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Abstract
Recently there has been much progress in the development of stochastic mod-
els for state reduction in quantum mechanics. In such models, the collapse of
the wave function is a physical process, governed by a nonlinear stochastic dif-
ferential equation that generalizes the Schrödinger equation. The present paper
considers energy-based stochastic extensions of the Schrödinger equation.
Most of the work carried out hitherto in this area has been concerned with
models where the process driving the stochastic dynamics of the quantum state
is Brownian motion. Here, the Brownian framework is broadened to a wider
class of models where the noise process is of the Lévy type, admitting station-
ary and independent increments. The properties of such models are different
from those of Brownian reduction models. In particular, for Lévy models the
decoherence rate depends on the overall scale of the energy. Thus, in Lévy
reduction models, a macroscopic quantum system will spontaneously collapse
to an eigenstate even if the energy level gaps are small.
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stochastic master equation, Lindblad-GSK equation, Born rule,
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1. The stochastic Schrödinger equation

A number of authors have worked on the development of dynamical models for the collapse
of the wave function [1–20]. For overviews see [21–24]. Such models have a highly nontrivial
relationship with the probabilistic hypotheses of standard quantummechanics. Progress in this
area can be classified into work on (a) spontaneous localization of the state and (b) collapse
of the state vector to an energy eigenstate. We are concerned with the latter here. Our goal is
to show how the well-established framework for stochastic state reduction based on Brownian
noise can be extended to a wider class of models based on noise processes with stationary and
independent increments, so-called Lévy processes. In general, such processes have jumps. A
Lévy process is continuous if and only if it is a Brownian motion. A pure jump Lévy process
can be decomposed into the sum of a finite activity process and an infinite activity process.
Processes of finite activity have the property that jumps occur at a finite rate. Processes of
infinite activity jump infinitely often over any finite interval of time. We provide examples of
state reduction models based on each of these types of Lévy processes. We argue that there is
no reason a priori to prefer continuous processes over discontinuous processes in models for
quantum state reduction.

For the dynamics of the state vector in the simplest energy-driven model with a Brownian
driver, we have the following well-known stochastic differential equation of the Ito type
defined on a finite dimensional Hilbert space:

d|ψt〉=−iℏ−1Ĥ|ψt〉dt−
1
8
σ2(Ĥ−Ht)

2|ψt〉dt+
1
2
σ(Ĥ−Ht)|ψt〉dWt. (1)

Here |ψt〉 denotes the state at time t, with initial condition |ψ0〉, Ĥ is the Hamiltonian, {Wt}t⩾0

is a standard one-dimensional Brownian motion, and

Ht =
〈ψt|Ĥ|ψt〉
〈ψt|ψt〉

(2)

is the expectation of Ĥ in the state |ψt〉. The parameter σ, which has the units

σ ∼ [energy]−1[time]−1/2, (3)

determines the characteristic timescale τR = 1/σ2V0 for the collapse of the wave function.
Here V0 denotes the initial value of the squared uncertainty of the energy. More generally, the
conditional variance of the energy is defined for t⩾ 0 by

Vt =
〈ψt|(Ĥ−Ht)

2|ψt〉
〈ψt|ψt〉

. (4)

The energy-conserving stochastic Schrödinger equation based on Brownian driver, originally
introduced in [6], is the simplest known rigorous model for state reduction in which the Born
probability rules can be derived dynamically.

The dynamics of |ψt〉 set out in (1) are defined on a probability space (Ω,F ,P)with filtration
{Ft}0⩽t<∞. For convenience we recall some key definitions [10, 14, 16, 22]. The elements
of Ω represent the possible outcomes of chance in the model under consideration. The event
space F is a σ-algebra of subsets of Ω. The measure P assigns a probability P : A ∈ F 7→
P(A) ∈ [0,1] to each event A in F , given by

P(A) =
ˆ
Ω

1A(ω)P(dω), (5)
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where 1A denotes the indicator function of the set A⊂ Ω, taking the value one if ω ∈ A, and
zero otherwise. Here ω ∈ Ω denotes a typical outcome of chance. A function X : Ω→ R is
said to be a random variable on (Ω,F ,P) if X is F-measurable, that is, if for any x ∈ R∪
{±∞} it holds that the set {ω ∈ Ω : X(ω)⩽ x} is an element of F . The distribution of X is the
function FX : R∪{±∞}→ [0,1] defined by FX(x) = P(X⩽ x). The expectation of X, which
takes values in the extended real line, is then defined by the Lebesgue integral

E[X] =
ˆ
Ω

X(ω)P(dω). (6)

We note that if E[max(X,0)] =∞ and E[min(X,0)] =−∞ then E[X] is not defined. We say
that X is integrable under P if E[ |X| ]<∞. The subtle measure-theoretic definition of con-
ditional expectation due to Kolmogorov [25] involves a construction that generalizes the ele-
mentary notion of conditional probability and adds more precision to the idea. Specifically, if E
is a sub-σ-algebra of the σ-algebra F on a probability space (Ω,F ,P) and if X is an integrable
random variable, then the conditional expectation E[X|E ] of X with respect to E is defined as
follows. We write Y= E[X|E ] for any E-measurable random variable Y with the property that
for any A ∈ E it holds that

ˆ
Ω

1A(ω)X(ω)P(dω) =
ˆ
Ω

1A(ω)Y(ω)P(dω). (7)

The conditional expectation is unique modulo differences on sets of P-measure zero. Any
particular choice of Y from such an equivalence class is called a version ofE[X|E ]. Then ifD is
a sub-σ-algebra of E , and E is a sub-σ-algebra ofF , we have the tower property of conditional
expectation: E[E[X|E ]|D] = E[X|D]. In particular, because the trivial σ-algebra Z = {Ω,∅}
satisfies E[X|Z] = E[X] for any integrable random variable X, and Z is a sub-σ-algebra of E ,
we have E[E[X|E ]] = E[X] for any sub-σ-algebra E .

The filtration {Ft}0⩽t<∞ consists of a nested family of sub-σ-algebras of F such that s⩽ t
implies that Fs is a sub-σ-algebra of Ft. In the case of a filtration we often use the simplifying
notation Et[X] = E[X|Ft] for the conditional expectation. Then by the tower property we have
Es[Et[X]] = Es[X] for s⩽ t.

By a random process (or stochastic process) we mean a collection of random variables
{Xt}t⩾0. A random process is said to be adapted to {Ft} if for each t⩾ 0 it holds that Xt is Ft-
measurable. An adapted process {Xt}t⩾0 is said to be a martingale if E[|Xt|]<∞ for t⩾ 0 and
Es[Xt] = Xs for 0⩽ s⩽ t<∞. Thus the martingale property characterizes the dynamics of a
quantity that at each step is only on average conserved. A process {Xt}t⩾0 is a supermartingale
if E[|Xt|]<∞ for t⩾ 0 and Es[Xt]⩽ Xs for all 0⩽ s⩽ t<∞.

With these definitions at hand one finds as a consequence of (1) that the expectation of the
energy is a martingale and that the variance of the energy is a supermartingale. That is to say,
we have

Es[Ht] = Hs , Es[Vt]⩽ Vs. (8)

These relations can be worked out by an application of Ito’s lemma to (2) and (4), from which
one infers

dHt = σVt dWt, dVt =−σ2V2
t dt+σκt dWt, (9)

where κt = 〈ψt|(Ĥ−Ht)
3|ψt〉/〈ψt|ψt〉. In particular, since the energy is bounded, the fact that

{Ht} has no drift implies that it is a martingale. Then the fact that the drift of {Vt} is negative
shows that {Vt} is a supermartingale.
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The martingale condition can thus be interpreted as the form of the energy conservation
law that applies even when a system is not in a definite state of energy. The supermartingale
property satisfied by {Vt} captures the essence of what is meant by a reduction process in
quantum mechanics. In particular, one can show by use of (1) that

lim
t→∞

E [Vt] = 0, (10)

which implies that reduction proceeds to an energy eigenstate, because only at an energy eigen-
state do we have Vt = 0. Writing H∞ for the random terminal value of the energy, one can
prove that Ht = Et[H∞] and Vt = Et[(H∞ −Ht)

2]. That is to say, {Ht} and {Vt} are respect-
ively the Ft-conditional mean and variance of the terminal value of the energy after reduction.
In particular, we have the relations

H0 = E[H∞], V0 = E[(H∞ −H0)
2], (11)

which form the basis of the statistical interpretation of quantum mechanics [10, 12, 14, 16].
The first of these shows that the so-called expectation value of the observable Ĥ in the state |ψ0〉
is equal to the expectation (in the probabilistic sense) of the random variable corresponding to
the outcome of the measurement of the energy. Similarly, the squared uncertainty of Ĥ in the
state |ψ0〉 is equal to the variance of the outcome of the measurement. These results all carry
through to the Lévy-based models that we consider shortly.

2. Generalization to mixed states

If we take the view that the general state of a quantum system is described by a density matrix,
and that state reduction prevails at the level of density matrices, then the dynamical equation
for the reduction of the density matrix {ρ̂t}t⩾0 takes the form of the following stochastic master
equation [20]:

dρ̂t =−iℏ−1[Ĥ, ρ̂t]dt+ 1
4σ

2LĤ ρ̂t dt+
1
2
σ
(
(Ĥ−Ht)ρ̂t+ ρ̂t(Ĥ−Ht)

)
dWt. (12)

Here we write Ht = tr(Ĥρ̂t) for the expectation of the Hamiltonian and LĤ denotes the
Lindblad-GKS super-operator [26, 27], given in the present context by

LĤ ρ̂t = Ĥρ̂tĤ− 1
2
ρ̂tĤ

2 − 1
2
Ĥ2ρ̂t. (13)

One can show that the dynamical equation for ρ̂t has the following properties: (a) the trace
of ρ̂t is preserved, (b) the positivity of ρ̂t is preserved, (c) the conditional expectation of the
energy has the martingale property (energy is conserved on average), and (d) the variance of
the energy is a supermartingale (state reduction occurs). Additionally, we find that if Π̂j denotes
the projection operator onto the Hilbert subspace associated to the energy eigenvalue Ej, then
(e) the process {Πjt}t⩾0 defined by

Πj t = tr(ρ̂t Π̂j) (14)

is a martingale. This generalizes a result of Adler and Horwitz [12] and shows the Born rule
can be deduced under the dynamical equation (12) in the situation where the system is in a
random mixed state. One can see at a glance that the mean density matrix will satisfy the
Lindblad equation, a property that is not so obvious from the dynamics of the state vector. In
fact, in our dynamical model for the density matrix we find that state reduction proceeds in
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accordance with the Lüders projection postulate [28] to the Lüders eigenstate associated with
the eigenvalue Ej obtained as the result of the measurement:

ρ̂0 →
Π̂j ρ̂0 Π̂j

tr(ρ̂0 Π̂j)
. (15)

It is worth emphasizing, in this connection, that the Born rule is an assumption in standard
quantum mechanics, part of the statistical interpretation of the theory. The same holds for the
Lüders projection postulate. But the Born rule and the Lüders projection postulate both arise as
theorems of the energy-driven reduction model, even for initially mixed states. In this respect,
the energy-driven model can be regarded as superior to (a) the GRW model [1] and (b) the
continuous spontaneous localization model [4, 7], neither of which exhibit this property on an
exact basis.

Now, one might ask whether it even makes sense to speak of the reduction of a mixed state.
After all, a mixed state is usually understood to represent an ensemble, rather than a single
particle. Indeed, most of the literature of dynamic state reduction models adheres to such a
view. It seems that early on, since the work of [1, 4, 7, 29], the idea that a single quantum
system in isolation is necessarily represented by a pure state was somehow embedded in the
thinking of most of those who were working on reduction models. It may be that this view
simply echoed the thinking of the majority of physicists at the time, and it is not surprising
that such a view continues to be held by many to this day. Nonetheless, it is worth noting that
as early as 1947 it was recognized [30] that the general state of a quantum system is a density
matrix and that the ensemble interpretation is not necessary.

It is interesting therefore to observe that stochastic reduction models can be readily for-
mulated, as we have shown here, with the property that the status of the density matrix as
representing the general state of a single isolated quantum system is sustained. In fact, the
theory assumes a simpler form when it is pursued at the level of the density matrix, as we have
seen, and thus forms a satisfactory basis upon which one can pursue more general classes of
models such as the Lévy models we consider later.

3. Diagonalization of the density matrix

From a purely probabilistic stance one can nevertheless give a completely consistent interpret-
ation of the mean density matrix

µ̂t = E [ρ̂t] (16)

in terms of ensembles. One envisages a collection of N independent identical copies of the
given quantum system, each evolving from the same initial state ρ̂0. In each case the evolution
is governed by an equation of the form (12), but with an independent P-Brownian driver. It
follows by Kolmogorov’s strong law of large numbers that as the number of systems gets large,
the ensemble average of the density matrices converges almost surely to the expectation of the
random density matrix arising in the case of a single system. Thus, if {ρ̂ rt }r=1,...,N are the
density matrix processes of the N independent quantum systems, then

5
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P

(
lim
N→∞

1
N

N∑
r=1

ρ̂ rt = µ̂t

)
= 1. (17)

It should be emphasized that in a stochastic model of the type we are considering, there
is no metaphysics involved in giving an ensemble interpretation to the mean density matrix.
Rather, as we have seen, such an interpretation follows rigorously as a consequence of the law
of large numbers. Indeed, all valid statements about ensembles in the present context can be
formulated in such terms. The law of large numbers is a theorem, not an intuition.

As an example, it will be useful to consider the phenomenon of decoherence from this point
of view. We shall show that starting from an arbitrary initial density matrix, the mean density
matrix diagonalizes in the frame of the energy projectors as t approaches infinity. First we
observe, as we remarked earlier, that as a consequence of (12) we obtain the usual deterministic
master equation for the mean density matrix:

dµ̂t
dt

=−iℏ−1[Ĥ, µ̂t] + 1
4σ

2LĤ µ̂t. (18)

This can be derived by integrating equation (12) with the introduction of the initial condition,
then taking the expectation of each side of the equation, then using the Fubini theorem to inter-
change the integrals and the expectations, then differentiating with respect to t. A calculation
[14] shows that the solution of the deterministic master equation is

µ̂t =
∑
j

Π̂j ρ̂0 Π̂j+
∑
j ̸=k

e−iℏ−1(Ej−Ek)t− 1
8σ

2(Ej−Ek)
2t Π̂j ρ̂0 Π̂k. (19)

One sees that the second term is exponentially damped as time passes and that asymptotically
one is left with the first term alone, in which the mean density matrix is diagonalized.

Thus one can say that asymptotically the ensemble is equivalent to that of a mixture of
energy eigenstates of the projector type, where the proportion belonging to eigenvalue Ej is
given by tr(ρ̂0 Π̂j). This is indeed the result one would expect on intuitive grounds in the
statistical interpretation of standard quantum mechanics when µ̂∞ represents the state of a
system after an energy measurement has been made but before the outcome is known. We
should stress, however, that in the present context we are deriving the result directly from
the stochastic dynamics of the independent elements of the ensemble, without assuming the
statistical interpretation of standard quantum mechanics.

4. Signal detection and state reduction

Before we develop our theory of state reduction models based on Lévy noise, it will be useful
first to outline how a solution to the dynamical equation (1) can be obtained in the case of
a pure state. A corresponding solution to the stochastic mixed-state evolution equation can
then be formulated by analogy. A general closed-form solution to (1) was obtained in [16]
and developed in greater detail in [22]. Our purpose in this section is to review the solution
methodology, which then paves the way towards Lévy generalizations.

It turns out that a highly effective approach to solving (1) is by constructing the solu-
tion explicitly using techniques of signal detection, rather than solving the given differential
equation. Once the solution is constructed, it is straightforward to show that it satisfies the
differential equation that we intended to solve. Hence we begin with the consideration of a
classical signal detection problem, leaving aside quantum theory for the moment.

In signal detection, one is typically interested in inferring the true value of a signal, or
message, given noisy observations. Let us assume that the unknown signal is represented by a

6
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fixed, time-independent random variable H defined on a probability space (Ω,F ,P) such that
H takes the value Ej with the probability pj, where j = 1,2, . . . ,n. Now suppose that the signal
is revealed continuously in time at a constant rate σ, but the signal is obscured by a Brownian
noise {Bt}t⩾0. Then the noisy observations of the signal can be modeled by an information-
providing process {ξt}t⩾0 that takes the form

ξt = σHt+Bt. (20)

The task in signal detection at time t is to determine the best estimate of the signal H given
the observed ‘signal-plus-noise’ time series {ξs}0⩽s⩽t up to that time. The notion of ‘best’
estimate evidently depends on the criterion used to judge the merits of the estimate, but for a
wide range of reasonable criteria, such as minimization of the quadratic error, the best estimate
of H is the conditional expectation

Ht =
n∑
j=1

EjP(H= Ej |{ξs}0⩽s⩽t). (21)

Thus we need to work out the conditional probabilities

πjt = P(H= Ej |{ξs}0⩽s⩽t), j = 1,2, . . . ,n. (22)

Since the information process has the Markov property (one can prove this), and since

lim
t→∞

1
σt
ξt = H, (23)

one finds that (22) reduces to a simpler expression, namely,

πjt = P(H= Ej |ξt), (24)

which can be worked out explicitly by use of the following form of the Bayes formula:

P(H= Ej |ξt) =
P(H= Ej)ρ(ξt |H= Ej)∑n
k=1P(H= Ek)ρ(ξt |H= Ek)

. (25)

Here ρ(x |H= Ej) denotes the value at x ∈ R of the conditional density function of the random
variable ξt. By use of P(H= Ej) = pi, and the fact that conditional on H= Ej the random
variable ξt is normally distributed with mean σEjt and variance t, we deduce that

πjt =
pj exp

(
σEj ξt− 1

2σ
2E2

j t
)∑n

k=1 pk exp
(
σEk ξt− 1

2σ
2E2

k t
) , (26)

from which the best estimate of the signal can be determined.
Let us work out the stochastic differential of the process {πjt}t⩾0. By use of Ito’s formula

one finds that

dπit = σ
(
Ei −Ht

)
πit (dξt−σHt dt) . (27)

Then if we define a process {Wt}t⩾0 by setting

Wt = ξt−σ

ˆ t

0
Hs ds, (28)

7
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it can be shown [16, 22] that {Wt} is a standard Brownian motion under P. That is to say,
{Wt} turns out to be an {Ft}-adapted Gaussian process with mean zero and autocovariance
Cov(Ws,Wt) = s for 0⩽ s⩽ t, with stationary and independent increments. Then we have

dπit = σ
(
Ei −Ht

)
πit dWt. (29)

Furthermore, if we consider the square-root probability processes
√
πjt, for j = 1,2, . . . ,n, then

by use of Ito’s lemma and (27) we deduce that

d
√
πjt =

1
2σ
(
Ej−Ht

)√
πjt dWt− 1

8σ
2
(
Ej−Ht

)2√
πjt dt. (30)

With these results at hand, let us consider a quantum system characterized by a Hamiltonian
Ĥ that may or may not be degenerate. We assume, for the moment, that the initial state of the
system is pure, with state vector |ψ0〉. As before, we let Π̂j denote the projection operator
onto the Hilbert subspace associated to the energy eigenvalue Ej. Let us denote by |Ej〉 the
normalized Lüders state obtained by projecting the initial state |ψ0〉 onto the Hilbert subspace
with energy eigenvalue Ej. Thus,

|Ej〉=
1

√
pj
Π̂j|ψ0〉, pj =

〈ψ0|Π̂j|ψ0〉
〈ψ0|ψ0〉

. (31)

Next, we define a state vector process {|ψt〉}t⩾0 by setting

|ψt〉=
∑
j

√
πit e

−iℏ−1Ejt |Ej〉, (32)

where the πjt are given by (26). Then a calculation making use of (30) shows that |ψt〉 is a
solution to the stochastic Schrödinger equation (1) with the initial condition |ψ0〉. The advant-
age of the filtering method is that one can work directly with the solutions of the stochastic
differential equation. The construction of (32), along with (26), only requires the computation
of the conditional probabilities. In particular, no stochastic integration is required to arrive at
the solution. This is the approach that we shall use shortly when we turn to look at collapse
models based on Lévy information.

5. Solution to the stochastic master equation

The structure of the solution to the stochastic Schrödinger equation obtained in the previous
section sheds light on foundational issues and at the same time suggests generalizations from
a mathematical perspective. In particular, in the case of the stochastic master equation (12), a
solution for the density matrix can be constructed by the same line of argument.

In the setting of a system based on finite-dimensional Hilbert space we regard the Hamilto-
nian Ĥ (possibly degenerate) and the initial state ρ̂0 (possibly of low rank) as being given. As
before, let us write Π̂j ( j = 1, . . . ,n) for the projection operator onto the eigenspace of energy
Ej. Then we fix a probability space (Ω,F ,P) uponwhich we define a Brownianmotion {Bt}t⩾0

along with an independent random variable H taking values in the set (Ej)j=1,...,n such that

P(H= Ej) = tr(ρ̂0 Π̂j). (33)

Next, we introduce a Brownian information process of the form (20). Finally, we set

K̂t =
n∑
j=1

Π̂j e
iℏ−1Ejt+ 1

2σEjξt−
1
4σ

2E2
j t. (34)

8
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Then one can show that the solution for the state process {ρ̂t}t⩾0 is given by

ρ̂t =
K̂†
t ρ̂0K̂t

tr(K̂†
t ρ̂0K̂t)

, (35)

where the information process {ξt}t⩾0 is related to the Brownian driver {Wt}t⩾0 of (12)
in accordance with (28). In particular, one can prove that {ρ̂t}t⩾0 satisfies the dynamical
equation (12) with the Brownian driver {Wt}t⩾0 and the prescribed initial condition and that
{ρ̂t}t⩾0 has the properties (a), (b), (c), (d), (e) stated in section 2.

6. Lévy information

We turn to a generalization of the foregoing considerations to a much wider class of processes.
Let us fix a probability space (Ω,F ,P) on which we define a Lévy process {ξt}t⩾0. By a
Lévy process we mean a random process with stationary, independent increments. Brownian
motion is an example of a Lévy process and indeed it is the only example of a continuous Lévy
process, i.e. a process with continuous sample paths. One can think of the different types of
Lévy processes as representing different types of homogeneous noise.

We shall assume in the following that {ξt}t⩾0 admits exponential moments. By this we
mean that there exists an open interval S⊂ R containing the origin such that S⊂ C where

C= {c ∈R : E [expcξt]<∞} . (36)

It can be shown that for any Lévy process admitting exponential moments there exists a strictly
convex function ψ : C→ R such that

1
t
logE[expαξt] = ψ(α) (37)

for α ∈ C. We refer to ψ as the Lévy exponent associated with the Lévy process {ξt}t⩾0. By
the Lévy–Khintchine theorem [31, 32], which is one of the foundational results of the theory,
there exists a constant p, a constant q⩾ 0, and a Lévy measure ν(dx) such that

ψ(α) = pα+
1
2
qα2 +

ˆ
R

(
eαz− 1−αz1{|z|< 1}

)
ν(dz), (38)

and we refer to (38) as the Lévy–Khintchine representation. By a Lévy measure ν on R we
mean a σ-finite (but not necessarily finite) measure satisfying ν({0}) = 0 andˆ

R
min(1,z2)ν(dz)<∞. (39)

We call {p,q,ν(dz)} the characteristic triplet of the Lévy process. Note that ν(A) is finite
on any interval A ∈ R bounded away from the origin, but may be infinite on an interval that
includes the origin. If a Lévy process has Lévy measure ν(dx), the rate at which jumps arrive
for which the jump size is in the interval [a,b] for a< b with {0} 6∈ [a,b] is given by

m[a,b] =
ˆ
[a,b]

ν(dz), (40)

which by (39) is evidently finite. If a> 0 and lima→0m[a,b] =∞ or if b< 0 and
limb→0m[a,b] =∞ then we say that the Lévy process has infinite activity. In this case, the
process admits infinitely many very small jumps in any finite interval of time. Otherwise, the

9
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process has finite activity and can be represented by a compound Poisson process, in which
case the normalized measure

p(dz) =
ν(dz)´
R ν(dz)

(41)

gives the probability distribution of the size of a typical jump, and jumps arrive at the rate

mν =
ˆ
R
ν(dz). (42)

We are now in a position to define Lévy information [33]. The idea of a Lévy information
process is that it generalizes the information process (20) for Brownian noise to the general
class of Lévy processes introduced above. In the case of a signal obscured by Brownian noise,
it is natural that the signal and noise should admit an additive decomposition. This is why we
often hear the phrase ‘signal plus noise’ in this context. The result is a Brownian motion {Bt}
with a linear drift, as we see in (20). One can then find a change of measure such that a drifted
Brownian motion {ξt} under the physical measure P becomes a pure Brownian motion under
another probability measure, say, P0. This is the measure in which the observed information
{ξt} is content free—that is to say, free of any signal H. The change of probability measure
arising in this context, concerning which we shall have more to say in section 7, is called
an Esscher transformation. Conversely, once the noise type (e.g. say, a Brownian noise) is
specified, one can begin with the ‘empty’ probability measure P0 in which the observation
{ξt} represents pure noise of the type selected, and then apply an Esscher transform to the
physical measure P using the signal H.

In this way, a type of information process can be created that can carry a much wider class
of noise structures, not just Brownian noise. In particular, by letting {ξt} be a P0-Lévy noise,
it is possible to naturally extend the theory of signal detection with Brownian noise into the
general Lévy setup introduced above. This procedure, in turn, allows one to formulate models
of state reduction in quantum mechanics driven by a range of different Lévy processes, each
with its own special characteristics.

With these preliminaries at hand, let ψ : C→ R be a Lévy exponent and let X be a random
variable taking values in C. Then by a Lévy information process with information X and Lévy
noise type ψ we mean a process {ξt}t⩾0 that is conditionally Lévy with a conditional exponent
of the form

1
t
logE[expαξt |FX] = ψ (α+X)−ψ(X), (43)

whereFX is the σ-algebra generated by the random variable X. By conditionally Lévy wemean
that {ξt}t⩾0 has conditionally stationary and independent increments.

One can show, for example, that the Brownian information process considered earlier sat-
isfies these conditions. In the Brownian case we have a Gaussian exponent

ψ(α) = pα+
1
2
qα2 (44)

and S= R, so we see that the conditional exponent (43) in this case takes the form

ψ (α+X)−ψ(X) = αX+
1
2
α2, (45)

10
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with a random term linear in α. In fact, one can prove that a Lévy information process can
be constructed in association with any Lévy process admitting exponential moments and any
integrable random variable taking values in C. In the case of the Poisson process, for example,
we have

ψ(α) = m(eα− 1), (46)

where m is the intensity, the rate at which the events being counted occur on average. For a
Poisson information process the conditional moment takes the form

ψ (α+X)−ψ(X) = meX(eα− 1), (47)

showing that the intensity is randomized (or ‘modulated’) [33, 34] and is given by meX.
Thus, in the case of Poisson noise, the information process {ξt} is a Poisson process with

intensity m under the ‘content free’ measure P0. But under the physical measure P the process
has a randomized intensity meX. The observer therefore detects Poisson jumps, from which
the task is to infer the jump intensity meX, and hence the value of the signal X. The observer is
already aware of the base ratem, and thus by counting the number of jumps over some interval
of time they can estimate the value of X.

The idea can be illustrated as follows. Imagine a situation where a laboratory may have
been contaminated with a small amount of radioactive substance. A Geiger counter is used
to measure the radiation level. If there is no contamination, the counter will click randomly
at a low rate of activity, corresponding to the normal level of background radiation, but if the
contaminant is present the counter will click at a higher rate. In this example, X can take two
possible values, with X= 0 corresponding to the normal rate of background activity and X=
log(1+ ϵ) for some ϵ> 0 corresponding to the casewhere there is contamination. Analogously,
for each type of Lévy noise one can think of a class of signal detection problems, for which
the available observations are represented by Lévy information processes.

7. Change of measure

To establish the existence of Lévy information processes we can use a so-called change-of-
measure technique. Let us fix a probability space (Ω,F ,P0) where P0 will be called the base
measure. We assume that (Ω,F ,P0) supports a Lévy process {ξt}t⩾0 admitting exponential
moments and we define the set C as in (36). Equivalently,

C=

{
c ∈ R :

ˆ
R
ecz ν(dz)<∞

}
, (48)

where ν(dz) is the Lévy measure associated with {ξt}. Now let {Ft}t⩾0 be the filtration gen-
erated by {ξt}. One can check that the process {Λκt }t⩾0 defined for κ ∈ C by

Λκt = exp(κξt−ψ(κ)t) (49)

is a martingale. This follows on account of the independent increments property of Lévy pro-
cesses. Then for each t ∈R+ we can define a measure Pκt on (Ω,Ft) by setting

Pκt (A) = EPκ
t [1(A)] = EP0

[Λκt 1(A)] (50)

11
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for any A ∈ Ft. Themartingale property of {Λκs }0⩽s⩽t ensures that Pκt is a probability measure,
since Pκt (Ω) = EP0

[Λκt 1{Ω}] = Λκ0 = 1. We observe that if s⩽ t and if A is Fs-measurable,
then

Pκt (A) = EP0
[
EP0

[Λκt 1(A)|Fs]
]

= EP0
[
EP0

[Λκt |Fs] 1(A)
]

= EP0

[Λκs 1(A)]

= Pκs (A), (51)

which shows that the measures defined on Fs and Ft are compatible for s⩽ t, in the sense that
if A ∈ Fs then the measure of A on (Ω,Fs,Pκs ) is the same as its measure on (Ω,Ft,Pκt ). With
that in mind, we can ease the notation by dropping the subscript t on Pκt .

When {ξt}, which is by assumption a Lévy process on (Ω,F ,P0), is restricted to the time
frame {ξs}0⩽s⩽T, then it is also a Lévy process on (Ω,FT,Pκ), for any choice of T. That is to
say, it can be shown that for each T⩾ 0 the process {ξs}0⩽s⩽T has stationary and independent
increments under Pκ.

But when {ξs}0⩽s⩽T is regarded as a process on (Ω,FT,Pκ), its properties shift: if
{p0,q0,ν0(dz)} is the characteristic triplet of {ξt}0⩽s⩽T when it is regarded as a Lévy pro-
cess on (Ω,F ,P0), then on (Ω,F ,Pκ) the process has a transformed characteristic triplet
{pκ,qκ,νκ(dz)} of the form

pκ = p0 +κq0 +
ˆ
R
(eκz− 1)1(|z|< 1)zν(dz), qκ = q0, νκ(dz) = eκz ν(dz). (52)

Such a shift is called an Esscher transformation [35]. Thus, a Lévy process, when viewed
from the untransformed probability space, has different characteristics from those of the same
process when it is viewed from the Esscher-transformed probability space.

The idea of a Lévy information process involves a similar construction, where we randomize
the parameter of the Esscher transformation. Let (Ω,F ,P0), {ξt}t⩾0, and {Ft}t⩾0 be as above,
and letX be an integrable random variable such that {ξt} andX areP0-independent. Let {Gt}t⩾0

be the filtration generated jointly by {ξt} and X. Then for each t⩾ 0 we have

Gt = σ [{ξs}0⩽s⩽t,X], (53)

and clearly it holds that Ft ⊂ Gt. The next step is to define a new probability measure PXt on Gt
by setting

PXt (A) = EP0[
ΛX
t 1(A)

]
, ΛX

t = eXξt−ψ(X)t, (54)

for any A ∈ Gt. It is straightforward to check that the process {ΛX
s }0⩽s⩽t is a martingale on

(Ω,Gt,P0), which ensures that the measures {PXt (A)}t∈R+ are compatible for various values
of t, so we can drop the t and write PX(A) for the transformed measure. To proceed further we
need the following formula for the conditional expectation with respect to Ft.

Proposition 1. For any integrable random variable Z on (Ω,Gt,PX) it holds that

EPX [Z |Ft] =
EP0[

eXξt−ψ(X)tZ |Ft
]

EP0
[
eXξt−ψ(X)t |Ft

] . (55)

12
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Proof. We recall Kolmogorov’s definition of conditional expectation, given in section 1. In
the present situation the role of Y is played by the right side of (55), so we must show that

EPX [Y1(A)] = EPX [Z1(A)] (56)

for any Ft-measurable set A, where

Y=
EP0[

eXξt−ψ(X)tZ |Ft
]

EP0
[
eXξt−ψ(X)t |Ft

] . (57)

But if A is Ft-measurable we obtain

EPX [Y1(A)] = EP0

[
eXξt−ψ(X)t

EP0[
eXξt−ψ(X)tZ |Ft

]
EP0
[
eXξt−ψ(X)t |Ft

] 1(A)

]
,

= EP0

[
eXξt−ψ(X)t

EP0[
eXξt−ψ(X)tZ1(A) |Ft

]
EP0
[
eXξt−ψ(X)t |Ft

] ]
,

= EP0

[
EP0

[
eXξt−ψ(X)t

EP0[
eXξt−ψ(X)tZ1(A) |Ft

]
EP0
[
eXξt−ψ(X)t |Ft

] |Ft

]]
= EP0

[
EP0
[
eXξt−ψ(X)tZ1(A) |Ft

]]
= EPX [Z1(A)], (58)

and thus we deduce (56) by repeated use of the tower property.

In fact, (55) arises naturally as a form of the so-called Kallianpur–Striebel formula [36]. A
special case of (55) is particularly useful.

Proposition 2. Let the function f : R→R be such that f(X) is integrable. Then we have

EPX [ f(X)|Ft] =

´
f(x) exξt−ψ(x)tµ(dx)´
exξt−ψ(x)tµ(dx)

, (59)

where the distribution of X is given by

P(X⩽ a) =
ˆ a

−∞
µ(dx). (60)

Now suppose that {ξt}t⩾0 is a Lévy process on (Ω,F ,P0)with Lévy exponent ψ(α) for α ∈ C.
Then, for any times t and T such that 0⩽ t⩽ T we have

EPX[eαξt |FX
]
= EP0

[
eXξt−ψ(X)teαξt |FX

]
= EP0

[
e(X+α)ξt−ψ(X)t |FX

]
= e(ψ(X+α)−ψ(X))t, (61)

sinceX and {ξt}0⩽t⩽T are independent on (Ω,FT,P0), and this gives (43). A similar calculation
shows that {ξt}t⩾0 has FX-conditionally stationary and independent increments under PX. We
thus deduce that {ξt}t⩾0 is a Lévy information process on (Ω,F ,PX) and hence that Lévy
information processes can be constructed for any noise type.

13
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8. Quantum state reduction with Lévy jumps

Suppose that we are given a quantum system defined on a finite dimensional Hilbert space with
Hamiltonian Ĥ and initial state ρ̂0. We fix a probability space (Ω,F ,P) on which we define a
random variable H taking values in the set {Ej}j=1,...,n such that (33) holds. We define a Lévy
information process {ξt}t⩾0 carrying the information of H such that

1
t
logE[expαξt |FH] = ψ (α+λH)−ψ(λH), (62)

where λ is a model parameter with the units

λ∼ [energy]−1. (63)

Our conventions going forward are such that the Lévy information process is dimensionless,
as is the argument of the Lévy exponent. Thus H has units of energy, t has units of time, and
the Lévy exponent has units of inverse time.

Now consider the situation where the initial state is pure, so ρ̂0 = |ψ0〉〈ψ0| for some given
initial state vector |ψ0〉. Then for the dynamics of a Lévy-driven state vector leading to a col-
lapse of the wave function to an energy eigenstates we generalize the approach laid out in
section 4 and look at a model of the form

|ψt〉=
n∑
j=1

√
πjt e

−iℏ−1Ejt |Ej〉, πjt = E[1{H= Ej}|Ft], (64)

where the |Ej〉 are the normalized Lüders eigenstates given by (31) and πjt is the conditional
probability for reduction to a state with energy Ej, given Lévy information. Then we apply
proposition 2 in the case for which the distribution of the random variable X= λH is

µ(dx) =
n∑
j=1

pj δλEj(dx), (65)

where δy(dx) denotes the Dirac measure concentrated at y, and we obtain

πjt =
pj exp(λEj ξt−ψ(λEj)t)∑n
k=1 pk exp(λEk ξt−ψ(λEk)t)

(66)

for the conditional probabilities. That gives us our model for the collapse dynamics of a state
vector driven by Lévy information.

More generally, for the dynamics of a Lévy-driven density matrix leading to a reduction of
the initial state to an energy eigenstate, we propose a model of the form

ρ̂t =
e−iℏ−1Ĥt+ 1

2λĤξt−
1
2ψ(λĤ)t ρ̂0 eiℏ

−1Ĥt+ 1
2λĤξt−

1
2ψ(λĤ)t

tr
(
ρ̂0 eλĤξt−ψ(λĤ)t

) . (67)

It is straightforward to check that when ρ̂0 is pure, our model for the dynamics of the density
matrix is consistent with the state vector dynamics considered above. One can also check that
the associatedmean densitymatrix satisfies a deterministic dynamical equation of the Lindblad
type. This is far from obvious but the proof will be given in section 9. Then in section 10 we
show that the model leads to reduction of the state to an energy eigenstate of the Lüders type
satisfying the Born rule.

One can see at a glance that (67) reduces to an expression of the form (35) in the Brownian
case, but the precise relation may not be immediately obvious, since the units of the parameter
σ are not the same as those of λ. In the Brownian situation it is convenient to choose units such
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that Bt has dimensions of square-root time, in which case the information process defined by
σHt+Bt likewise has units of square-root time, which implies that the units of the parameter
σ are given by (3). In the Brownian case such choices are convenient and widely used.

If, however, one wishes to treat Brownian motion as a species of Lévy process alongside
and in additive combination with other Lévy processes, one needs a single convention that
traverses the Lévy category. This means that Lévy processes should be made dimensionless.

After all, there are many examples of Lévy processes that take the form of counting pro-
cesses, which are dimensionless in their natural setting. The dimensionless Brownian motion
with drift associatedwith theGaussian exponent (44) takes the form pt+ q1/2Bt, where {Bt}t⩾0

is a standard Brownian motion (with units of square-root time), and the corresponding dimen-
sionless Lévy information process {ξt}t⩾0 with conditional exponent (62) is given by

ξt = qλHt+ q1/2Bt. (68)

The Brownian information process introduce in section 4 is obtained by dividing (68) by q1/2

and setting σ = q1/2λ, which gives (3). This may seem little complicated, but there is a clash
between the conventions of physicists, who treat Brownian motion as if it has the physical
units of square-root time, and probability theorists, who regard Brownian motion (and time
itself) as dimensionless. As long as we work with Brownian motion alone, either convention
will do, but once general Lévy processes are brought into play, we find that the probabilistic
conventions work better.

A compromise can be reached by choosing the second as the unit of time and treating q as a
model parameter. Then if we choose q= 1Hz we recover the formulae that we used earlier for
a standard Brownian information process with parameter σ. But in general we need a flexible
value for q, since it characterizes the weighting of the Gaussian component of a Lévy process
relative to its other components.

In fact, once adjustments are made to take into account the units, one can show that the
main results mentioned earlier in connection with the Brownian model go through for a Lévy
model. Hence from a physical point of view, we reach the important conclusion that there is
no obvious reason a priori to prefer a Brownian model over any other Lévy model.

9. Calculation of the decoherence rate

Now consider the mean density matrix µ̂t = E [ρ̂t]. Here the expectation is calculated under
the physical measure and it can be worked out explicitly using proposition 1 and a change-of-
measure trick. In particular, writing P0 for the base measure, we use the tower property and
the fact that ξt is Ft-measurable to show that

EP[ρ̂t] = EP0
[
eλHξt−ψ(λH)t ρ̂t

]
= EP0

[
EP0
[
eλHξt−ψ(λH)tρ̂t |Ft

]]
= EP0

[ˆ
R
eλxξt−ψ(λx)tµ(dx) ρ̂t

]
, (69)

where µ(dx) is the probability measure of H. Now, by (33) and (65) we have

ˆ
R
eλxξt−ψ(λx)tµ(dx) =

n∑
k=1

pk exp(λEk ξt−ψ(λEk)t) = tr
(
ρ̂0 e

λĤξt−ψ(λĤ)t
)
, (70)
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since Ĥ=
∑n

j=1EjΠ̂j. The term in the denominator of (67) gets cancelled and we obtain

EP[ρ̂t] = EP0
[
e−iℏ−1Ĥt+ 1

2λĤξt−
1
2ψ(λĤ)t ρ̂0 e

iℏ−1Ĥt+ 1
2λĤξt−

1
2ψ(λĤ)t

]
. (71)

Because the exponential moments of ξt under P0 can be expressed in terms of the Lévy expo-
nent, we are able to work out the following exact expression for the matrix elements of ρ̂t with
respect to the energy eigenspace projectors:

Π̂m µ̂t Π̂n = e−iℏ−1(Em−En)t+ψ( 1
2λ(Em+En))t−

1
2ψ(λEm)t−

1
2ψ(λEn)t Π̂m µ̂0 Π̂n. (72)

Thus, more succinctly, we can write

Π̂m µ̂t Π̂n = exp
(
−iℏ−1(Em−En) t−Γmn t

)
Π̂m µ̂0 Π̂n, (73)

where

Γmn =
1
2
ψ(λEm)+

1
2
ψ(λEn)−ψ

(
1
2
λ(Em+En)

)
. (74)

Then as a consequence of the Lévy–Khintchine representation (38) we deduce that

Γmn =
1
8
qλ2(Em−En)

2 +
1
2

ˆ
R

(
e

1
2λEmz− e

1
2λEnz

)2
ν(dz). (75)

The key point is that Γmn vanishes along the diagonal and is strictly positive for m 6= n. This
positivity can also be seen to follow from the fact that the Lévy exponent is strictly convex.
We conclude that the mean density matrix diagonalizes as t gets large. This is the decoherence
effect induced by the reduction process.

The dynamical equation satisfied by the mean density matrix can be worked out by differ-
entiating (73) and takes the form

dµ̂t
dt

= i[Ĥ, µ̂t] +
1
4
qλ2

(
Ĥµ̂tĤ− 1

2
µ̂tĤ

2 − 1
2
Ĥ2µ̂t

)
+

ˆ ∞

−∞

(
L̂(z)µ̂tL̂(z)−

1
2
L̂2(z)µ̂t−

1
2
µ̂tL̂

2(z)

)
ν(dz), (76)

which is evidently of the Lindblad type, where

L̂(z) = e
1
2λĤz. (77)

This is consistent with the idea that if a stochastic modification of standard quantummechanics
is to avoid causality violation it must lead to Lindblad-type dynamics for the mean density
matrix [6, 19, 29, 37, 38], and we see that this condition is satisfied by the class of models
presently under consideration.

Indeed, as [38] puts the matter, the overall structure of an objective reduction model
is fixed by two natural physical requirements: ‘The first is the requirement of state vector
normalization—the unit norm of the state vector should be maintained in time. The second is
the requirement that there should be no faster than light signaling—the densitymatrix averaged
over the noise should satisfy a linear evolution equation of Lindblad form.’

Some insight into the nature of the decoherence process can be gained if we analyze the
terms of (75). Let us consider first the Brownian case, which just involves the first term of (75).
In this case we can set σ2 = qλ2 and we find that the decoherence rate is given by

Γmn =
1
8
σ2(Em−En)

2 (78)
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for the matrix element corresponding to a typical pair of energy levels, where σ has units of the
form (3). This result for the decoherence rate is consistent with rule of thumb that the reduction
time scale in the Brownian case goes like τR ∼ 1/σ2V0, as we mentioned earlier in section 1,
where V0 denotes the initial value of the squared uncertainty in the energy. For clearly, V0 can
be expressed as a weighted sum of squares of differences of energy eigenvalues. For example,
for a two-level system one has V0 = p1p2(E1 −E2)

2, in the case of a three-level systems one
has V0 = p1p2(E1 −E2)

2 + p1p3(E1 −E3)
2 + p2p3(E2 −E3)

2, and so on.
The phenomenological case for energy-based reduction with a Brownian noise has been

investigated extensively [10, 12, 15, 17, 38, 39]. If one takes the view that state reduction
is linked in some way to gravitation, as many have, then a reasonable guess for σ based on
dimensional analysis is that it is given by a relation of the form

σ2 ∼M−2
p T−1

p = 2.8MeV−2s−1. (79)

An interesting feature of this conjecture is that the large numbers of the Planck mass Mp

and the Planck time Tp cancel, and one is left with a laboratory-scale value for the reduction
parameter [10]. The data show that such a value for σ is not unreasonable, in the sense that
none of the many situations that have been analyzed in detail rule it out decidedly, although
there is little by way of direct evidence in favor of it, at least as matters stand.

As an example we can look at the framework proposed by Weinberg [40] in his analysis of
the decoherence timescales associated with experiments involving atomic clocks. He derives
a Lindblad equation based on his approach and argues that the resulting decoherence rate Γ
coming from objective reduction must satisfy a bound of the form ΓT< 1 where T is the
Ramsey time associated with the clock. He concludes that, ‘Unfortunately we have no idea of
what target of Γ we should aim at, or even how Γ might vary from one transition to another.’
Weinberg then proceeds to examine two extreme cases, namely where Γ is constant and where
Γ scales like Ee −Eg where Ee and Eg denote the excited and ground energy levels of the stable
states of the clock. In the case of a 133Cs+ ion, for example, the hyperfine transition frequency
is known to great accuracy and is given by ∆νCs = 9.19263177 GHz. This is of course the
definition of the Hertz. The corresponding energy difference is then∆ECs = h∆νCs ≈ 6.091×
10−17 erg or equivalently 3.801× 10−5 eV. The Ramsey time varies according to the type of
clock but is typically of the order of a few seconds althoughWeinberg points to a case involving
171Yb+ for which T> 600s. Arguing on this basis he concludes that Γ< 10−18eV if Γ does
not depend on the transition frequency.

In the case of an energy-based reduction model with Brownian noise one can take matters
a step further, because the precise dependence of Γ on the transition frequency is given by
equation (75) in that model. This allows us to work out a bound on σ. To get a feeling for the
numbers involved, let us consider the 133Cs

+
hyperfine frequency and use a Ramsey time of

1s. Then by (75) we have

Γeg =
1
8
σ2(∆ECs)

2 < 1s−1 (80)

and hence σ2 < 8(∆ECs)
−2 s−1 which gives σ2 < 0.5537× 1022MeV−2 s−1. Thus we obtain

an upper bound on σ2 from the atomic clock data, though not a particularly stringent one, and
certainly the Planckian value for σ2 that we considered in (79) is well within it.

This example illustrates the fact that at the current level of technology it is not easy to
identify decisive tests that would rule out energy-based reduction models based on Brownian
noise, even though such tests are clearly possible in principle. Let us now turn to the Lévy
case. Here there are some surprises. Suppose for simplicity we consider pure jump models for
which |λEjz| � 1 for all jump sizes in the support of the Lévy measure. In that case we can
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make a Taylor expansion of the exponential terms inside the integral with respect to the Lévy
measure in our formula (75) for the decoherence rate, neglecting the Brownian terms, and we
obtain

Γmn =
1
8
λ2(Em−En)

2
ˆ
R

z2 ν(dz). (81)

The surprising thing here is that when this approximation is valid (i.e. for small jumps, small
energies, small λ) the expression for the decoherence rate is of the same form as that of the
Brownian model, with the second moment of the Lévy measure playing the role of the q para-
meter. Thus, as long as the effects of the Lévy model are in some sense perturbative, they do
not qualitatively change the conclusions of the Brownian reduction models.

We proceed to another surprise. Weinberg [40] appears in his analysis of atomic clocks
simply to have assumed that decoherence rate depends on the transition frequencies, but not
the overall levels of the energy eigenvalues. This is in certain respects a plausible assumption,
and indeed it holds in Brownian reduction models. But in the Lévy reduction models the situ-
ation is different. In general, the decoherence rate depends on the overall levels of the energy
eigenvalues as well as on their differences. This can be seen if we write (75) as

Γmn = 2
ˆ
R

e
1
2λ(Em+En)z sinh2

(
1
4
λ(Em−En)z

)
ν(dz), (82)

again neglecting the Brownian terms. For simplicity, suppose we consider the case of a spec-
trally positive Lévy process (positive jumps) in the situation where the energy levels are non-
negative. In that case, the decoherence rate is clearly an increasing function of Em+En. Then
even in the situation where the energy gaps are small, i.e. such that λ|Em−En |z� 1, one will
get a high rate of decoherence if the overall energy levels are high, satisfying λ(Em+En)z� 1.
Thus, large systems will decohere quickly, even if the transition frequencies are small, whereas
small systems will not decohere.

In this respect the Lévy models differ fundamentally from their Brownian counterparts. In
particular, noting that sinhx∼ x for x� 1 we see that (82) reduces to

Γmn ≈
1
8
λ2(Em−En)

2
ˆ
R

e
1
2λ(Em+En)zz2 ν(dz), (83)

similar to the Gaussian case in its dependence on the transition frequency, but the effect of the
large energies is to enhance the effective value of the q parameter. For example, in the case of
a Poisson process of intensity mν , for which the jumps are of size unity, the Lévy measure is
given by ν(dz) = mνδ1(dz) and we obtain

Γmn ≈
1
8
mνe

1
2λ(Em+En)λ2(Em−En)

2, (84)

for which the effective q factor takes the form

q̃mn = mν e
1
2λ(Em+En). (85)

This example shows how the decoherence rate increases exponentially in the Poisson model
when the overall energy scale is increased.

In fact, the integral on the right hand side of equation (83) can be computed explicitly in
terms of the Lévy exponent and we get

Γmn ≈
1
8
λ2(Em−En)

2ψ ′ ′
(
1
2
λ(Em+En)

)
, (86)
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which is positive on account of the convexity of the Lévy exponent. Thus, we have

q̃mn = ψ ′ ′(
1
2
λ(Em+En)), (87)

which can be worked out explicitly in the case of various examples. Note that ψ ′ ′(α) is an
increasing function of its argument if the Lévy process is spectrally positive.

In the case of a compound Poisson process, for whichψ(α) = mν(ϕ(α)− 1), where ϕ(α) is
themoment generating function of the random jump size, we obtain q̃= mν ϕ ′ ′( 12λ(Em+En)).
As a specific example of such a process, with spectral positivity, we look at the situation for
which the jumps are exponentially distributed, with probability density P[Y ∈ dy ] = β e−βy dy
for y> 0, with β > 0. The moment generating function is

E[eαY] =
1

(1−β−1α)
, (88)

with α < β. Thus, for 1
2λ(Em+En)< β we deduce that the effective q factor takes the form

q̃mn = mν
β(

β− 1
2λ(Em+En)

)3 (89)

in the case of a compound Poisson process with exponentially distributed jumps. As another
example, we can consider the case of a gamma information process, which is applicable in the
situation in which the energy eigenvalues satisfy 0< λEm < 1, the Lévy exponent is given by
the expression ψ(α) =−mν log(1−α), for 0< α < 1, and therefore

q̃mn = mν
1(

1− 1
2λ(Em+En)

)2 . (90)

Finally, we remark on the implications of this analysis for the measurement problem. If
measurement takes the form of making an entanglement of the measuring apparatus with the
system being measured, then in the case of a spectrally positive Lévy model there is no need to
invoke the idea that large-scale macroscopic superpositions are required for the outcome of the
measuring apparatus. The coupling between the system and the apparatus can be such that the
different possible outcomes for the system are linked to rather small differences in the overall
energy of the apparatus. The state of the apparatus will collapse nonetheless, despite the energy
differences being small, on account of the amplification effect we have just discussed, bringing
with it a collapse of the state of the small system to which it is coupled. This may explain
why, within the Copenhagen interpretation of standard quantum mechanics, the mere act of
measuring the energy of a small system forces it into an eigenstate. Likewise our approach
may explain why the formation of a latent image in a photographic emulsion may be sufficient
to collapse the state of the system being measured even if the image is developed at a later
time [8, 41].

10. Proof of reduction

To show that the Lévy-information based models we have introduced in the previous sections
have the reduction property, we establish a result that characterizes the asymptotic properties
of the exponential martingale associated with a Lévy process.

Proposition 3. Let {ξt}t⩾0 be a Lévy process that admits exponential moments. Let S denote
the largest open set in R such that

E
[
eκξt
]
<∞ (91)
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for κ ∈ S. Then for any ϵ> 0 and any κ ∈ S such that κ 6= 0 it holds that

lim
t→∞

P
(
eκξt−ψ(κ)t > ϵ

)
= 0. (92)

Proof. We require Cantelli’s inequality [42, 43], which is a strengthened version of Cheby-
shev’s inequality holding in the case of a one-sided probability distribution that says that for
any square-integrable random variable Z : Ω→R and any b⩾ 0 it holds that

P(Z−E[Z]⩾ b)⩽ Var[Z]
Var[Z] + b2

. (93)

Now, for any Lévy process admitting exponential moments we have E[ξt] = ψ ′(0)t and
Var[ξt] = ψ ′ ′(0)t, from which by use of Cantelli’s inequality we obtain

P
(
eκξt−ψ(κ)t > ϵ

)
= P

(
ξt > κ−1[ logϵ+ψ(κ) t ]

)
= P

(
ξt−E[ξt]> κ−1[ logϵ+(ψ(κ)−κψ ′(0)) t ]

)
⩽ ψ ′ ′(0)t
ψ ′ ′(0)t+κ−2 [ logϵ+(ψ(κ)−κψ ′(0)) t ]2

. (94)

But the convexity of the Lévy exponent implies that ψ(κ)> κψ ′(0) for all κ ∈ S−{0}, and
the claimed result follows immediately.

Then to show that the dynamical state process (67) reduces to an energy eigenstate it suffices
to establish the following.

Proposition 4. If the outcome of chance ω ∈ Ω is such that H(ω) = Ej for some particular
value of j, then for any ϵ> 0 it holds that

lim
t→∞

P
(
1− tr(Π̂jρ̂t)> ϵ

)
= 0. (95)

Proof. It follows as a consequence of (67) and the cyclic property of the trace that

tr(Π̂jρ̂t) =
eλEjξt−ψ(λEj)t tr(Π̂jρ̂0)∑
i e
λEi ξt−ψ(λEi)t tr(Π̂iρ̂0)

, (96)

and hence

tr(Π̂jρ̂t) =
tr(Π̂jρ̂0)

tr(Π̂jρ̂0)+
∑

i̸=j e
λ(Ei−Ej)ξt−ψ(λEi)t+ψ(λEj)t tr(Π̂iρ̂0)

. (97)

Now, conditional on information H= Ej, the process {ξt}t⩾0 is Lévy, with Lévy exponent
ψ (α+λEj)−ψ (λEj). It follows that the process {Mijt}t⩾0 defined for i 6= j by

Mijt = eλ(Ei−Ej)ξt−ψ(λEi)t+ψ(λEj)t (98)

is an exponential martingale. We know therefore that {Mijt} converges to zero by proposition
3, from which we deduce that trΠ̂jρ̂t converges to unity.

Thus we have shown that the dynamical model defined by (67) is a state reduction process
that carries the initial state to an energy eigenstate in such a way that the associated energy
expectation process is a martingale. Indeed, the processes obtained by transvecting the state
with any of the energy projection operators and taking the trace are likewise martingales. It
follows that the actual probability of collapse to a Lüders eigenstate of energy Ej agrees with
the probability calculated via the Born rule. Here we refer to the extended form of the Born rule
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fully applicable to density matrices and a possibly degenerate spectrum for the Hamiltonian.
Results of this type have been known for some time in the case of Brownian noise [6, 7, 10,
12, 14, 16, 20, 22], both for dynamics of state vectors and the dynamics of density matrices,
but the extension to the Lévy class is new.

The new degrees of freedom that can be expressed in a Lévy model are embodied in
the structure of the Lévy exponent for the underlying noise, or equivalently the parameter
q together with the Lévy measure. In a number of situations one can construct explicit models
of Lévy information processes [33]. In such cases we can go further and use the model as a
basis for simulation studies. In particular, in addition to those based on Brownian noise and
Poisson noise, explicit models can be constructed for information processes based on Lévy
processes with infinite activity, including various examples that are well known in the theory
of finance and insurance, such as (a) the gamma process [44–46] and (b) the variance gamma
process [47, 48]. Such infinite activity information processes are different in character from
their Brownian and Poisson counterparts.

In closing, we comment that our explicit formula for the decoherence rate (75) marks
a clear distinction between quantum state reduction models based on Brownian noise and
the more general category of reduction models based on Lévy noise, and paves the way
towards possible applications of such models, some of which we have touched on in the
present paper. The idea that changing the nature of the underlying noise might give some new
insights into the measurement problem comes as a surprise and we hope to pursue the topic
further.

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

We are grateful for comments from participants at the conference General Relativity, Quantum
Mechanics and Everything in Between, Celebrating 92 Springs of Professor Lawrence Paul
Horwitz, April 2022, Ariel University, Israel, where this work was presented. We thank Chris-
topher Fuchs, Blake Stacey, and other seminar participants at the Department of Physics, Uni-
versity ofMassachusetts Boston, for stimulating discussions inMay 2022.We also thank Lajos
Diósi, Philip Pearle and the anonymous referees for their comments. D C B acknowledges sup-
port from the Russian Science Foundation (Grant 20-11-20226) and the Templeton Foundation
(Grant 62210). The opinions expressed in this publication are those of the authors and do not
necessarily reflect the views of the Templeton Foundation.

Appendix. Examples of Lévy reduction models

It may be worthwhile if we explain things in more detail with a few concrete examples of Lévy
reduction models to show the occurrence of wave function collapse systematically. We look at
reduction models for three canonical examples of Lévy processes: (a) Brownian motion, (b)
the Poisson process, and (c) the gamma process, these being representative of the continuous
case, the finite activity case, and the infinite activity case. The Brownian model is of course
well studied in the literature, but by presenting this example in the same notation and in parallel
with the two other cases, we hope that the models based on pure jump Lévy processes will be
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clearer. For simplicity we consider a quantum system with only two energy levels E1 and E2.
The generalization to situations with more than two energy levels is straightforward and can
be left as an exercise.

Throughout the discussion that follows we are given a quantum system based on a finite
dimensional Hilbert space with initial state ρ̂0 and a Hamiltonian operator with two energy
levels. For the projectors on to the Hilbert subspaces with energies E1 and E2 respectively we
write Π̂1 and Π̂2. We consider a system for which reduction is driven by a Lévy information
process {ξt}t⩾0 based on an underlying Lévy noise with Lévy exponent ψ(α), satisfying

1
t
logE[expαξt |FH] = ψ (α+λH)−ψ(λH), (99)

where λ is a model parameter and H is a random variable taking the value E1 with probability
p1 = tr(Π̂1ρ̂0) and the value E2 with probability p2 = tr(Π̂2ρ̂0).

Brownian noise

We consider a dimensionless information process of the form ξt = qλHt+ q1/2Bt, where the
parameter q has dimensions of inverse time and {Bt}t⩾0 is a standard Brownian motion, with
vanishing drift and variance t. For simplicity we set q= 1Hz and then the information process
takes the form

ξt = λHt+Bt. (100)

The Lévy exponent is given in the Brownian case by

ψ(α) =
1
2
α2 (101)

for α ∈ R. A straightforward calculation shows that for the conditional Lévy exponent in this
case we have

1
t
logE [expα(λHt+Bt) |FH] = αλH+

1
2
α2 =

1
2
(α+λH)2 − 1

2
(λH)2, (102)

confirming that (100) is an information process, satisfying (99). The exponential martingale
{Mκ

t }t⩾0 with parameter κ associated with a standard Brownian motion takes the form

Mκ
t = eκBt−

1
2κ

2t. (103)

Such processes are widely used in the theory of finance to model the random fluctuations of
share prices. Since Bt is normally distributed with mean 0 and variance t, then for any value
of t> 0, no matter how large, clearly we have

E
[
eκBt−

1
2κ

2t
]
= 1. (104)

It may then come as a surprise that for any ϵ> 0, no matter how small, we have

lim
t→∞

P
[
eκBt−

1
2κ

2t > ϵ
]
= 0. (105)

That is to say, the exponential Brownian motion process converges to zero in probability. This
can be shown with an application of Cantelli’s inequality. For those who have any doubts, we
can check the result directly by use of an old-school probability calculation. Writing N(x),
x ∈ R, for the standard normal distribution function, we have
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P
[
eκBt−

1
2κ

2t > ϵ
]
= P

[
1
t1/2

Bt >
1

κ t1/2
logϵ+

1
2
κt1/2

]
= 1−N

(
1

κ t1/2
logϵ+

1
2
κt1/2

)
, (106)

since the random variable t−1/2Bt is normally distributed with mean zero and variance unity.
But limx→∞N(x) = 1 and the claimed result follows immediately. Similar results hold for the
exponential martingales associated with other Lévy processes.

Now we are in a position to look at the conditional probability for the outcome of the
reduction process to be an eigenstate with energy E1 (the corresponding calculations for E2

follow by symmetry). According to the general theory outlined in section 8 we have

tr(Π̂1ρ̂t) =
p1eλE1ξt− 1

2λ
2E 2

1 t

p1eλE1ξt− 1
2λ

2E 2
1 t+ p2eλE2ξt− 1

2λ
2E 2

2 t
, (107)

by virtue of equation (96), and hence

tr(Π̂1ρ̂t) =
p1

p1 + p2eλ(E2−E1)ξt− 1
2λ

2E 2
2 t+

1
2λ

2E 2
1 t
. (108)

To show that reduction occurs, we need to prove that if the outcome of chance is that
H= E1, then limt→∞ tr(Π̂1ρ̂t) = 1, whereas if the outcome of chance is H= E2 then
limt→∞ tr(Π̂1ρ̂t) = 0. This may not be obvious on a casual glance at (108). But the point is
that if H= E1 then ξt = λE1t+Bt. Substituting this into (108) we get

tr(Π̂1ρ̂t)
∣∣∣
H=E1

=
p1

p1 + p2eλ(E2−E1)(λE1t+Bt)− 1
2λ

2E 2
2 t+

1
2λ

2E 2
1 t
, (109)

and hence after some rearrangement, we have

tr(Π̂1ρ̂t)
∣∣
H=E1

=
p1

p1 + p2eλ(E2−E1)Bt− 1
2λ

2(E2−E1) 2t
. (110)

We observe that an exponential martingale of the type we were considering earlier appears in
the denominator. This converges to zero in probability, and it follows that for any ϵ> 0 it holds
that

lim
t→∞

P
[
tr(Π̂1ρ̂t)

∣∣∣
H=E1

< 1− ϵ

]
= 0, (111)

which signifies that reduction to a state of energy E1 has taken place. A similar calculation
then shows that

tr(Π̂1ρ̂t)
∣∣∣
H=E2

=
p1

p1 + p2eλ(E2−E1)Bt+ 1
2λ

2(E2−E1) 2t
, (112)

and hence that

lim
t→∞

P
[
tr(Π̂1ρ̂t)

∣∣∣
H=E2

> ϵ

]
= 0. (113)

Poisson noise

The Poisson process {Nt}t⩾0 with intensity m> 0 is a nondecreasing jump process with unit
jumps at the rate m. The Lévy exponent is given by

ψ(α) = m(eα− 1) (114)
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and the corresponding Lévy measure takes the form

ν(dz) = mδ1(dz), (115)

where δ1(dz) denotes the Dirac measure concentrated at jump size unity. The Poisson process
takes values in the nonnegative integers, whose distribution at time t is

P [Nt = n] = e−mt (mt)
n

n!
. (116)

For the corresponding exponential martingale with parameter κ we have

Mκ
t = eκNt−m(eκ−1)t. (117)

A calculation gives E[Nt] = mt and Var[Nt] = mt. Cantelli’s inequality then tells us that

P
(
eκξt−ψ(κ)t > ϵ

)
⩽ mt
mt+κ−2 [ logϵ+m(eκ− 1−κ) t ]2

. (118)

One can check that infκ∈R(eκ− 1−κ) = 0 and hence that for any κ> 0 the exponential mar-
tingale (117) converges to zero in probability as t grows large.

A Poisson information process with parameter m can be modeled by letting {N(t)}t⩾0 be a
standard Poisson process with parameter m as described above and setting

ξt = N(eλHt). (119)

For the conditional Lévy exponent in this case we have

1
t
logE[expαN(eλHt) |FH] = meλH(eα− 1) = m(eα+λH− 1)−m(eλH− 1), (120)

which shows that (119) satisfies (99) and thus is indeed an information process. The conditional
probability for reduction to an eigenstate with eigenvalue E1 is

tr(Π̂1ρ̂t) =
p1 eλE1ξt−m(eλE1−1)t

p1 eλE1ξt−m(eλE1−1)t+ p2 eλE2ξt−m(eλE2−1)t

=
p1

p1 + p2 eλ(E2−E1)ξt−meλE1 (eλ(E2−E1)−1)t
. (121)

Therefore,

tr(Π̂1ρ̂t)
∣∣∣
H=E1

=
p1

p1 + p2 eλ(E2−E1)ξt|H=E1−meλE1 (eλ(E2−E1)−1)t
. (122)

However, ξt|H=E1 is a standard Poisson process with rate meλE1 , so an exponential martingale
appears in the expression above, from which we get (111) and hence reduction.

Gamma noise

Physicists are familiar with Brownian motion and the Poisson process, both of which appear
frequently in the literature. The gamma process is a newer idea, dating from the 1950s, exhibit-
ing interesting features with which physicists are perhaps less familiar. Most important among
these is the phenomenon of infinite activity. By a gamma process with rate m and scale φ we
mean a Lévy process {γt}t⩾0 with Lévy exponent

ψ(α) =−m log(1−φα), (123)
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where α < φ−1. The probability density for γt is that of the gamma distribution, given by

P(γt ∈ dx) =
φ−mtxmt−1e−x/φ

Γ[mt]
dx (124)

for x> 0, and zero otherwise, where Γ[a] is the gamma function. A calculation using the iden-
tityΓ[a+ 1] = aΓ[a] then shows thatE [γt] = mφ t and Var [γt] = mφ2t.Note that the mean and
variance determine the rate and scale. If φ= 1 then {γt} is called a standard gamma process
with ratem. If φ 6= 1 we say that {γt} is a scaled gamma process. The Lévy measure associated
with {γt}t⩾0 is given by

ν(dz) = m
1
z
exp(−φz)dz (125)

for z> 0, and zero otherwise. It follows that ν(R) =∞ and hence that the gamma process has
infinite activity. Thus, the jumps are all positive and the number of jumps in any finite interval
of time is infinite.

Let {γt} be a standard gamma process with rate m and let the parameter κ ∈ R be such that
κ< 1. Then the process {Mκ

t } defined by

Mκ
t = (1−κ)mt eκγt (126)

is a martingale and by Cantelli’s inequality we have

P((1−κ)mt eκγt > ϵ)⩽ mt
mt+κ−2 [ logϵ+m(− log(1−κ)−κ) t ]2

. (127)

One can check that− log(1−κ)−κ > 0 for all κ< 1. This follows from the basic logarithmic
inequality logx⩽ x− 1 for all x⩾ 0with equality at x= 1. Hence for any κ< 1 the exponential
gamma martingale (126) converges to zero in probability as t grows large.

If we let {Mκ
t } act as a change of measure density for the transformation P0 → Pκ, then

{γt} is a scaled gamma process under Pκ, with rate m and scale 1/(1−κ). Thus, the effect of
an Esscher transformation on a gamma process is to alter its scale.

Now let {γt} be a standard gamma process with rate m and let the independent random
variable X satisfy X< 1 almost surely. Then the process {ξt} defined by

ξt =
1

1−X
γt (128)

is a Lévy information process with signal X and gamma noise. Thus {ξt} is conditionally a
scaled gamma process. Then as a consequence of (123) and (128) we have

1
t
lnEP [exp(αξt)|F X

]
=

1
t
lnEP

[
exp

(
αγt
1−X

)∣∣∣∣F X

]
= log

(
1− α

1−X

)−m

. (129)

Next, we observe that

−m ln

(
1− α

1−X

)
=−m ln(1− (X+α)) + m ln(1−X). (130)

It follows that the conditional exponent of {ξt} takes the form ψ(α+X)−ψ(X), which shows
that {ξt} is an information process.

We proceed to look at the conditional probability for reduction to an energy eigenstate with
energy E1 in the context of a gamma information model. In this case the parameter λ is chosen
to satisfy max(λE1,λE2)< 1 and we have
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tr(Π̂1ρ̂t) =
p1 eλE1ξt(1−λE1)

mt

p1 eλE1ξt(1−λE1)mt+ p2 eλE2ξt(1−λE2)mt

=
p1

p1 + p2 eλ(E2−E1)ξt(1−λE2)mt(1−λE1)−mt
, (131)

and therefore

tr(Π̂1ρ̂t)
∣∣∣
H=E1

=
p1

p1 + p2 eλ(E2−E1)ξt |H=E1(1−λE2)mt(1−λE1)−mt

=
p1

p1 + p2 eλ(E2−E1)(1−λE1)−1γt(1−λE2)mt(1−λE1)−mt
. (132)

However, (
1− λ(E2 −E1)

1−λE1

)mt

= (1−λE2)
mt(1−λE1)

−mt, (133)

and therefore the second term in the denominator on the right side of (132) is an exponential
gamma martingale, which converges to zero in probability for large t. Thus we have (111).
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