notes are not expected to be important. That 
is: certain single pitches do not have properties, which make 
them more or less difficult to sing than others.

Conversely, for melodic items with multiple notes, musi-
cal features emerge (e.g., tonality, contour, rhythm). Such 
emergent features clearly rely on high-level mental repre-
sentations and templates (i.e., musical knowledge). Con-
sequently, there can be significant variance in complexity 
when a melody is the item of testing, and these kinds of item 
difficulties are important to model. Important melodic rep-
resentations can be quantified for each melodic item across 
important dimensions (Müllensiefen, 2009). As suggested 
by previous literature (Baker, 2019; Dreyfus et al., 2016; 
Harrison et al., 2016), there are several melodic features 
that could indicate an item’s complexity and predict sing-
ing performance (e.g., tonality, interval contour, a melody’s 
frequency in occurrence).

In order to formally relate structural features of melo-
dies to the cognitive difficulty of melody processing, the 
main methodological approach we utilize here is explana-
tory item response theory (IRT; De Boeck et al. (2016)). 
In this paper, IRT can be considered our first level of mod-
eling, where melodic features become predictors of the opti3 
similarity score, which we take as representing variance in 
both singing accuracy and melodic memory. IRT is useful 
for our enquiry since it allows the simultaneous modeling 
of item difficulties and individual differences together via 
mixed-effects modeling, while compartmentalizing the vari-
ance into fixed item effects (melodic features), random item 
effects (unexplained effects due to melodic items), and par-
ticipant effects (effects due to individual participants’ abili-
ties). Additionally, an IRT model can be the basis of creating 
an adaptive test, which is highly efficient and can be variable 
in test length, since encoding relationships between item 
features and performance can be used to generate or select 
items based on modeled difficulties (for similar approaches 
see Gelding et al., 2021; Harrison et al., 2017; Harrison & 
Müllensiefen, 2018; Harrison et al., 2016; Tsigeman et al., 
2022). Such an adaptive test can hence be employed flexibly, 
with potential applications in education.

In this paper, our strategy to relate singing accuracy 
to melodic memory is to extract participant- and item-
level scores from our IRT mixed-effects models and use 
these outputs in further modeling. For instance, we use 
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participant-level scores to represent individual differences in 
overall melodic memory and singing ability, and participant-
level indicators of singing accuracy alone (comprising e.g., 
single long note singing, singing accuracy, precision), to pre-
dict such outputs. This allows us to evaluate the potential 
extent that low-level singing abilities are responsible for the 
overall variance in singing performance, leaving the rest to 
do with variance in melodic memory, or being unexplained.

Motivations

The research presented here offers a two-fold contribution 
to the research literature, in both terms of: (1) general acces-
sibility and (2) methodological advances.

An accessible open‑source framework

While developed literature already exists regarding melodic 
recall (Müllensiefen & Wiggins, 2011; Silas & Müllensie-
fen, 2023; Sloboda & Parker, 1985) and singing accuracy 
(Cohen, 2015; Pfordresher et al., 2010; Russo et al., 2020), 
and there are several previous singing tests described in 
the literature (e.g., Pfordresher & Demorest, 2020; Tan 
et al., 2021), we do not know of a transparent and flexible 
open-source framework that enables researchers to easily 
access and implement a singing test themselves, enabling 
laboratory and online data collection for several simple 
singing tasks, such as sustaining long notes and imitating 
melodies. The main contribution of the present research 
is simply to make such a tool accessible to a wider audi-
ence and remove the “black box” element that masks many 
described singing paradigms in the literature. This can be 
considered an important step towards the standardization 
of singing tests.

Methodological advances in sung recall research

In terms of more sophisticated usage, and advancing previ-
ous methodologies and theoretical insights, like other inno-
vative recent research (Anglada-Tort et al., 2022; Jacoby 
et al., 2019), our test framework and approach also makes a 
number of important contributions beyond its accessibility. 
These are to: (a) enable the automatic filtering of partici-
pants based on background noise at the beginning of a test; 
(b) present stimuli based on the participant’s empirically 
determined vocal range; (c) support multiple languages2; 
(d) comprehensively integrate melodic recall and singing 
accuracy frameworks to assess both low-level singing ability 

and high-level melodic memory ability simultaneously; (e) 
allow easy implementation in a timeline together with other 
behavioral tests; (f) be readily usable with new item banks of 
melodic stimuli3; (g) be able to provide real-time feedback 
for possible extensions to educational settings; (h) be sup-
ported by statistical models which connect relevant melodic 
recall and singing accuracy variables to one another, at both 
the trial level and beyond, and to do so; (i) be based on item 
response theory (IRT; De Boeck et al. 2016) as a statistical 
modeling framework, which allows us to construct a com-
puterized adaptive (Harrison, 2018) version of the test that 
can be extended to educational settings.

In turn, we hope that the framework’s accessibility and 
methodological advances will go hand-in-hand, and stimu-
late the solving of more complicated issues in sung recall 
research, such as improving the quality of sung audio tran-
scription. Having an open-source infrastructure in place 
enables researchers to start from the principle of tackling 
such issues from the outset, without the large startup cost of 
implementing singing technology in the first place.

The present study

Hence, the main objective of this research was to draw upon 
the literatures in melodic recall and singing accuracy and 
build a new, easily accessible computational ecosystem for 
conducting melodic recall and singing research simultane-
ously (or in isolation, if desired). We also provide detailed 
documentation on how to access, utilize, and adapt the soft-
ware with reference to web documentation4. Moreover, in 
the spirit of open science, the framework is completely open 
source, and hence transparent; it additionally has the flex-
ibility to be adapted (e.g., to score sung recall data with new 
custom measures) by being constructed in a modular way, 
allowing new research ideas to be taken forward more easily 
than before.

To that end, we designed a test, and complementary 
open-source testing environment of sung recall, which we 
called the Singing Ability Assessment (SAA). The protocol 
incorporate three sets of procedures and underlying statisti-
cal models which reflect (1) single long note singing abil-
ity, (2) rhythmic melodies singing ability, and (3) arhyth-
mic melodies singing ability as separate trial blocks. These 
are realized in five key open-source R packages: (1) pyin5, 
which wraps the pYIN (Mauch & Dixon, 2014) and Sonic 
Annotator (Cannam et al., 2010) libraries in R, enabling fun-
damental frequency and note onset estimation computation 

2 At the time of writing, our test has been translated into German, 
Italian, Latvian, and Chinese, in addition to English.

3 These can be created with the itembankr R package from .mid files, 
.musicxml files or a dataframe of melody pitches and frequencies. 
See: https:// github. com/ sebsi las/ itemb ankr.
4 https:// saa. music asses sr. com/.
5 https:// github. com/ sebsi las/ pyin.

https://github.com/sebsilas/itembankr
https://saa.musicassessr.com/
https://github.com/sebsilas/pyin
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within the R environment (using pYIN); 2) musicassessr6, 
a general environment for deploying musical stimuli and 
collecting musical data in psychTestR (Harrison, 2020), 
especially for scoring melodic production and singing data7; 
(3) itembankr8 for creating useful item banks of melodic 
stimuli for use with musicassessr/psychTestR; (4) Berkow-
itz9, an item bank of melodies from Berkowitz et al. (2017; 
see also Baker, 2021) as outputted by itembankr, that can 
be used in musicassessr tests and (5) the Singing Ability 
Assessment (SAA) test package10 which brings everything 
together and allows for the comprehensive, yet efficient, col-
lection of singing data. We invite collaborators to explore 
and contribute to these open-source packages.

Across two experiments, we describe the development 
of the Singing Ability Assessment (SAA). Experiment 1 
describes a preliminary “rehearsal” paradigm for testing 
melodic singing, validated alongside other measures of 
musical and non-musical abilities. Experiment 2 describes 
updates to the protocol which utilizes a new paradigm (the 
“one-shot” paradigm) and allow all scoring to be done on-
the-fly. Moreover, we also validate the new singing test 
alongside other measures of singing accuracy described in 
the literature, and hence, formally associate singing accu-
racy and melodic recall variables together. Both experiments 
result in item response theory (IRT; De Boeck et al. 2016) 
models to support the paradigms.

Experiment 1: Design, development 
of and calibration of the Singing Ability Assessment 
(SAA) task

In Experiment 1, we aimed to design a new test for cap-
turing sung recall. We wanted the task to share a seamless 
integration with statistical modeling packages (such as those 
which implement item response theory approaches) as well 
as other musical ability tests. In this regard, the psychTestR 
(Harrison, 2018; Harrison, 2020) framework in the Shiny 
(Chang et al., 2019) and R (R Core Team, 2020) environ-
ments was ideal since many statistical tools and validated 
musical and non-musical ability tests are now implemented 
in this framework11.

After developing the new SAA task, Experiment 1 seeks 
to validate the SAA via the construction of an explana-
tory IRT model, which is a special case of a general linear 

mixed-effect model Boeck et al. (2011). As a means of deter-
mining construct validity, we then sought to correlate its 
derived ability score with other previously validated ability 
tests, described below.

Hypotheses

 Performance on the SAA was hypothesized to be predicted 
by structural features of the melodic stimuli, which indicate 
melodic complexity (e.g., tonality and interval contour; see 
Dreyfus et al. (2016), Fleurian et al. (2017) and Müllensiefen 
and Halpern (2014) for similar approaches).

Secondly, in addition to structural features of melodies, 
we hypothesized that performance on our new test would 
also be related to individual-difference scores on other ques-
tionnaires/tests of related musical and non-musical abilities, 
in line with Pfordresher et al. (2015)’s model and the other 
literature reviewed above. These were measures of: working 
memory capacity (Tsigeman et al., 2022), pitch discrimina-
tion (a psychTestR re-implementation of Soranzo & Grassi, 
2014)12, mistuning perception (Larrouy-Maestri, Harrison, 
& Müllensiefen, 2019), melodic discrimination (Harrison 
et al., 2016) and pitch imagery (Gelding et al., 2021). Rela-
tionships of our derived SAA score with these other indica-
tors would offer concurrent validity to the novel task.

Method

Participants

A total of 247 participants aged 18–77 (M = 29.06, SD = 
11.98; 60% female; 3 = “Other”; 1 = “Prefer not to say” and 
ten missing, reason unknown) were recruited through social 
media and the marketing panel SliceThePie13. A subset of 72 
of these participants completed an extended procedure with 
several more tests (described below) than the main sample.

Materials

Singing Ability Assessment (SAA)

We extended psychTestR’s capabilities by adding in-browser 
audio recording functionality and on-the-fly in-browser 
melody playback (“Tone.js,” 2020). The task was deployed 
on an Amazon EC214 server instance which hosted a Shiny 
server15 environment. Participant response was recorded as 
audio in the Internet browser and sent to an Amazon S316 

6 https:// sebsi las. github. io/ music asses sr/.
7 The scoring functionality can work both in a real-time test as well 
as in batch-mode after audio recordings have been made.
8 https:// github. com/ sebsi las/ itemb ankr.
9 https:// github. com/ sebsi las/ Berko witz
10 https:// saa. music asses sr. com.
11 See https:// shiny. gold- msi. org/ longg old_ demo/ and https:// testi ng. 
musik psych ologie. de/ dots_ home/.

12 See https:// github. com/ sebsi las/ PDT.
13 https:// www. slice thepie. com/.
14 https:// aws. amazon. com/ ec2/.
15 https:// www. rstud io. com/ produ cts/ shiny/ shiny- server/.
16 https:// aws. amazon. com/ s3/.

https://sebsilas.github.io/musicassessr/
https://github.com/sebsilas/itembankr
https://github.com/sebsilas/Berkowitz
https://saa.musicassessr.com
https://shiny.gold-msi.org/longgold_demo/
https://testing.musikpsychologie.de/dots_home/
https://testing.musikpsychologie.de/dots_home/
https://github.com/sebsilas/PDT
https://www.slicethepie.com/
https://aws.amazon.com/ec2/
https://www.rstudio.com/products/shiny/shiny-server/
https://aws.amazon.com/s3/
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media storage bucket, where it was later downloaded for 
analysis17. Utilizing browser feature detection (“Modernizr,” 
2020), users whose browsers did not support the necessary 
features (e.g., the “MediaRecorder” browser feature) were 
not allowed to enter the test. Participants were given an 
opportunity to test their microphone and headphones. They 
selected a vocal range that best matched their voice with 
reference to audio examples (Soprano, Alto, Tenor, Bass, 
Baritone). This range was used to present stimuli according 
to the selected range. Post hoc, we estimated that at least 
60.59% of participants selected an appropriate range, based 
on matching the mean note they sang across all trials to the 
closest mean note of the different vocal ranges. This estimate 
is likely a lower bound, since vocal ranges somewhat over-
lap, and the mean singing note computed from trials is also 
dependent on the randomly selected melodies a participant 
heard.

Melodic stimuli set: The Berkowitz Corpus

Stimuli deployed by the SAA were drawn from Berkowitz 
et al. (2017; see also Baker, 2021), a corpus of melodies 
designed to improve sight-singing (singing from musical 
notation). The book consists of a collection of itemized 
melodic sequences. We took the first 629 sequences in the 
book and split them into N-grams18 of length 3 to 15. Based 
on evidence from the perceptual literature (Pembrook, 
1987), we assumed 15 notes to cover the upper bound for 
short-term memory span of unknown melodies. We then 
removed any duplicate N-grams, resulting in a stimulus item 
bank of 159,127 unique N-grams.

Other tests and questionnaires

We now list the other tests and questionnaires utilized. To 
save space in the present manuscript, we keep the descrip-
tions relatively brief, and encourage the reader to refer to 
the corresponding publications for more details. Some of 
the tests are adaptive. We refer the reader to Appendix 
Table 12 to see the reliability for the adaptive tests at the 
respective length we chose. Several have been comprehen-
sively validated with respect to the item lengths we use (see 
Liu et al., 2023). We note that some reliabilities are fairly 
low, which might be due to characteristics of the sample 
used and the test with its concrete parameters as applied 
here. Overall, this suggests the use for more items per 
assessment in the future and the validation in a sample with 
a wide range of abilities.

Goldsmiths Musical Sophistication Index (Gold‑MSI; Müllen‑
siefen et al. (2014) The Goldsmiths Musical Sophistication 
Index (Gold-MSI; Müllensiefen et al. 2014) is a self-report 
inventory for assessing dimensions of musicality in the gen-
eral population. It was utilized here to produce scores of 
both musical training and singing abilities, based upon the 
Gold-MSI’s corresponding subscales of the same names, 
each comprising seven items 19. Higher amounts of musical 
training are hypothesized to be positively correlated with 
ability in singing, either because musical training facilitates 
the direct development of singing as a skill and/or the musi-
cianship skills acquired through training (e.g., music theory, 
playing by ear) support the memory of musical content, such 
as melodies. Alternatively, those with more natural talent 
may be predisposed towards undertaking musical training, 
also producing a positive correlation (see Silas et al. 2022).

Melodic Discrimination Test (MDT) Melodic discrimination 
ability was assessed using the adaptive Melodic Discrimi-
nation Test (MDT; Harrison et al. 2017). The test uses a 
3-AFC response paradigm, with each item consisting of 
three versions of a melody played at different transpositions 
in pitch (for example: first: D major, second: Eb major, third: 
E major). Two of these versions are always identical and one 
is always different. The participant must identify the noni-
dentical melody, but ignore transpositions between versions. 
The ability to perceive and remember melodies well should 
serve as a predictor of our sung recall task, since to sing 
back melodies, one must first be able to remember them. 
Hence, better melodic discrimination ability should predict 
better sung recall performance. The version of the MDT 
used in this study comprised 11 items using an adaptive 
procedure (Harrison et al., 2017). IRT scores for the MDT 
task were generated online using the R package psychTestR-
CAT v1.0.2 (Harrison, 2018) according to the underlying 
IRT model described in (Harrison et al., 2017). The test 
utilized an adaptive procedure which adjusted to the ability 
of a participant based on a psychTestRCAT  (Harrison, 2018) 
implementation.
Pitch Imagery Arrow Task (PIAT) The Pitch Imagery Arrow 
Task (PIAT) has been established as a valid and reliable 
measure of musical imagery, the ability to mentally repre-
sent and transform pitch (Gelding et al., 2021). Participants 
must imagine going up and down a scale in relation to up 
and down arrows. They indicate whether their imagined tone 
was the same as a probe tone played at the end of a trial. A 

17 Note that the S3 bucket approach was eventually discontinued.
18 An N-gram is a contiguous subset of a sequence (e.g., “ABIL” is an 
N-gram of “SINGINGABILITY”)

19 Note that subjective self-reports of singing ability are a different 
kind of measure of singing ability to the objective measurement and 
computational approach taken in this paper. Yet, it is a clear target to 
obtain construct validity.
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correct response requires identifying the correct place to 
end up in the scale based on the arrow indications. The abil-
ity to imagine musical content is a necessary component 
of sung recall. If one cannot imagine a melody they have 
heard after perceiving it, they will not be able to reproduce 
it. Hence, better pitch imagery ability should predict bet-
ter singing performance. The task was adaptive with IRT 
scores for the PIAT task being generated online using the R 
package psychTestRCAT  v1.0.2 (Harrison, 2018) according 
to the underlying explanatory IRT model (Gelding et al., 
2021). There were 15 items. The test utilized an adaptive 
procedure that adjusted to the ability of a participant based 
on a psychTestRCAT  (Harrison, 2018) implementation.
Pitch Discrimination Complex Tone Task (PDCT) In a pitch 
discrimination complex tone task20, participants must dis-
criminate the odd-one-out of a series of tones. There is a 
reference tone at a given audio frequency (here, 330 Hz), 
which may be at any point in the sequence, and other tones 
deviate from this frequency by varying amounts, with tones 
being closer to the reference tone being more difficult to 
detect. This perceptual pitch discrimination ability is a nec-
essary part of the feedback mechanism to guide singing to 
be more or less in tune with target pitches, and hence, better 
pitch discrimination ability should predict singing ability. 
We re-implemented a complex pitch tone discrimination task 
with a 3-alternative forced choice (3-AFC) “odd-one-out” 
procedure like that described in Soranzo and Grassi (2014), 
but in the psychTestR environment21. The task was adaptive, 
and derived based on an IRT model we constructed using 
previously collected 3-AFC pitch discrimination data. There 
were 15 items. The test utilized an adaptive procedure which 
adjusted to the ability of a participant based on a psychTestR-
CAT  (Harrison, 2018) implementation.

Mistuning Perception Test (MPT) The Mistuning Percep-
tion Test (MPT; Larrouy-Maestri et al. 2019) is designed to 
assess whether a participant has the ability to detect whether 
a vocalist is singing “in-tune” against an audio track. Under 
a 3-AFC paradigm, participants must indicate which of three 
recordings contained an out-of-tune vocalist singing. The 
task of detecting whether a singer is in tune shows clear 
similarities to the task of monitoring one’s own singing and 
whether it is in tune. Hence, it is predicted that, as with the 
complex tone discrimination task, better mistuning percep-
tion ability should predict better singing ability. There were 

15 items based on the adaptive version of the task and IRT 
model described in Larrouy-Maestri et al. (2019). The test 
utilized an adaptive procedure which adjusted to the ability 
of a participant based on a psychTestRCAT  (Harrison, 2018) 
implementation.

Jack and Jill (JaJ) Visuospatial working memory is broadly 
accepted to be a component of the wider construct of general 
working memory, which facilitates all cognitive tasks (Allo-
way & Alloway, 2013; Baddeley & Hitch, 1974). The Jack 
and Jill (JAJ; Tsigeman et al. 2022) task measures visuos-
patial working memory capacity based on a dual-task para-
digm, similar to earlier versions of visuospatial dual-task 
paradigms (e.g., Alloway, Gathercole, Kirkwood, & Elli-
ott, 2008; Shah & Miyake, 1996). Participants must hold 
multiple spatial locations on a hexagon in working memory 
while answering an unrelated question for each location 
point shown. Any cognitive task (of which singing is one) 
should necessarily involve some degree of working memory 
(Baddeley et al., 2009), thought to be “the” cognitive primi-
tive (Alloway & Alloway, 2013; Silas et al., 2022). In the 
context of singing, it would underpin all cognitive aspects 
of the task, such as remembering a melody, reproducing it, 
and monitoring performance in real time. Difficulty of the 
task is primarily indicated as a function of item length, and 
hence, the ability to hold longer sequences in the task has an 
analogue to holding longer melodies in (musical) working 
memory. Therefore, higher working memory ability should 
predict better singing ability. IRT scores for the JaJ task 
were generated online using the R package psychTestR v 
2.13.2 (Harrison, 2020) according to an underlying explana-
tory IRT model (Silas et al., 2022). There were eight items 
with the length of sequences increasing and hence becoming 
more difficult. The test utilized an adaptive procedure which 
adjusted to the ability of a participant based on a psychTestR-
CAT  (Harrison, 2018) implementation.

Procedure

All testing (i.e., both procedures A and B listed below) was 
conducted online, with participants completing the batteries 
at home on their own computers. Participants were told they 
would need headphones, a quiet room, and a microphone. 
Internal computer microphones were allowed. Each partici-
pant was asked to record: (1) a sample of their background 
noise by sitting in quietly for 5000 ms; (2) a note sung into 
their microphone for 5000 ms. These samples were used post 
hoc for signal-to-noise ratio (SNR) screening.

The main goal of the task was for a participant to sing 
back a note or melody which had been played to them. There 
were two main trial types: long note singing and melody 
singing. In long note trials, participants were presented 
a tone for 5000 ms and had to sing along with this tone 

20 “Complex” refers to the nature of the tone, which contains har-
monics, rather than being a “simple” sine tone, which contains no 
harmonics.
21 Accessible here: https:// github. com/ sebsi las/ PDT.

https://github.com/sebsilas/PDT
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immediately. All tones were presented in the participant’s 
selected range. A tone with similar parameters to the com-
plex tone discrimination task in Soranzo and Grassi (2014) 
was used: a sine wave oscillator with four partials and enve-
lope with a cosine attack curve and the following properties: 
attack: 0.01 s, decay: 0.01 s, sustain: 0.50 s (N.B. Soranzo 
and Grassi (2014) used 0.25 s), release: 0.01 s.

SAA: The rehearsal paradigm

SAA melody trials were designed to test not only singing 
accuracy but also newly learned melodic representations 
(i.e., generally corresponding to short-term memory/work-
ing memory22). Melodic stimuli were presented with a 
piano tone in a range that corresponded to the user’s speci-
fied range (e.g., Soprano, Alto), centered on the mean MIDI 
note of the stimuli. In melody trials, melodic stimuli were 
randomly sampled from the Berkowitz N-gram stimuli set 
we derived. Two possible melody trial types were deployed: 
rhythmic and arhythmic. In rhythmic trials, participants had 
to sing back a melody plus the rhythm it was presented with. 
In arhythmic trials, the rhythmic element was removed, and 
each note fixed to last 250 ms. The participant was encour-
aged to rehearse the melody aloud until they believed they 
had prepared it as best they could; the entire time, their out-
put was recorded: hence, we called this the rehearsal para-
digm. Participants clicked Stop to finish and could listen to 
the melody a maximum of three times per trial.

The originally intended function of the rehearsal para-
digm was to observe the changes in patterns of sung recall 
across the temporal dimension of the trial (e.g., do N-gram 
chunks become more closely spaced throughout the rehearsal 
process?), and in particular, in a way that machine learning 
approaches could predict chunking patterns. However, this 
initial use case was discontinued, and the paradigm can here 
be thought of as providing a basis for a basic measure of 
accuracy: the number of notes recalled which were in the 
target stimulus. This accuracy measure captures two impor-
tant properties of sung recall (Silas & Müllensiefen, 2023): 
1) the number of notes recalled, which can reflect the general 
amount of effort expended by a participant (i.e., more notes, 
on the whole, = more effort) and 2) some indication as to 
the “level” of correctness (i.e., a higher proportion of notes 
being contained in the target stimulus = better performance). 
Note that the accuracy measure is only applied to the melody 
(and not the long note) trials described below. Also, all con-
tents of the audio file reflecting a melody trial are analyzed 
with no pre-curation of which section is analyzed for analy-
sis, hence (deliberately) leaving the possibility that some 
incidental vocal content is captured. Such “rehearsed” but 

incidental (incorrect) content should contribute to a lower-
ing of the accuracy score, reflecting that the musical content 
is not yet retained in memory, hence reflecting (in)ability.

Procedure A

One-hundred and seventy-five participants completed a short 
demographic questionnaire, six long note trials and then 15 
arhythmic melody trials consisting of two trials of length 2 
notes, and one trial each for lengths 3–15 and the same for 
rhythmic trials. Finally, they filled out the Gold-MSI Musi-
cal Training and Singing Abilities subscales. The procedure 
took 10 to 12 min.

Procedure B

The remaining 72 participants completed the same proce-
dure as the other participants, but in addition, the battery 
of additional tasks (PDCT, PIAT, MDT, MPT, JaJ). This 
alternative procedure took 30–40 min.

Data analysis

Long note trials were not analyzed formally in Experiment 
1, but were used for exploratory data analysis (not presented 
here); instead, Experiment 2 reports an analysis of long note 
data. The audio samples of a recorded background sound and 
the participant singing a long note were used to calculate a 
post hoc SNR for each participant. Participants whose SNR 
was < 0, reflecting a greater noise-to-signal (as opposed to 
signal-to-noise) ratio, were excluded from subsequent analy-
ses (11 participants; ~ 220 trials), yielding 4,504 trials pos-
sible trials for analysis.

Audio Scoring

Our data processing pipeline, which starts with the raw 
audio file and eventually yields meaningful scores, is sum-
marized in Fig. 1. First, since the modern browser features 
we made use of only supported the .webm format (at least at 
the time), we converted all audio files to the .wav format23. 
Subsequently, audio files were processed in batch using the 
probabilistic YIN fundamental frequency estimation algo-
rithm (pYIN; Mauch and Dixon (2014)), as hosted by the 
Sonic Annotator Vamp plugin (Cannam et al., 2010). This 
produced raw production data consisting of fundamental 
frequency estimates in Hz, the nearest MIDI pitch in the 
standardized Western tuning system, as well as each of the 
note’s corresponding temporal onset and duration estimates 
(see Cannam et al., 2010). These data were read into the R 

22 It is possible to use the protocol to test memory over longer times-
pans too. 23 Later updates allowed us to record directly to .wav files.
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statistical programming environment where it was tidied and 
converted to useful symbolic representation formats (e.g., 
MIDI notes, musical intervals).

Main analyses

The triaged sample of N = 236 was used for the construction 
of a mixed-effects model explaining participant performance 
on the singing tasks. In this experiment, we did not model 
rhythmic and arhythmic trials separately, but together in one 
model, described below. Later, for assessing individual dif-
ferences in relation to other ability tests, only the smaller 
subset of N = 72, where the participants completed the larger 
battery of tasks, was used.

To serve as fixed-effect predictors, for each melodic 
stimulus, we computed the following melodic features, as 
described in Müllensiefen (2009): i.entropy (an estimate of 
the average level of “surprise” or randomness in musical 
interval24 information), tonalness (how strongly a melody 
correlates with a single key center), and step.cont.loc.var 
(the local variation in the contour [i.e., shape] of a mel-
ody)25. These were chosen due to previous research indicat-
ing that they could reflect melodic complexity and predict 
associated memory performance (Dreyfus et al., 2016; Har-
rison et al., 2016). Additionally, melody length was included 
as predictor, plus d.entropy, an estimate of the amount of 
“surprise” in rhythmic information, to indicate rhythmic 
complexity, and the log frequency of each melodic N-gram26 
to indicate how more frequently occurring N-grams may 
be able to predict task performance (Pearce, 2018). See 
Appendix Table 13 for more information about the melodic 
features.

The dependent variable was called proportion_of_cor-
rect_note_events27. It was calculated as a proportion of 
“correct” notes (when rounded to the nearest integer MIDI 
pitch), to number of note events sung (a.k.a precision Silas & 

Müllensiefen, 2023). This is appropriate for the rehearsal par-
adigm, where the number of notes sung is expected to be con-
siderably larger than the notes of the target melody, because 
we allowed rehearsal and multiple playback attempts, but 
recorded the entire sung recall in a single audio file.

A linear mixed-effects model with participant as random 
effect, proportion_of_correct_note_events as dependent var-
iable, and the melodic feature predictors described above, 
as well as the categorical predictor melody_type (arhyth-
mic vs. rhythmic) and its interaction with d.entropy (which 
would be related to melody_type across all melodies, but 
could vary differentially within each type) as fixed effects, 
was fitted to the data using the R package lme4 (Bates et al., 
2015). From the resulting mixed-effects model, we extracted 
random intercept coefficients for each participant, which we 
took to represent a latent ability score on our new SAA task. 
We correlated this SAA score with scores of melodic dis-
crimination ability (Harrison et al., 2017), mistuning percep-
tion ability (Larrouy-Maestri et al., 2019), pitch discrimi-
nation ability (Soranzo & Grassi, 2014) and visuospatial 
working memory ability (Tsigeman et al., 2022).

Results

In the mixed-effects model, all seven melodic feature fixed-
effect predictors were significant predictors of propor-
tion_of_correct_note_events. See Table 1 for this model’s 
parameter estimates. As suggested, more local variation 
in a melody’s contour, tonalness, and whether a melody is 
rhythmic, are factors associated with a decrease the score. 
Conversely, a melody being more frequent in occurrence 
and having more surprise in musical interval or rhythmic 
information is associated with an increase in the score. The 
model mixed-effects R2 values (Nakagawa & Schielzeth, 
2013) were: conditional R2c = .52 and marginal R2m = .20.

Bivariate correlations with other individual 
differences measures

Utilizing the data subset (N = 72), which measured user 
performance on several other tasks, we assessed how SAA 
ability scores might be related to other individual differences 

Fig. 1  The pipeline from raw data to scored variables

24 An interval is the musical distance between notes in terms of pitch.
25 See Müllensiefen (2009) for formal definitions.
26 With respect to the Berkowitz corpus from which it was derived.
27 Note that snake case variable names are presented in accordance 
with their naming in our R packages, for easy reference.
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measures. The SAA score we derived demonstrated statisti-
cally significant correlations with all measures except for 
the measures of visuospatial working memory and pitch dis-
crimination. It had small to moderate positive correlations 
with melodic discrimination, pitch imagery abilities, a large 
positive correlation with mistuning perception ability and 
moderate positive correlations with self-reported singing 
ability and musical training. See Table 2 for the Pearson’s 
correlation values.

Discussion

In Experiment 1, we developed a prototype singing test for 
online data collection. We then undertook audio frequency 
and note onset estimation and scoring procedures post hoc 
and modeled the resulting data at the level of the individual 
trial. We were able to create a statistically significant explan-
atory IRT model which explained a moderate (20–52%) pro-
portion of variance in the data. Especially given the data’s 

“dirty” nature, this can be considered a successful result. 
This result supports our hypothesis that features which indi-
cate melodic complexity (including melody length) are rel-
evant predictors, offering explanatory power in accordance 
with the previous literature (Dreyfus et al., 2016; Fleurian 
et al., 2017; Müllensiefen & Halpern, 2014). Moreover, the 
relatively large difference between the marginal and condi-
tional R2 values suggests that there is a sizeable proportion 
of individual differences in the sample of participants tested 
which explains SAA performance. This is in line with our 
predictions, that individual differences should explain per-
formance on a task in which one can develop high levels of 
domain-specific expertise.

To investigate the nomothetic span (i.e., the net-
work of relationships of a test score with other variables; 
Whitely 1983) of the SAA with potentially related abilities, 
we assessed how the derived SAA score was related to other 
individual difference measures by extracting random effects 
coefficients for each participant based on the derived mixed-
effects model. The random effects coefficients were taken 
to represent a latent melodic singing ability (SAA) score. 
In line with theories of singing accuracy (Pfordresher et al., 
2015), sung recall was related to melodic discrimination, 
pitch imagery abilities, and mistuning perception, which 
seem to be constituent, lower-level abilities that contribute 
to the higher-level skill of melodic sung recall. This can offer 
concurrent validity to our derived SAA score. In this way, 
the SAA score was also moderately correlated with self-
reported singing ability (r = .46) which bolsters its validity 
and plausibility further, and is comparable to similar corre-
lations reported by singing research conducted online (e.g., 
Tan et al., 2021). However, the SAA score showed non-
significant correlations with visuospatial working memory 
and pitch discrimination abilities. This suggests that singing 
ability may not be very closely related to low-level percep-
tual processes or non-musical working memory capacity, 
at least in the way the SAA task was presented and scored 
here, using the rehearsal paradigm as experimental task and 
proportion_of_correct_note_events as dependent variable. 

Table 1  Mixed-effects model with melody length (N), melody type 
(rhythmic vs.  arhythmic), step.cont.loc.var, tonalness, log.freq, 
d.entropy and i.entropy as fixed effects and participant as random effect

Term �̂ 95% CI t df p

Intercept 0.71 [0.65, 0.77] 22.96 3,272.78 < .001***
N 0.02 [0.02, 0.02] 10.04 3,406.01 < .001***
Step cont  

loc var
– 0.28 [– 0.34, – 0.22] – 8.60 3,406.67 < .001***

Tonalness – 0.11 [– 0.16, – 0.06] – 4.39 3,405.52 < .001***
Log freq 0.01 [0.00, 0.01] 2.27 3,418.09    .023*
I entropy 0.25 [0.11, 0.38] 3.49 3,416.53 < .001***
Melody 

typeTRUE
– 0.43 [– 0.47, – 0.38] – 18.62 3,441.11 < .001***

Melody 
typeTRUE 
× D 
entropy

0.30 [0.01, 0.58] 2.03 3,417.43     .043*

p < .05*, p < .001***

Table 2  Pearson’s correlations of dependent variables in Experiment 1

p < .05*, p < .01**, p < .001***

1 2 3 4 5 6 7 M SD

1. JAJ.ability 0.84 0.70
2. MDT.ability .24* 1.14 0.96
3. MPT.ability .21 .39*** 0.93 0.77
4. PIAT.ability .35** .43*** .41*** 1.73 1.69
5. PDCT.ability .25* .23* .45*** .26* 0.40 0.36
6. GMS.SA .41** .50*** .55*** .46*** .39** 5.31 1.39
7. GMS.MT .06 – .06 .39** .16 .06 .40** 5.10 1.05
8. SAA_Ability .15 .28* .63*** .45*** .19 .41** .43*** 0.12 0.08
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The null correlation between singing and pitch discrimina-
tion abilities has actually been observed in previous research 
(e.g., Pfordresher & Brown, 2007), which can also provide 
validity to the SAA, in that it replicates previous research 
results. Lastly, the SAA score was related to musical train-
ing, which suggests that singing abilities may be improved 
by musical training. However, the reverse causal explanation 
could also be true: those with already good singing abilities 
may be more likely to undertake more musical training (see 
Silas et al., 2022) for a discussion of such issues of causality 
in musical training).

Importantly, considering the issue of “dirty musical 
data”, our new task and analysis pipeline seems to produce 
consistent results. However, several improvements could be 
made. In this respect, Experiment 2 describes the develop-
ment of several new features: in particular, the computation 
of a signal-to-noise ratio on-the-fly, as well as the replace-
ment of the rehearsal paradigm with a new procedure that 
enables a more efficient deployment of the SAA. In particu-
lar, whilst the rehearsal paradigm, scored with a measure of 
accuracy, appears to hold good validity, as indicated by its 
directional relationships with other relevant ability tests, in a 
more comprehensive study profiling accuracy vs. similarity 
measures on singing data, we found accuracy measures to 
hold notable limitations (Silas & Müllensiefen, 2023). For 
instance, accuracy measures do not take the order of recalled 
notes into account, which is important musically. For this, 
and other reasons profiled in Silas and Müllensiefen (2023), 
we proceed in Experiment 2 with similarity metrics for scor-
ing sung recall data.

Experiment 2: Validation of the SAA 
“one‑shot” paradigm

The overarching objective of Experiment 2 was to update 
the SAA task to be more sophisticated and prepared for 
adaptive testing (Harrison, 2018) in the future. First, the 
audio data processing undertaken post hoc in Experiment 
1 was now intended to work in real time, as the test pro-
gresses. Second, to make the test more efficient, we decided 
to discontinue the rehearsal paradigm, which yields long 
patterns of rehearsed sung recall, and replace it with the 
“one-shot” paradigm, whereby the participant hears a 
melody once, and must sing it back immediately, without 
rehearsal. To capture how learning develops over time, 
instead of capturing rehearsal, we may instead either allow 
a single attempt or multiple attempts, each with a new, 
distinct audio recording of the “one shot”.

Third, in view of this new paradigm, we employed a new 
main dependent variable, opti3, an established measure of 
melodic similarity (Müllensiefen & Frieler, 2004a, 2007; 
Pearce & Müllensiefen, 2017; Silas & Müllensiefen, 2023). 

opti3 is a hybrid measure derived from the weighted sum of 
three individual measures which represent different aspects 
of melodic similarity. The similarity in interval content is 
captured by the ngrukkon measure that measures the differ-
ence of the occurrence frequencies of short pitch sequences 
(N-grams) (e.g., length 3–8) contained within two melodies 
(Uitdenbogerd, 2002). Harmonic similarity is measured by 
the harmcore measure. This measure is based on the chords 
implied by a melodic sequence, taking pitches and durations 
into account. Implied harmonies are computed using the 
Krumhansl–Schmuckler algorithm (Krumhansl, 1990) and 
the harmonic sequences of the two melodies are compared 
by computing the number of operations necessary to trans-
form one sequence into the other sequence (i.e., the so-called 
edit distance; Mongeau and Sankoff 1990). Finally, rhythmic 
similarity is computed by first categorizing the durations 
of the notes of both melodies (known as “fuzzification”) 
and then applying the edit distance to measure the distance 
between the two sequences of durations. The resulting meas-
ure of rhythmic similarity is called rhythfuzz (Müllensiefen 
& Frieler, 2004a)28. See Appendix Table 14 for more infor-
mation and for an even more comprehensive explanation of 
how these measures work on sung recall data, with intuitive 
examples, we refer the reader to our other research (Silas & 
Müllensiefen, 2023). Based on the perception data collected 
by Müllensiefen and Frieler (2004a), the three individual 
measures are weighted and combined to form a single aggre-
gate measure of melodic similarity, opti3:

Hence, opti3 is sensitive to similarities and differences in 
three important aspects of melodic perception (pitch inter-
vals, harmonic content, rhythm). We note that all three indi-
vidual measures (ngrukkon, harmcore, rhythfuzz) can take 
values between 0 (= no similarity) and 1 (= identity) and are 
length-normalized by considering the number of elements of 
the longer melody. It is particularly appropriate for the one-
shot paradigm because it allows the computation of similar-
ity between a target melody and a sung recall which may 
differ slightly, but not greatly, in length. Moreover, unlike 
the dependent variable, proportion_of_correct note_events 
from Experiment 1, opti3 observes the order of note events 
which is an important feature of melodies. See Appendix 
Table 14 for descriptions about these variables and Silas 
and Müllensiefen (2023) for a comprehensive assessment 
of melodic similarity measures applied to sung recall data.

Fourth, we aimed to implement additional lower-level 
note and melody singing-based measures (e.g., interval 

(1)
opti3 = 3.027 ∗ ngrukkon + 2.502

∗ rhythfuzz + 1.439 ∗ harmcore

28 For the implementation of these scoring methods, see https:// 
github. com/ sebsi las/ music asses sr/ blob/ master/ R/ scori ng_ simile.R.

https://github.com/sebsilas/musicassessr/blob/master/R/scoring_simile.R
https://github.com/sebsilas/musicassessr/blob/master/R/scoring_simile.R
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precision, note accuracy), as presented in the singing accu-
racy literature (Pfordresher et al., 2010), rather than those 
which deal solely with melodic similarity. Consequently, 
fifth, Experiment 2 also formally models long note singing 
ability, taken to represent a lower-level singing ability when 
compared to melodic singing ability. Lastly, we aimed to add 
other features to improve the quality of the data collected by 
the online test interface, as well as adding feedback features, 
so that eventually such a test could be readily expanded for 
use in educational settings (see Table 11 for an overview of 
the features).

With regards to item response theory modeling, we 
hypothesized that the modeling of arhythmic and rhyth-
mic melodic singing data might require different statisti-
cal models. Each distinct model and respective trial blocks 
should serve as distinct outputs for use by other researchers, 
depending on their research questions and requirements.

Method

Singing Ability Assessment (SAA) enhancements

As a first step in upgrading our task, we made all post hoc 
steps taken in Experiment 1 (e.g., determining the SNR, pro-
cessing audio files, scoring the data, etc.) to be now available 
at test time. In addition, several new features were added to 
the processing chain of collecting and analysing sung recall 
data. We describe two important updates in detail below, 
although inspecting the arguments to the main SAA func-
tion in the R package of the same name29 will provide a 
comprehensive list.

Real‑time signal to noise ratio (SNR) computation In Experi-
ment 1, the signal-to-noise ratio (SNR) was determined post 
hoc and participants disqualified then. This is inefficient, 
since some participants complete the test despite having 
bad SNRs. Consequently, we designed an SNR test which 
works at test time and can optionally disqualify participants 
who did not reach a specified threshold30. The SNR formula 
consists of computing the ratio of the signal amplitude over 
the background noise amplitude. These amplitudes can be 
estimated with the root mean square, and the SNR is calcu-
lated in dB according to

(2)SNR = 20 × log10
(

RMSsignal∕RMSnoise
)

Whereas in Experiment 1, we used the SNR value of 0, 
we found a more principled selection based on Kim et al. 
(2018). The graphs in their paper suggested that the pYIN 
algorithm’s accuracy starts deteriorating substantially when 
an SNR ratio < 14 is present. Consequently, by default, all 
participants are required to have a minimum SNR of 14 to 
proceed with the rest of the SAA test.31

Real‑time vocal range determined from singing Instead of 
participants selecting a vocal range which best suits their 
voice based on audio examples, the new version of the test 
asks the participant to sing a low note and a high note, and 
based on this, computes a vocal range, or a likely vocal 
range32. After the individual vocal range has been captured, 
each stimulus will be transposed into the range of the par-
ticipant such that its mean note is matched to the mean note 
of the user’s range.

Participants

A total of 910 participants aged 16–72 (M = 31.07, SD = 
11.54; 66.22% female were recruited through the SliceTh-
ePie marketing panel, across four testing conditions (N = 
219; N = 249; N = 207; N = 227); 67% were from the US, 
25% UK, 5% Canada, and the remaining other countries. 
Eight participants’ demographic data was missing (reason 
unknown).

Materials

Other than the updated SAA test, the only other material 
employed was the Gold-MSI inventory as described in 
Experiment 1. This again yielded self-reported measures of 
Musical Training and Singing Abilities based on the factor 
model described in Müllensiefen et al. (2014). The task was 
again deployed on an AWS EC2 server instance, where the 
scoring was now done in real-time. All scores were down-
loaded post hoc for statistical analyses.

Procedure

The procedure of the SAA battery was essentially the same 
as Experiment 1, but with scoring being done on-the-fly (not 
known to the participant), as well as the SNR test disqualify-
ing people at test time, and the vocal range being computed 

29 http:// saa. music asses sr. com/ refer ence/ SAA. html.
30 Whether to use an SNR test is controlled via the SNR_test argu-
ment to SAA functions; whether to allow multiple attempts, or dis-
qualify on the first failure is controlled by the allow_repeat_SNR_
tests argument; whether to display the captured SNR as feedback to 
the participant is controlled via the report_SNR argument.

31 This can be altered via the min_SNR argument to the SAA test 
function.
32 The adjust_range argument allows this to be “corrected” if, via 
some heuristics, it seems that the participant did not complete the task 
appropriately (e.g., sings a “high” note lower than a “low” note).

http://saa.musicassessr.com/reference/SAA.html
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in real time via singing low and high notes. The long note 
singing task was also identical, except for the new scoring 
measures computed at the backend of the test.

The one‑shot paradigm

In Experiment 1, participants were encouraged to rehearse 
learning a melody aloud, and could hear a target melody up 
to three times during their rehearsal process. Consequently, 
each audio file might represent up to three distinct attempts 
(i.e., after each playback), as well as rehearsal within/
between each discrete attempt.

Conversely, the melody singing paradigm in Experi-
ment 2 required participants to sing back a melody in ‘one 
shot’ after hearing it. The meaning of one-shot here means 
“without rehearsal” and that, after hearing a melody, the 
participant must try sing it back as best they can immediately 
(once). This produces a clear one-to-one correspondence 
between a heard melody, a sung recall, and an audio file. 
However, as in Sloboda and Parker (1985), there can still be 
multiple attempts per item (by default, up to 4, for statisti-
cal reasons). The difference is that the one-shot paradigm 
produces one audio file per attempt, unlike in the rehearsal 
paradigm, where multiple distinct attempts might all be con-
tained in one audio file. In both cases, attempts are nested in 
items; in the rehearsal paradigm, all attempts and rehearsal 
are nested in a single audio file; in the one-shot paradigm; 
each single attempt is in a single audio file.

Procedure variants

Testing was deployed across four different conditions, which 
were released online via SliceThePie in a staggered fashion, 
but then ran simultaneously: (1) one-attempt arhythmic mel-
odies; (2) one-attempt rhythmic melodies; (3) multi-attempt-
arhythmic melodies; (4) multi-attempt rhythmic melodies. In 
the multi-attempt variants, participants could optionally have 
up to three attempts per melody, if they wanted.

Data analysis

A summary of the variables computed from the raw data and 
used across the experiments is presented in Table 3.

Long note singing

To analyze the long note data, first we averaged the scores 
across the five trials, for each participant, on each of the 
seven long note singing measures as described in Table 3. 
Then we employed parallel analysis (Horn, 1965) and a 
series of principal components analyses (PCA) as a means 
of dimension reduction. Long note scores were extracted 

for each participant from the final PCA model. This score 
was taken to represent a basic low-level note singing ability, 
distinct from melodic singing.

Melody singing

The melody singing analysis was much the same as Experi-
ment 1, employing the explanatory item response theory 
modeling approaches described earlier, but with opti3 as 
dependent variable. In addition to a model which models 
all data (rhythmic and arhythmic) simultaneously, yield-
ing an overall SAA_Ability_Score, we create separate mod-
els based on only arhythmic (SAA_Arhythmic) or rhythmic 
(SAA_Rhythmic) melodic data. Later in our analyses, we use 
the broader SAA_Ability_Score for relating rhythmic and 
arhythmic melody data to other variables simultaneously, 
though we recommend that the two separate arrhythmic 
(SAA_Arhythmic) and rhythmic (SAA_Rhythmic) scores are 
used by future researchers, to reflect the slightly distinct abili-
ties which the models represent. The empirical dataset com-
prised 7145 trials of data, with 5580 unique melodic items 
selected from the tokenized (N-gram) Berkowitz corpus.

Initially we had planned to also analyze the multi-
ple attempt versions of our data collection separately and 
include attempt as a fixed effect. However, very few par-
ticipants actually elected to take a second or third attempt. 
While there are 6633 trials of participants having a first 
attempt, there are only 417 for a second attempt and 95 for 
a third attempt. This seems to suggest that multiple attempt 
trials do not seem to work well in the context of a relatively 
uncontrolled Internet experiment, at least when there is no 
incentive for participants to increase their singing accuracy. 
Consequently, we did not model attempt and instead, filtered 
the dataset to only contain the first trial (i.e., even where 
participants could have had more than one attempt).

Principal components analysis of established measures 
of melody singing accuracy

Instead of assessing the relationship of the derived SAA_
Ability_Score through correlations with other musical abil-
ity tests as in Experiment 1, we assessed it alongside pre-
viously validated measures of singing accuracy described 
in Pfordresher et al. (2010) (note accuracy, note precision, 
interval accuracy, interval precision), scored on the same 
data. However, first we submitted these variables to a uni-
dimensional PCA and extracted component scores for each 
sung melody from the resulting model.

Higher‑level modeling

These dimension reduction processes yielded aggregate 
melodic singing scores, along with the aggregate long note 
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component scores, which we then correlated to assess their 
relationship with one another. Additionally, we assessed 
the relationship of the SAA_Ability_Score derived from the 
explanatory item response model (i.e., random intercepts 
from the mixed-effects model) which includes both rhyth-
mic and arhythmic melodies with measures of hardware 
setup which were collected through the Internet browser, as 
a means of determining potential error sources. The hard-
ware measures were hardware_concurrency, defined as the 
number of logical processors available to run threads on 
the user’s computer, and device_memory, the approximate 

amount of device memory in gigabytes, and the self-reported 
indicator of whether a user was using an internal or external 
microphone.

Finally, to formally model how lower-level singing 
abilities as well as demographic predictors (age, gen-
der, level of musical training) might predict the higher-
level melodic recall SAA_Ability_Score, we constructed 
a multiple regression model with the SAA_Ability_Score 
as dependent variable and the lower-level variables (e.g., 
note_precision, long_note_accuracy) described above as 
predictors.

Table 3  Variables used across the experiments, arranged by category: Long Note, Melody, Established measures of singing accuracy, and  
hardware

Measure Description

Long Note
  long_note_accuracy The average deviation from the target note in cents.
  long_note_var The variance of the pYIN smoothed pitch track (in Hz).
  long_note_dtw_distance The distance between an idealized pitch track and the sung pitch track, as computed by the dynamic 

time warp algorithm.
  long_note_autocorrelation_mean The mean autocorrelation value of the pYIN smoothed pitch track (in Hz).
  long_note_run_test The Wald–Wolfowitz runs test statistic applied to the pYIN smoothed pitch track (in Hz).
  long_note_no_cpts The number of 'changepoints' as computed by the cpt.mean function from the R package changepoint
  long_note_beginning_of_second_cpt The beginning of the second changepoint in seconds (which could indicate long note scoop).
  pca_long_note_accuracy A PCA-weighted sum comprised predominantly of long_note_accuracy and long_note_dtw_distance.
  pca_long_note_volatility A PCA-weighted sum comprised predominantly of long_note_autocorrelation_mean, long_note_

run_test and long_note_no_cpts.
  pca_long_note_scoop A PCA-weighted sum comprised predominantly of long_note_no_cpts and long_note_beginning_of_

second_cpt.
Melody
  SAA_Ability A score reflecting ability on both arrhythmic and rhythmic items simultaneously. It is equivalent to 

the random participant intercept from Model 1.
  SAA_Ability_Arrhythmic A score reflecting ability on only arrhythmic items. It is equivalent to the random participant inter-

cept from Model 2.2
  SAA_Ability_Rhythmic A score reflecting ability on only rhythmic items. It is equivalent to the random participant intercept 

from Model 3.2
  opti3 A hybrid measure of melodic similarity comprising a weighted sum of the similarity of interval, 

rhythm, and harmonic information (Müllensiefen & Frieler, 2004a, b). Specifically: opti3 = 3.027 * 
ngrukkon + 2.502 * rhythfuzz + 1.439 * harmcore.

  proportion_of_correct_note_events The proportion of correct note events ("correct" meaning "contained in stimulus"), as sung by the 
user.

Established measures of singing accuracy
  melody_note_precision The consistency with which a singer produces specific pitch classes across repeated occurrences, 

independent of the proximity of each occurrence to the target pitch. (Pfordresher et al. 2010)
  melody_note_accuracy Average proximity of each produced F0 to each target F0 (Pfordresher et al. 2010).
  interval_precision A similar measure to note precision, but for intervals. (Pfordresher et al. 2010)
  interval_accuracy A similar measure to note accuracy, but for intervals. (Pfordresher et al. 2010)
  pca_melodic_singing_accuracy A PCA-weighted sum comprising of melody_note_precision, interval precision and interval_accu-

racy.
Hardware
  hardware_concurrency The number of logical processors available to run threads on the user's computer.
  device_memory The approximate amount of device memory in gigabytes and the self-reported indicator of whether a 

user was using an internal or external microphone.
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Results

Long note singing

When submitting the long note variables to a parallel anal-
ysis, three components were suggested. Consequently, a 
three-dimensional PCA was fit to the long note data. In the 
solution, all indicators had a communality  (h2) value above 
.75, except for long_note_var. This was removed and a sec-
ond three-dimensional PCA was fitted. In this solution (see 
Table 4), all  h2 values were above .75. Each indicator had a 
factor loading of at least .5, with each component explain-
ing a cumulative proportion of 30, 59, and 85%. The first 
component seemed to represent volatility in pitch frequency 
(i.e., the tendency for the pitch curve to be erratic, rather 
than stable), the second, general long note accuracy, and the 
third, “scooping” or change points to the sung note. Note 
that long_note_no_cpts cross loads onto the accuracy and 
scooping components. Component scores were extracted for 
each participant on each of the three latent variables.

Melody singing

To assess the relative differences between arhythmic and 
rhythmic trial types, and hence to decide whether separate 
models for arhythmic vs. rhythmic trial types are warranted, 

our first mixed-effects model (Model 1) modeled all (i.e., 
arhythmic and rhythmic) data simultaneously. opti3 was 
dependent variable, N step.cont.loc.var, tonalness, log_freq, 
d.entropy, melody_type (arhythmic vs. rhythmic) and the 
interaction of melody_type with d.entropy were fixed effects 
and participant was used as a random intercept effect. In the 
model (see Table 5), all fixed-effect predictors were signifi-
cant, except the effect of d.entropy within the condition of 
arhythmic, which is to be expected, considering that rhythmic 
variability is not present in arrhythmic melodies. The R2m 
value was .16 and the R2c value was .42, suggesting that the 
model explained a moderately large amount of the variance 
in the data, with the fixed effects along explaining a small 
amount of variance in the data. The coefficient of melody_
type was B = – .15 (p < .001), suggesting that rhythmic tri-
als are associated with a higher difficulty. This suggests that 
arhythmic and rhythmic trials should be modeled separately, 
by being somewhat categorically different in difficulty.

Next, a similar model (Model 2.1) was specified, but only 
for arhythmic trials, and hence, the melody_type (arhyth-
mic vs. rhythmic) factor was not included. d.entropy and 
i.entropy were not significant predictors and were removed. 
In the resulting arhythmic model (Model 2.2), N, step.cont.
loc.var, tonalness and log_freq were significant. The R2c was 
.38 and the R2m was .11. See Table 6.

Table 4  Final principal components analysis solution for long note 
data

Variable RC1 RC2 RC3 h2 u2

long_note_accuracy – 0.04 0.93 – 0.06 0.87 0.13
long_note_dtw_distance 0.20 0.88 0.11 0.83 0.17
long_note_autocorrelation_mean 0.84 0.19 – 0.18 0.77 0.23
long_note_run_test – 0.90 0.02 0.00 0.81 0.19
long_note_no_cpts 0.52 0.05 – 0.78 0.88 0.12
long_note_beginning_of_sec-

ond_cpt
0.05 0.07 0.95 0.92 0.08

Table 5  Model 1: Mixed-effects model regressing SNR onto melodic feature variables as fixed effects and participant as random effect, across 
all melodic stimulus items

Term �̂ 95% CI t df p

Intercept 0.64 [0.58, 0.70] 21.39 6,940.88 < .001***
N – 0.01 [– 0.01, – 0.01] – 6.42 6,797.10 < .001***
Step cont loc var – 0.38 [– 0.45, – 0.32] – 11.91 6,701.28 < .001***
Tonalness 0.10 [0.06, 0.15] 4.39 6,611.36 < .001***
Log freq 0.01 [0.01, 0.01] 5.74 6,638.89 < .001***
Melody typerhythmic – 0.15 [– 0.18, – 0.11] – 8.05 6,887.32 < .001***
Melody typearrhythmic × D entropy – 0.08 [– 0.16, 0.01] – 1.79 6,636.10 .073
Melody typerhythmic × D entropy – 0.28 [– 0.41, – 0.16] – 4.46 6,646.15 < .001***

p < .001***

Table 6  Model 2.2: Mixed-effects model regressing opti3 onto 
melodic feature variables as fixed effects and participant as random 
effect, with only arhythmic trials

Term �̂ 95% CI t df p

Intercept 0.74 [0.66, 0.82] 17.61 3,104.92 < .001***
N – 0.01 [– 0.01, 0.00] – 2.68 3,124.27 < .01**
Step cont  

loc var
– 0.32 [– 0.41, – 0.24] – 7.66 3,062.54 < .001***

Tonalness 0.13 [0.07, 0.19] 4.02 2,983.24 < .001***
Log freq 0.02 [0.01, 0.02] 6.16 2,960.72 < .001***

p < .01**, p < .001***
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The same process was undertaken to model only rhythmic 
melody trials. In the resulting model (Model 3.2), N, step.
cont.loc.var, log_freq, d.entropy and i.entropy were significant 
predictors. The R2c was .42 and the R2m was .13. See Table 7.

Random effects coefficients for participant were extracted 
from the three different models, which had (1) melody_type 
(arhythmic vs.  rhythmic) as a fixed-effects predictor, as 
well as the resulting (2) arhythmic vs. (3) rhythmic models. 
These were taken to represent three distinct ability scores 
(SAA_Ability, SAA_Ability_Arrhythmic and SAA_Ability_
Rhythmic). Note that the SAA_Ability score is modeled on 
the same data as the SAA_Ability_Arrhythmic and SAA_Abil-
ity_Rhythmic ability scores, but modeling the data they were 
built with simultaneously.

The models constructed above can be used to compute 
item difficulty scores for any melody in the Berkowitz cor-
pus. This allows the creation of an adaptive (and hence effi-
cient) test via the R package psychTestRCAT , which re-esti-
mates participant ability after each trial, based on the current 
item’s difficulty value. We computed difficulty values for all 
items in the Berkowitz corpus of melodies, which is released 
as a separate item bank in the Berkowitz package33. These 
difficulty values are essentially a model prediction (where 
opti3 is the dependent variable), given the fixed-effects val-
ues for each melody in the corpus (i.e., it is an output of the 
sum of the fixed-effects values for each melody, weighted by 
the fixed-effects coefficients described in this paper).

Principal components analysis of established 
measures of melody singing accuracy

The variables note accuracy, note precision, interval 
accuracy and interval precision were submitted to a uni-
dimensional PCA. In the solution, all indicators were at a 
communality  (h2) value above .30, except for melody_note_
accuracy. This was removed and, in the final solution (see 
Table 8), note precision, interval precision and melody 

interval accuracy had factor loadings above .50 and  h2 val-
ues above .4. The single factor achieved to explain 51% of 
variance in the data. Components scores were extracted 
from this model, and we called the new aggregate variable 
pca_melodic_singing_accuracy.

Higher‑level modeling

The correlations among the continuous variables are shown 
in Table 9. As shown, there are a range of correlation magni-
tudes from null to moderate, which tend to vary by group: the 
self-report questionnaires have a moderate correlation with one 
another, but only small or no correlations with other variables; 
the three SAA scores we derived from the models constructed 
from rhythmic, arhythmic and all models have large correlations 
with one another. In summary, the table shows that most varia-
bles are related to some degree, but there is no multicollinearity, 
suggesting a good balance of convergent vs. divergent validity.

In the higher-level multiple regression model with the 
main SAA_Ability_Score (i.e., derived from rhythmic and 
arhythmic melody simultaneously) as dependent variable, 
the demographic variables Musical Training, Age and Gen-
der, the long note singing variables pca_long_note_volatil-
ity, pca_long_note_accuracy, pca_long_note_scoop were 
used as predictors as well as the variables that were excluded 
from the PCA models, namely pca_long_note_randomness, 
pca_long_note_scoop, long_note_var and melody_note_
accuracy. The predictors pca_long_note_volatility, pca_
long_note_scoop and long_note_var made no significant 
contribution to the model and were therefore removed as 
predictors. The final model had an R2 value of .38 (adjusted 
R2 = .37), p < .001, and is shown in Table 10.

The size and direction of the coefficients are in line 
with expectations, considering that some of the singing 
accuracy scores (e.g., pca_melodic_singing_accuracy) 
reflect error (i.e., a smaller error score can predict a better 
SAA_Ability_Score).

Discussion

The main objective of Experiment 2 was to implement 
the beginning steps of creating an adaptive singing test. 
Firstly, this required giving the static test developed in 

Table 7  Model 3.2: Mixed-effects model regressing SNR onto 
melodic feature variables as fixed effects and participant as random 
effect, with only rhythmic trials

Term �̂ 95% CI t df p

Intercept 0.37 [0.32, 0.42] 14.27 3,283.70 < .001***
N – 0.01 [– 0.01, 0.00] – 2.81 3,143.74 < .01**
Step cont  

loc var
– 0.50 [– 0.64, – 0.35] – 6.80 3,096.88 < .001***

Log freq – 0.02 [– 0.02, – 0.01] – 4.60 3,061.91 < .001***
D entropy – 0.26 [– 0.38, – 0.14] – 4.42 3,062.86 < .001***
I entropy – 0.19 [– 0.33, – 0.04] – 2.56 3,056.75 .010*

p < .05*, p < .01**, p < .001***

Table 8  Final principal components analysis solution for melody 
singing accuracy data

Variable PC1 h2 u2

note_precision 0.82 0.67 0.33
interval_precision 0.64 0.41 0.59
melody_interval_accuracy 0.66 0.44 0.56

33 https:// github. com/ sebsi las/ Berko witz.

https://github.com/sebsilas/Berkowitz
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Experiment 1 new features, which for example, compute 
results (from fundamental frequency and note onset infor-
mation through to psychometric scores) on-the-fly.

We also formally modelled the long note data, which sug-
gested that there are different aspects of single-note singing 
ability which can be reflected in the data. These features 
seem to represent the level of volatility, general accuracy 
and the scoop or number of changes in the fundamental fre-
quency pitch curve. For melody singing trials, we updated 
the paradigm from the so-called rehearsal paradigm to the 
new one-shot paradigm. This latter paradigm produces 
cleaner data and is generally easier to work with, since it 
produces one iteration of a sung recall per audio record-
ing. For this paradigm, we chose opti3 (Müllensiefen & Fri-
eler, 2004a), a measure of melodic similarity, as the main 
dependent variable. We view opti3 scores as measures of an 
overall melodic recall ability which reflects both melodic 
memory accuracy and singing accuracy. Use of the one-shot 
paradigm allowed us to separate multiple attempts at the 
same item into distinct audio files. However, it was observed 
that only a small proportion of participants were willing to 
optionally expend the extra effort to take multiple attempts. 
This effect of effort is a problem for all performance research 
(Silm et al., 2020), but is particularly difficult or impossi-
ble to control in the context of an online experiment. This 
suggests that researchers should be careful overextrapolat-
ing from results collected online, but also demonstrates the 
need to minimize test lengths where possible (e.g., through 
adaptive testing).

As a means of determining divergent and construct valid-
ity, we compared model outputs built with opti3 with other 
related measures such as self-reported musical training, and 
additionally, implemented several melody singing accuracy 
measures described in the previous literature (Pfordresher 
et al., 2010). Small statistically significant positive cor-
relations with self-reported singing accuracy and musical 

training are in line with expectations. As expected, certain 
objective indicators of singing accuracy seem to predict 
a portion of the variance in opti3 scores. The established 
melodic singing accuracy measure variables in our regres-
sion model had substantial ( �pca_melodic_singing_accuracy = −0.51 , 
p < .001; �melody_note_accuracy = 0.23 , p < .001) standardized 
magnitudes34, suggesting that low-level singing accuracy is 
predictive of the overall opti3 construct, which we suggest 
represents variance in melodic memory also. The stand-
ardized coefficient on pca_long_note_accuracy was even 
smaller ( �pca_long_note_accuracy = −0.15 , p < .001), suggesting 
that even the ability to sing distinct stable tones is a factor in 
overall sung recall. However, these measures are not highly 
related or colinear, suggesting that some proportion of vari-
ance may be to do with melodic memory, beyond singing 
accuracy.

Broadly speaking, the results in Experiment 2 suggest 
that long note singing and melodic singing are somewhat 
differentiated, as indicated by the PCA models, suggesting 
they are relatively distinct tasks. This is most likely because 
long note singing does not involve sophisticated mental tem-
plates of melodic structure and is more about fine-grained 
pitch production monitoring. In other words, long note sing-
ing depends more on simple low-level perceptual processes 
and less on high-level learned representations.

Lastly, certain demographic features were related to the 
overall SAA_Ability_Score: �MusicalTraining = 0.07 (p < .001); 
�Age = −.05 (p = .02); �GenderMale = −.03 (p < .001), but 
with relatively small effects, such that: more musical train-
ing predicts better SAA ability, a lower age predicts a better 
SAA_Ability_Score, and women performed better than men. 
The latter two effects are particularly small and could be to 

Table 9  Pearson’s correlations of dependent variables in Experiment 2 (Holm’s corrected)

p < .05* , p < .001***

1 2 3 4 5 6 7 8 9 10 M SD

1. Self-reported Musical Training 3.27 1.40
2. Self-reported Singing Abilities .50*** 4.31 1.01
3. SAA_Ability .24*** .25*** 0.00 0.11
4. SAA_Ability_Arrhythmic .24*** .21*** .95*** 0.00 0.11
5. SAA_Ability_Rhythmic .27*** .29*** .94*** .72*** 0.00 0.10
6. hardwareConcurrency .02 – .06 – .05 – .04 – .08 6.07 3.46
7. deviceMemory .00 – .10 .09 .12 .05 .39*** 6.45 2.16
8. pca_long_note_volatility – .07 – .08 – .03 .04 – .05 .11 .13* 0.07 0.91
9. pca_long_note_accuracy – .15*** – .09 – .23*** – .24*** – .23*** – .05 – .06 – .03 0.01 1.02
10. pca_long_note_scoop – .08 – .05 – .08 – .04 – .12 .01 .02 .11* .01 – 0.04 0.94
11. pca_melodic_singing_accuracy – .20*** – .25*** – .56*** – .50*** – .60*** .10 .04 .10 .19*** .06 – 0.01 0.99

34 Note: negative coefficients appear when the measure appears to 
represent deviation from a target i.e., higher score = more error.



Behavior Research Methods 

1 3

do with idiosyncrasies in the sampling panel we used, so we 
do not extrapolate too much from them.

A next step for obtaining reliability and validity of 
our analysis procedure is to compare the automated pYIN 
transcription of sung recall and subsequent opti3 scoring 
results to those produced when using transcriptions by 
a professional human rater, on the same data. We have 
conducted such an experiment, but it is beyond the scope 
of the present paper and will instead be presented in a 
forthcoming publication. However, preliminary results 
show that the mean edit distance accuracy between the 
pYIN output with default parameters settings and profes-
sional human transcription was 65%, but improved to an 
edit distance accuracy of 73% after optimizing the pYIN 
parameters (see Müllensiefen and Frieler (2007) for a 
description of edit distance applied to musical data). This 
suggests the automated transcription procedure is not per-
fect, but also corresponds largely to human professional 
transcription.

Additionally, we showed that participants’ hardware fea-
tures are related to sung recall performance. Note that this 
does not prove a causality: there are at least two opposing 
causal explanations. For example: i) a poorer hardware setup 
decreases sung recall performance through creating latency/
test presentation issues which interferes with the partici-
pant’s performance vs. ii) those with higher socioeconomic 
status can afford better hardware setups and coincidentally 
have more training/higher cognitive abilities. These possi-
bilities can both be simultaneously true and contribute to the 
relationship and must be explored more in future research. 
However, as far as we are aware, we are the first to document 
such a relationship in Internet singing research.

To create a prototype computerized adaptive test based 
on psychometric scoring, we constructed mixed-effects mod-
els separately for performance on rhythmic and arhythmic 
items, where the opti3 measure of melodic similarity was 
the dependent variable. By using statistical predictions from 
these models for all items in the item bank (i.e., including 

Table 10  Regression model with the SAA score as dependent variable and lower-level singing variables as predictors. Variables were standard-
ized before model fitting to make small unstandardized beta estimates more interpretable

Predictor b 95% CI t df p

Intercept 0.57 [0.50, 0.64] 16.27 815 < .001***
Musical Training 0.07 [0.03, 0.10] 3.57 815 < .001***
Age – 0.05 [– 0.09, – 0.01] – 2.25 815 .024*
GenderMale – 0.03 [– 0.05, – 0.01] – 3.27 815 < .001***
Pca long note accuracy – 0.15 [– 0.23, – 0.07] – 3.57 815 < .001***
Pca melodic singing accuracy – 0.51 [– 0.57, – 0.45] – 16.85 815 < .001***
Melody note accuracy 0.23 [0.12, 0.34] 4.15 815 < .001***

p < .05*, p < .001***

Table 11  Summary of the Singing Ability Assessment’s features

Feature

Real-time fundamental frequency estimation and note onset detection
Real-time scoring with several different measures of singing ability
Triage participants based on their signal-to-noise at beginning of test
Collect a user’s vocal range and present stimuli to that range at test time
Use of multiple item banks
Item response theory-based modeling
Computerized adaptive testing
Optional performance feedback, including musical notation and audio feedback in the browser
Deploy easily alongside other ability tests
Suitable for online or in-person data collection
Scalable online server support via Amazon Web Services
Control test length (number of items) and constrain item features
Control melody sound (e.g., piano, tone, guitar)
Parameters to select different paradigms (e.g., arrhythmic, rhythmic) and number of attempts per melody
Relative ease to extend the battery with new scoring functions
Internalization (currently translated into German, Italian, Latvian, and Chinese in addition to English)
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those that were not empirically tested), we were able to yield 
values which can represent difficulty, for each item.

General discussion

Across two experiments, this paper described the devel-
opment of an open-source infrastructure for testing sung 
recall. It employed ideas and approaches from both melodic 
memory (e.g., Sloboda & Parker, 1985) and singing accuracy 
(e.g., Pfordresher et al., 2015) perspectives, and hence, is able 
to facilitate research in both fields. The testing infrastructure 
builds upon existing routines for the measurement of musical 
abilities which are often limited to perceptual tests. Here, we 
offer a solution for extending research to musical produc-
tion paradigms. This is extremely important to the future of 
musical testing: as recently conveyed by Okada and Slevc 
(2021), among others (Buren et al., 2021; Hallam & Creech, 
2010; Silas & Müllensiefen, 2023), musical ability is not 
completely represented without testing musical production.

The work presented here provides a framework which allows 
a wide range of methods to score singing data with a battery 
of various measures, both new as well as previously described 
in the literature. The functionality enables researchers to create 
large item banks of melodic stimuli which are rich in features 
relevant to psychological processes, and sample from them in 
useful ways (e.g., to place them in the range of a singer whilst 
fulfilling other testing constraints). This is highly consequen-
tial for psychological testing since it allows researchers to 
connect relevant melodic features to task performance while 

maximizing heterogeneity and variance in the collected data, 
which is otherwise constrained by small item pools, which do 
not properly reflect the full variance in musical data. Our work 
also provides processes to maximize quality control, especially 
in online settings, which helps mitigate the occurrence of “dirty 
data” (Müllensiefen & Wiggins, 2011) in the first place. For 
instance, our analysis pipeline suggests that there is no differ-
ence between a user using an internal vs. an external micro-
phone (see Appendix Fig. 5 and Table 15), which suggests our 
audio transcription is relatively robust, once certain constraints 
have been fulfilled (e.g., a certain SNR).

In the spirit of open-source software, this framework is 
openly available for use, and we encourage others to contrib-
ute to it. We emphasize the flexibility of the framework to be 
adapted in different settings, as has already been done (Gallant, 
2022). In this way, the growing web documentation35 demon-
strates how it is relatively easy to include new singing proce-
dures (e.g., asking a participant to sing Happy Birthday) or add 
new scoring features into the analysis pipeline (i.e., taking the 
pYIN fundamental frequency and note onset information and 
score it via the additional_scoring_measures argument to the 
SAA test function), ultimately enabling researchers to test new 
hypotheses. There are also examples which show how the SAA 
can be included alongside other ability tests in a single timeline.

Beyond the methodological and theoretical contributions 
for music psychology, this research also has implications for 

Fig. 2  Examples of real data produced by the Singing Ability Assessment (SAA): long note singing feedback

35 https:// saa. music asses sr. com/ artic les.

https://saa.musicassessr.com/articles
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the automatic assessment of musical performance (Abeßer 
et al., 2013, 2014; Dittmar et al., 2012; Knigge, 2010), which 
is becoming important in music education. In this context, 
tests of music production are designed to assess the musical 

production competences of students in schools, which can 
more objectively inform teachers of the ability level of stu-
dents in their class, as well as provide the basis for specific 
teaching interventions. This is the eventual end goal of the 

Fig. 3  Examples of real data produced by the Singing Ability Assessment (SAA): Melodic singing feedback; yellow-green lines represent target 
pitches, green points correctly sung notes, red points incorrectly sung notes

Fig. 4  An alternative representation of melodic singing: the sung 
recall frequency curve in relation to target pitches (solid rectangles). 
In this case, the participant has sung a good approximation of the tar-

get pitches. Such a comparison of representations is the basis of the 
dynamic time warping distance measure we use. Note: the solid rec-
tangles do not represent extracted onsets/pitches, but the target notes
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current research agenda. We hope to support the wide inter-
est in developing singing skills with the help of technology 
within academic settings, in a more open way than popu-
lar, but closed-source counterparts (e.g., 2022; “Smule,” 
2022; “VoCo Vocal Coach on the App Store,” 2022). More 
broadly, we view adaptive testing as a step into tailored edu-
cation via technology. Such education is not sufficient to 
serve the full range of musical experience, but it can cer-
tainly be very powerful when used as an educational tool.

The SAA is currently available for use here: https:// saa. 
music asses sr. com. The code to produce this manuscript 
and analyses can be found here: https:// github. com/ sebsi 
las/ SAA_ Paper_ 2022. An online demo can be found here: 
https:// adapt iveea rtrai ning. com/ SAA- demo. Table 11 lists 
the current features of the SAA. See Figs. 2, 3 and 4 for 
examples of feedback produced by the SAA.

Limitations

Our study has a number of limitations, some of which we 
will address in forthcoming research (we remind the reader 
the SAA is in continual development). First, our modeling 
approach is by no means the only way of relating melodic 
recall and singing accuracy variables to one another: there 
are many other possible frameworks and approaches. One 
of our main interests is in how other researchers will use the 
framework published here to further new modeling ideas. In 
particular, we are interested in employing structural equa-
tion modeling to more comprehensively relate our variable 
sets together. Second, our statistical modeling only applies 
to Western music. A future direction of this type of frame-
work might be to extend it to different musical systems. We 
point readers to the other very innovative research in this 
regard (see Anglada-Tort et al., 2022; Jacoby et al., 2019). 
Third, we have not attempted to remove acoustic artifacts, or 
explored various audio manipulations before analysis. In one 
sense, this hands-off approach is a benefit: employing certain 
audio manipulation steps might introduce new artifacts in 
the process of removing others. However, we are keen to 
explore the audio cleaning steps taken in Anglada-Tort et al. 
(2022) with our data, to see how this may be able to improve 
our own analysis pipeline. We have already begun conduct-
ing such experiments, which we intend to present in a forth-
coming paper, briefly suggested in the following section.

Future Directions

In future work we aim to fully develop and implement an 
adaptive singing ability assessment (aSAA) test 36. This 

requires several new features and mechanisms, including 
the on-the-fly estimation of a participant’s singing ability 
and the enhancement of several components of the SAA. 
This may include the optimization of opti3 as dependent 
variable to work better for singing data, and similarly, the 
parametric optimization of the pYIN fundamental frequency 
estimation algorithm for singing data. In addition, the par-
ticipant’s ability to sing useable long notes could be tested 
more thoroughly at the beginning of the SAA test protocol in 
order to triage participants early in the test which will further 
maximize data quality and save participant’s time. Since, 
as documented commonly in performance research (Silm 
et al., 2020), and suggested in Experiment 2 of our paper, 
whereby not many participants optionally took more than 
one attempt at the same melody, any measures to improve 
participant effort will be valuable to the SAA. This is a main 
purpose of adaptive tests: shorter tests can maximize effort 
(e.g., with fewer trials, participants may be more likely to 
have more attempts at each trial). However, in parallel to 
the SAA development, we have also been exploring how we 
can make our tests more aesthetically engaging and maxi-
mize motivation (Silas, 2023), which we plan to extend to 
the SAA for future data collections. Finally, the new adap-
tive SAA will need to be validated and robust psychometric 
benchmarks will need to be derived from a large sample of 
participants of all singing abilities. Much in parallel, we are 
also developing the assessment procedures described above 
further in the context of data collected from people play-
ing musical instruments, with the objective of eventually 
facilitating reliable real-time assessment and tailored music 
education (Silas et al., 2021).

Appendix 1

Reliability of adaptive tests and the lengths 
that were used in Experiment 1, according to their 
original publications

Table 12
Table 12  Reliability of adaptive tests

Note that estimates are approximate due to being read from graphs visually

Test No. items Reliability Reliability type

JaJ 8 ~ .78 Empirical
MDT 11 ~ .62 Test–retest
PIAT 15 ~ .60 Test–retest
PDCT 15 Not known Not known
MPT 15 ~ .60 Test–retest

36 However, readers can already view and explore a prototype here: 
https:// adapt iveea rtrai ning. com/ aSAA.

https://saa.musicassessr.com
https://saa.musicassessr.com
https://github.com/sebsilas/SAA_Paper_2022
https://github.com/sebsilas/SAA_Paper_2022
https://adaptiveeartraining.com/SAA-demo
https://adaptiveeartraining.com/aSAA
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Appendix 2

Appendix 3

SAA Dependent variables

Table 14

Table 13  Melodic features

i.entropy measures the average level of information or uncertainty of the distribution of pitch intervals in a melody. Large values of i.entropy 
are associated with melodies that use all pitch intervals a similar number of times over the course of the melody. Similarly, d.entropy measures 
the average level of information or uncertainty of the distribution of duration values of the notes in a melody. Melodies with large values of 
d.entropy will use many different note durations almost equally often. step.cont.loc.var is a measure of the variation of adjacent pitch values in 
a contour representation of a melody. Large values of step.cont.loc.var are associated with melodies that mainly use large intervals in their con-
tour movements. tonalness measures how strongly a melody correlates with a single key center. It is derived by computing the correlation of a 
melody with all major and minor key centers and taking the largest correlation value from this set. A melody high on tonalness will clearly be in 
e.g., C major and have a large correlation value associated with that key

Feature Description Equation Reference

N The length of the target melody. - -
log_freq The log of the relative count of a frequency in the corpus - -
i.entropy The average level of “information” or “surprise” in intervallic representations. Specifically, a 

variant of Shannon entropy on interval representations (Shannon, 1948)
−

∑

i fi⋅log2 fi

log
2
139

Müllensiefen, 2009

step.cont.loc.var The mean absolute difference between adjacent values in the vector representing of step 
contour.

∑N−1

i=1
�xi+1−xi�

N−1

Müllensiefen, 2009

d.entropy The average level of “information” or “surprise” in rhythm values. Specifically, a variant of 
Shannon entropy on rhythmic representations (Shannon, 1948)

−
∑

i fi⋅log2 fi

log
2
140

Müllensiefen, 2009

Table 14  Melodic dependent variables produced by the SAA

*  this measure has an ‘octaves allowed’ partner, which compares pitch classes rather than MIDI pitches. Hence, it does not matter what octave 
something is sung in. Variable names use snake case, corresponding to their naming inside the SAA software.

Measure Definition

ngrukkon Ukkonen measures for N-grams on raw pitch values
harmcore Edit Distance of harmonic symbols per segment, obtained 

via Krumhansl’s tonality vectors.
rhythfuzz Edit distance of classified length of melody tones.
opti3 3.027 * ngrukkon + 2.502 * rhythfuzz + 1.439 * harmcore
no_recalled_notes The number of notes the participant produced in the trial.
no_correct_notes* The number of correct notes a participant sang.
no_error_notes The number of error notes a participant sang.
proportion_of_correct_note_events* The proportion of recalled notes which were correct.
proportion_of_stimuli_notes_found* The proportion of notes in the stimuli which were found.



 Behavior Research Methods

1 3

The ngrukkon similarity measure measures the differ-
ence in the occurrence of short pitch sequences between 
the two melodies to be compared. It is computed in sev-
eral steps. First, the occurrence frequency of N-grams 
(i.e., sequences of three notes) is tallied for each of both 
melodies. Subsequently, the difference between the occur-
rence of the same N-grams in melody A and melody B is 
computed and these occurrence differences are summed 
up. Finally, the resulting value is normalized by the maxi-
mum number of possible N-grams and subtracted from 1 
to yield a similarity measure ranging from 0 to 1. Har-
monic similarity is measured by the harmcore measure. 
This measure is based on the chords implied by a melodic 
sequence, taking pitches and durations into account. 
Implied harmonies are computed using the Krum-
hansl–Schmuckler algorithm (Krumhansl, 1990) and the 
harmonic sequences of the two melodies are compared by 
computing the number of operations necessary to trans-
form one harmonic sequence into the other sequence via 
the edit distance. Finally, likewise, rhythmic similarity 
is computed by first categorizing the durations of the 
notes of both melodies (known as “fuzzification”) and 
then applying the edit distance to measure the distance 
between the two sequences of categorized durations. The 
resulting measure of rhythmic similarity is called rhyth-
fuzz (Müllensiefen & Frieler, 2004b). Note that rhythfuzz 
does not take metric information into account and works 
solely on the basis of (relative) note durations. Similarly, 
ngrukkon works with interval information and is hence 
invariant to transposition.

Based on the perceptual data collected by Müllensie-
fen and Frieler (2004b), the three individual measures are 
weighted and combined to form a single aggregate measure 
of melodic similarity, opti3. Hence, opti3 is sensitive to simi-
larities and differences in three important aspects of melodic 
perception (pitch intervals, harmony, rhythm). We note that 
all three individual measures (ngrukkon, harmcore, rhyth-
fuzz) can take values between 0 (= no similarity) and 1 (= 
identity) and are length-normalized by considering the num-
ber of elements of the longer melody. opti3 then comprises 
(Müllensiefen & Frieler, 2004b):

Note that we here present the normalized weights, which 
constrain the values to be [0,1].

Appendix 4

Comparison of internal vs. external microphone 
selection

When comparing the effect of using an internal vs. external 
microphone, as self-selected by the user at the beginning of 
entry to the SAA, our results suggest there is no difference 
in opti3 scores.

A mixed-effects model with microphone type as fixed-
effects categorical predictor (External, Internal, Not sure) 
and participant as a random effect intercept revealed that 
there was no statistically significant difference in opti3 
scores between the microphone types (p < .05). See the table 
below for model parameters.

(3)
opti3 = 0.505 ⋅ �������� + 0.417 ⋅ ���������

+ 0.24 ⋅ �������� − 0.146

Fig. 5  Boxplot, dot plot and SEM plot of opti3 for self-reported 
microphone type
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