
On Compressing Collections of Substring Samples
Golnaz Badkobeh1, Sara Giuliani2,*, Zsuzsanna Lipták2 and Simon J. Puglisi3

1Goldsmiths, University of London, UK
2University of Verona, Italy
4University of Helsinki, Finland

Abstract
Given a string 𝑋 = 𝑋[1..𝑛] of length 𝑛, and integers 𝑚 and 𝑑, such that 𝑛 > 𝑚 ≥ 2𝑑 > 0, we consider
the problem of compressing the string𝑆 formed by concatenating the substrings of𝑋 of length𝑚 starting
at positions 𝑖 ≡ 1 (mod 𝑑). In particular, we provide an upper bound of (2𝑛−𝑚)/𝑑+2𝑧+ (𝑚− 𝑑) on
the size of the Lempel-Ziv (LZ77) parsing of 𝑆, where 𝑧 is the size of the parsing of 𝑋 . We also show that
a related bound holds regardless of the order in which the substrings are concatenated in the formation
of 𝑆. If 𝑋 is viewed as a genome sequence, the above substring sampling process corresponds to an
idealized model of short read DNA sequencing.

Keywords
Lempel-Ziv, LZ77, data compression, strings, repetitiveness, combinatorics on words, parsing, short
reads

1. Introduction

We consider the problem of compressing a set of substrings sampled from a string. In particular,
given a string 𝑋 of length 𝑛 and two integer parameters 𝑑 and 𝑚, 𝑚 ≥ 2𝑑, we call a sample of
𝑋 a substring of 𝑋 of length 𝑚 starting at any position 1 + 𝑖 · 𝑑 in 𝑋 , where 𝑖 ≥ 0. We refer
to the samples as 𝑆𝑖 = 𝑋[(𝑖− 1) · 𝑑+ 1..(𝑖− 1) · 𝑑+𝑚], for 𝑖 ≥ 1, and to the concatenation
as 𝑆 = 𝑆1𝑆2 · · ·𝑆𝑟 , where 𝑟 = ⌊(𝑛−𝑚)/𝑑⌋+ 1. Note that if 𝑛−𝑚

𝑑 is not an integer, then the
final few characters of 𝑋 will not be part of any sample.

If 𝑋 is viewed as a genome sequence, the above substring sampling process corresponds to
an idealized model of short read DNA sequencing. In the language of genome sequencing, 𝑚 is
the read length and 𝑚/𝑑 is the so-called coverage (the number of samples that cover a given
position in 𝑋 , on average). Our assumption that 𝑚 ≥ 2𝑑 corresponds to a coverage of at least
2, which is the relevant case for DNA sequencing. 𝑆 represents a file of short read sequences
— the typical output of a sequencing experiment. Our sampling process idealizes short read
sequencing in at least two ways. Firstly, short read sequencing may produce strings of slightly
different length and may introduce errors — insertions, deletions, and substitutions of letters —
to the sampled strings, albeit with fairly low probability for present-day short read technology

23rd Italian Conference on Theoretical Computer Science (ICTCS 2022)
*Corresponding author.
$ g.badkobeh@gold.ac.uk (G. Badkobeh); sara.giuliani_01@univr.it (S. Giuliani); zsuzsanna.liptak@univr.it
(Zs. Lipták); simon.puglisi@helsinki.fi (Simon J. Puglisi)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:g.badkobeh@gold.ac.uk
mailto:sara.giuliani_01@univr.it
mailto:zsuzsanna.liptak@univr.it
mailto:simon.puglisi@helsinki.fi
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

(𝑝 < 0.01 for Illumina short reads, for example). Secondly, in short read sequencing, coverage
is not completely uniform, fluctuating across the genome for a variety of reasons (see, e.g. [1]).

The extraordinarily wide adoption of high-throughput sequencing in medical and evolution-
ary biology over the last decade has made short read data sets abundant. These data sets are also
very large. For example, a typical human sequencing experiment might run at 20x coverage on
a underlying genome of size 𝑛 = 3 · 109 nucleotides. The resulting read set in FASTQ format (a
standard file format, which stores one ASCII-encoded short read sequence per line—akin to our
𝑆 string) is then 60 gigabytes in size. The de facto standard in most labs (and large institutions
such as, e.g., the NCBI) is to compress such files with the gzip all-purpose file compressor, which
usually leads to a factor four reduction in size1, or 15GB in our human sequencing example. A
gzip’d large read set is thus, alas, still relatively large.

With the rapid growth in, and the need to store, short read data sets, specialized compressors
that exploit properties inherent to such data sets will become paramount. Several read set
specific compressors have now been developed (see, e.g., [2, 3, 4, 5]). None are yet in wide
use. However, to our knowledge, no careful analysis of the compressibility of short read data
sets—even in an idealized setting such as that described above—has been undertaken. This
article addresses that need. In particular, we derive a non-trivial upper bound on the size of the
LZ parsing [6, 7] of 𝑆, the concatenation of sampled substrings, in terms of 𝑛, 𝑚, 𝑑 and the size
of the LZ parsing of 𝑋 . We also show a different upper bound that holds regardless of the order
in which the samples are concatenated to form 𝑆.

In the next section we set notation and basic concepts and results used throughout. In
Sections 3 and 4 we establish the above mentioned bounds, and in Section 5 we gauge the
tightness of these bounds experimentally. We then sketch several directions for future work.

2. Preliminaries

Throughout we consider a string 𝑋 = 𝑋[1..𝑛] = 𝑋[1]𝑋[2] . . . 𝑋[𝑛] of |𝑋| = 𝑛 symbols
drawn from an ordered alphabet Σ of size |Σ| = 𝜎. For 𝑖 = 1, . . . , 𝑛, we write 𝑋[𝑖..𝑛] to denote
the suffix of 𝑋 of length 𝑛 − 𝑖 + 1, that is, 𝑋[𝑖..𝑛] = 𝑋[𝑖]𝑋[𝑖 + 1] . . . 𝑋[𝑛]. We will often
refer to suffix 𝑋[𝑖..𝑛] simply as “suffix 𝑖” or the “𝑖th suffix”. We write 𝑋[1..𝑖] = 𝑋[1] . . . 𝑋[𝑖]
to denote the prefix of 𝑋 of length 𝑖. We write 𝑋[𝑖..𝑗] to represent the substring (or factor)
𝑋[𝑖]𝑋[𝑖 + 1] . . . 𝑋[𝑗] of 𝑋 that starts at position 𝑖 and ends at position 𝑗. If 𝑖 > 𝑗, then
𝑋[𝑖..𝑗] = 𝜖, where 𝜖 is the empty string. Let lcp(𝑖, 𝑗) denote the length of the longest common
prefix of suffix 𝑖 and suffix 𝑗.

For example, in the string 𝑋 = zzzzzipzip, lcp(2, 5) = 1 = |z|, and lcp(5, 8) = 3 = |zip|. For
technical reasons we define lcp(𝑖, 0) = lcp(0, 𝑖) = 0 for all 𝑖.

Definition 1 (LZ Factorization). The LZ factorization of 𝑋 is a factorization 𝑋 = 𝑓1𝑓2 . . . 𝑓𝑧𝑋
of 𝑋 into 𝑧𝑋 phrases such that each phrase 𝑓𝑖 (a substring of 𝑋) is either

1. a letter that does not occur in 𝑓1 · · · 𝑓𝑖−1, or
1This can be loosely interpreted as gzip, a sliding-window dictionary compressor with window size too small to
capture any large dispersed repeated substrings present in the file, essentially reducing the space used by each
DNA letter from the 8 bits used in the plain ASCII encoding to the 2 bits that a flat minimal binary code for four
letters would use.

2. the longest substring that occurs at least twice in 𝑓1 · · · 𝑓𝑖.

Thus, the LZ factorization of our example string 𝑋 = zzzzzipzip produces the following
𝑧𝑋 = 5 factors, 𝑓1 = z, 𝑓2 = zzzz, 𝑓3 = i, 𝑓4 = p, 𝑓5 = zip.

We denote with ℓ𝑖 = |𝑓𝑖| the length of phrase 𝑓𝑖, and with 𝑠𝑖 the starting position of phrase
𝑓𝑖 in 𝑋 , i.e., 𝑠𝑖 = 1+

∑︀
𝑗<𝑖 ℓ𝑗 . Finally, we denote with 𝑝𝑖 the position of the first occurrence of

substring 𝑓𝑖 in 𝑋 and we call substring 𝑋[𝑝𝑖..𝑝𝑖 + ℓ𝑖 − 1] the source of 𝑓𝑖. Note that phrases
and sources are allowed to overlap, as is the case with 𝑓2 in our example.

The following is a known upper bound on the number of phrases in the parsing.

Theorem 1 ([8], Theorem 5.20). Let 𝑋 be a string of length 𝑛 over Σ, with |Σ| = 𝜎. Then
𝑧𝑋 ≤ 𝑍 , where

𝑍 =
𝑛− (𝜎/(𝜎 − 1))

log𝜎 𝑛− log𝜎 log𝜎 𝑛− (1/(𝜎 − 1))
.

We will return to the above bound later in the paper, but for now we note that it is asymp-
totically tight. In particular, an appropriate prefix of the de Bruijn sequence contains at least
𝑛/⌈log𝜎 𝑛⌉ LZ phrases [8].

We close this section with another well-known property of the LZ parsing we make use of in
the proof of our main theorem.

Fact 1. Let 𝑇 be a string, and 1 < 𝑖 ≤ 𝑗 ≤ |𝑇 |. If 𝑡 = 𝑇 [𝑖..𝑗] has an occurrence before 𝑖, i.e., if
there exists an 𝑖′ < 𝑖 s.t. 𝑇 [𝑖′..𝑖′ + |𝑡| − 1] = 𝑡, then the interval [𝑖, 𝑗] can contain at most one
starting position of a phrase.

3. Upper Bound on the Number of LZ Phrases of the
Concatenation of Samples

In this section, we show an upper bound on the number of LZ phrases of string 𝑆 formed by
concatenating samples from string 𝑋 .

Formally, given a string 𝑋 of length 𝑛 and two integer parameters 𝑚, 𝑑, such that 𝑚 ≥ 2𝑑,
let 𝑆 = 𝑆1𝑆2 · · ·𝑆𝑟, where 𝑟 = ⌊(𝑛 − 𝑚)/𝑑⌋ + 1, and, for 𝑖 ∈ [1..𝑟], 𝑆𝑖 = 𝑋[(𝑖 − 1) · 𝑑 +
1..(𝑖− 1) · 𝑑+𝑚].

Let us write, for 𝑖 ≥ 1, 𝑆𝑖 = 𝑣𝑖𝑥𝑖, where |𝑣𝑖| = 𝑚− 𝑑 and |𝑥𝑖| = 𝑑. Then 𝑋 and 𝑆 can be
written as follows, where |𝑢| < 𝑑:

𝑋 = 𝑣1𝑥1𝑥2 · · ·𝑥𝑟𝑢, (1)

𝑆 = 𝑣1𝑥1𝑣2𝑥2𝑣3𝑥3 · · · 𝑣𝑟𝑥𝑟. (2)

We will now count the number of phrases 𝑧𝑆 of the LZ parsing of string 𝑆. Note that this is
equivalent to counting the number of starting positions of phrases.

Lemma 1. Let 𝑏𝑖 and 𝑒𝑖 denote the beginning resp. ending position of the 𝑣𝑖’s in the factorization
of 𝑆 given in (2). Then, for 𝑖 > 1, the interval [𝑏𝑖, 𝑒𝑖] can contain at most one starting position of a
phrase.

Proof. Since two consecutive samples 𝑆𝑖 and 𝑆𝑖+1 overlap by 𝑚− 𝑑 characters, it follows that,
for all 𝑖 > 1, 𝑆𝑖 = 𝑦𝑖𝑣𝑖+1, where 𝑦𝑖 is the 𝑑-length prefix of 𝑆𝑖. Therefore, 𝑆 contains the square
𝑣𝑖𝑣𝑖 for every 𝑖 > 1, and 𝑏𝑖 is the start of the second occurrence of 𝑣𝑖 in this square. By Fact 1,
therefore, [𝑏𝑖, 𝑒𝑖] can contain at most one starting position.

Next we will count the number of starting positions in the 𝑥𝑖’s. For this, we consider phrases
𝑓 of the LZ parsing of 𝑋 , and count how many starting positions these induce in 𝑆 in the worst
case. We first need the definition of the projection of a substring of 𝑋 on 𝑆 (see also Figure 1).

Definition 2. Let 1 ≤ 𝑏 ≤ 𝑒 ≤ 𝑛. We define the projection of substring 𝑋[𝑏, 𝑒] on 𝑆 as a
collection of substrings in 𝑆 as follows: For 𝑥𝜄, let 𝑏𝜄 and 𝑒𝜄 denote the starting resp. ending positions
of 𝑥𝜄 in 𝑆 w.r.t. the factorization given in (1). Then

𝑃𝑟𝑜𝑗𝑆([𝑏, 𝑒]) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(
⋃︀𝑗

𝜄=𝑖[𝜄𝑚− 𝑑, 𝜄𝑚]) ∪ [(𝑖− 2) · (𝑚− 𝑑) + 𝑏, (𝑖− 1)𝑚]∪
[𝑚𝑗 +𝑚− 𝑑+ 1, 𝑗(𝑚− 𝑑) + 𝑒] if 𝑚− 𝑑 < 𝑏

[𝑏, 𝑒] if 𝑏, 𝑒 ≤ 𝑚− 𝑑

[𝑏,𝑚− 𝑑] ∪ 𝑃𝑟𝑜𝑗𝑆 [𝑚− 𝑑+ 1, 𝑒] if 𝑏 ≤ 𝑚− 𝑑 < 𝑒.

Informally, a projection in 𝑆 of a substring 𝑈 of 𝑋 is the collections of substrings of 𝑆
coinciding with regions of 𝑈 , namely substrings of 𝑆 which 𝑈 consists of, w.r.t. the factorization
given in (1). The first case (see Fig. 1) gives the general situation, when 𝑈 starts after the prefix
𝑣1 of 𝑋 , which is covered only by the first sample 𝑆1. The second case is when 𝑈 lies fully
within 𝑣1, while the third case is when 𝑈 starts within 𝑣1 and ends after it.

𝑋 = 𝑣1 𝑥1 𝑥𝑖−1 𝑥𝑖 𝑥𝜄. . . 𝑥𝑗 𝑥𝑗+1. . . 𝑥𝑟. . .

𝑆 =

. . .

𝑋[𝑏, 𝑒] =

𝑃𝑟𝑜𝑗𝑆([𝑏, 𝑒]) =

𝑣𝑖−1 𝑥𝑖𝑥𝑖−1 𝑣𝜄 𝑥𝜄 𝑣𝑗 𝑥𝑗 𝑣𝑗+1 𝑥𝑗+1𝑣𝑖

Figure 1: The projection of the substring 𝑋[𝑏, 𝑒] on the string 𝑆 is shown. The number of substrings of
𝑋 contained in the collection of substrings produced by the projection is the number of 𝑥𝑖’s intersected
by 𝑋[𝑏, 𝑒] in 𝑋 , and they are all contained in the corresponding 𝑥𝑖’s in 𝑆.

Definition 3. Let 𝑓 be a phrase of the LZ parsing of 𝑋 , with starting position 𝑠 and length ℓ.
Define 𝑔(𝑓) as the number of starting positions in 𝑃𝑟𝑜𝑗𝑆([𝑠, 𝑠+ ℓ− 1]).

Lemma 2. Let 𝑚 ≥ 2𝑑. Let 𝑓 be a phrase of the LZ factorization of 𝑋 , with starting position
𝑠 > 𝑚− 𝑑. Then 𝑔(𝑓) ≤ |𝑓 |

𝑑 + 2.

Proof. Let ℓ = |𝑓 |, 𝑘 = ⌈ ℓ
𝑑⌉ and 𝑓 = 𝑋[𝑠..𝑠+ ℓ− 1] = 𝑥′𝑥𝑖𝑥𝑖+1 · · ·𝑥𝑗𝑥′′, where 𝑥′ and 𝑥′′ are

a proper suffix of 𝑥𝑖−1 respectively a proper prefix of 𝑥𝑗+1, both possibly empty. We will show
that each of these substrings is charged with at most one phrase starting position. From Fact 1,
the claim follows.

By construction of 𝑆, each of the substrings 𝑥′, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑗 , 𝑥
′′ will appear contiguously

in 𝑆. The number of these substrings is either 𝑘 or 𝑘 + 1. Additionally, a 𝑣 substring separates
the projections in 𝑆 of each pair of contiguous aforementioned substrings of 𝑋 .

Consider now the source 𝑓 ′ of 𝑓 occurring in𝑋 in some position 𝑠′ < 𝑠. Then𝑋[𝑠..𝑠+ℓ−1] =
𝑋[𝑠′..𝑠′+ℓ−1] = 𝑢′𝑥𝑖′𝑥𝑖′+1 · · ·𝑥𝑗′𝑢′′, where 𝑢′ and 𝑢′′ are a proper suffix of 𝑥𝑖′−1 respectively
a proper prefix of 𝑥𝑗′+1, both possibly empty. As for 𝑓 , the projection of 𝑓 ′ is also split in 𝑆 in
such a way that the projection of each pair of mentioned substrings of 𝑓 ′ is separated by a 𝑣
substring in 𝑆.

Notice that, since 𝑚 ≥ 2𝑑, each 𝑥𝑏 in 𝑋 has an occurrence in 𝑆 also as suffix of 𝑣𝑏′+1,
occurring immediately after 𝑥𝑏+1 in 𝑆. This means that, even if the projections of 𝑓 and 𝑓 ′ in 𝑆
will be split asynchronously, each of the substrings 𝑥′, 𝑥𝑖, 𝑥𝑖+1, · · · , 𝑥𝑗 , 𝑥′′ in the projection of
𝑓 has already occurred as the concatenation of a suffix of some 𝑣𝑏′ intersecting the projection
of 𝑓 ′ and the contiguous 𝑥𝑏′+1.

There are at most 𝑘 + 1 factors 𝑥′, 𝑥𝑖, 𝑥𝑖+1, . . . , 𝑥𝑗 , 𝑥
′′, and each of them has a previous

occurrence in 𝑆. Therefore, by Fact 1, there will be at most 𝑘 + 1 phrase starting positions for
𝑓 . See Fig. 2 for an illustration.

𝑋 = 𝑣1 𝑥1

𝑓 ′ = 𝑋[𝑏, 𝑒]

𝑥𝑗−1 𝑥𝑗 𝑥𝑗+1𝑥𝑗+2. . .

𝑓

𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2. . . 𝑥𝑟 𝑢. . .

𝑆 = 𝑣1 𝑥1 𝑥𝑗−1

𝑃𝑟𝑜𝑗𝑆([𝑏, 𝑒])

. . . 𝑣𝑗 𝑥𝑗 𝑣𝑗+1 𝑥𝑗+1 𝑣𝑗+2 𝑥𝑗+2 . . .
𝑥𝑗−1

|𝑆𝑗 | ≥ 2|𝑥𝑗 |

Figure 2: The original string 𝑋 on top, and the concatenation 𝑆 of the 𝑟 samples of 𝑋 below are shown.
In particular, a phrase 𝑓 and its corresponding source 𝑓 ′ in 𝑋 are represented with distinct colors for
each of the 𝑥𝑖 segments of 𝑋 intersected by the phrase. Finally, the projection 𝑃𝑟𝑜𝑗𝑆(𝑓

′) of the source
is shown. It is clear from the figure that, in 𝑆′, the samples intersecting some string in the projection of
𝑓 ′ fully contain at least one substring of the projection of 𝑓 .

Lemma 3. With respect to the factorization of 𝑆 given in (2), the number of phrase starting
positions in 𝑥𝑖’s is at most 𝑛

𝑑 + 2𝑧𝑋 .

Proof. The sum of the lengths of all phrases 𝑓1, . . . , 𝑓𝑧𝑋 in the LZ factorization of 𝑋 is the
length 𝑛 of the string 𝑋 . Therefore, we can bound the total contribution to 𝑧𝑆 of 𝑋 as follows:

𝑧𝑋∑︁
𝑗=1

𝑔(𝑓𝑗) ≤
𝑧𝑋∑︁
𝑗=1

(
|𝑓𝑗 |
𝑑

+ 2) =
𝑛

𝑑
+ 2𝑧𝑋 .

Theorem 2. Let 𝑧𝑋 be the number of phrases of the LZ parsing of 𝑋 , and 𝑧𝑆 the number of
phrases of the LZ parsing of 𝑆. Then 𝑧𝑆 ≤ 2𝑛−𝑚

𝑑 + 2𝑧𝑋 +𝑚− 𝑑.

Proof. We show the maximum number of phrase starting positions in 𝑆 summing up the
contribution of the (𝑚− 𝑑)-length prefix of 𝑆, and of the remaining 𝑥𝑖’s (Lemma 3) and 𝑣𝑖’s
(Lemma 1) substrings.

𝑧𝑆 = number of starting positions in 𝑣1 + number of starting positions in 𝑥𝑖’s

+ number of starting positions in 𝑣𝑖’s, for 𝑖 ≥ 2

≤ (𝑚− 𝑑) +
𝑛

𝑑
+ 2𝑧𝑋 +

𝑛−𝑚

𝑑
=

2𝑛−𝑚

𝑑
+ 2𝑧𝑋 +𝑚− 𝑑.

Theorem 2 essentially says that the number of LZ phrases of 𝑆 is at most twice the number
of samples plus twice the number of LZ phrases of 𝑋 . Note that the important parameter which
determines the number of samples is 𝑑, while 𝑚 influences only the number of samples in
which a given position occurs (i.e. 𝑚/𝑑 is the so-called coverage).

4. Upper Bound for Arbitrary Concatenation Order

This section examines the effect that the ordering of the samples in the concatenation has on
the number of phrases.

As before, we are given a string 𝑋 of length 𝑛 and two integer parameters 𝑚 and 𝑑, such that
𝑚 ≥ 2𝑑. Let 𝑟 = ⌊(𝑛−𝑚)/𝑑⌋+ 1, and, for 𝑖 ∈ [1..𝑟], 𝑆𝑖 = 𝑋[(𝑖− 1) · 𝑑+ 1..(𝑖− 1) · 𝑑+𝑚].

We will show that, regardless of the order in which the samples 𝑆𝑖 of 𝑋 are concatenated,
the number of phrases in the LZ factorization of that concatenation is at most 𝑛+ 2(𝑛−𝑚)

𝑑 . We
make this argument precise below.

Theorem 3. Let 𝑆′ be the concatenation of the samples of 𝑋 in any order, then the number of
phrases is 𝑧𝑆′ ≤ 𝑛+ 2(𝑛−𝑚)

𝑑 .

Proof. Fix 𝑖. We will show that the number of phrase starting positions in sample 𝑆𝑖 where it
appears in 𝑆′ is at most 2 + |𝑢𝑖|, where 𝑢𝑖 is a specific substring of 𝑆𝑖. Let 𝑘 = max{𝑖′ < 𝑖 |
𝑆𝑖′ appears before 𝑆𝑖 in 𝑆′}, and let 𝑤𝑖 be the longest suffix of 𝑆𝑘 which is also a prefix of 𝑆𝑖

(i.e., 𝑤𝑖 is the maximum overlap). Note that 𝑤𝑖 may be empty. Similarly, let 𝑘′ = min{𝑖′ > 𝑖 |
𝑆𝑖′ appears before 𝑆𝑖 in 𝑆′}, and let 𝑤′

𝑖 be the longest prefix of 𝑆𝑘′ which is also a suffix of 𝑆𝑖,
again possibly empty. If |𝑤𝑖|+ |𝑤′

𝑖| ≥ 𝑚 = |𝑆𝑖|, then set 𝑢𝑖 = 𝜖. Otherwise, 𝑆𝑖 can be written
as 𝑆𝑖 = 𝑤𝑖𝑢𝑖𝑤

′
𝑖, for some 𝑢𝑖.

This 𝑢𝑖 is a substring of 𝑋 that has not so far been covered by any sample in 𝑆′, and this is
because of the definition of 𝑘 and 𝑘′. We call 𝑢𝑖 the new part of 𝑆𝑖; in particular, if 𝑢𝑖 = 𝜖, then
the new part of 𝑆𝑖 is empty.

By Fact 1, if 𝑤𝑖 is non-empty, then at most one phrase starting position is contained within
𝑤𝑖. Similarly, if 𝑤′

𝑖 is non-empty, at most one starting position is contained within 𝑤′
𝑖. The

number of starting positions within the new part 𝑢𝑖 can be trivially upper bounded by |𝑢𝑖|.

𝑋 = 𝑥𝑖−𝑡 𝑥𝑘 𝑥𝑖 𝑥𝑘′ 𝑥𝑖+𝑡

𝑆𝑖 =

𝑆𝑖−𝑡 =

𝑆𝑖+𝑡 =

...

...

...

...

𝑆𝑘 =

𝑆𝑘′ =

...

𝑆′ =

𝑆𝑘 ′ 𝑆𝑘 𝑆𝑖

𝑢𝑖

Figure 3: The contribution of the samples of 𝑋 to 𝑧𝑆′ , where 𝑆′ is the concatenation of the samples in
an arbitrary order. The colored substrings are the prefixes and suffixes with multiple occurrences in 𝑆′

of some sample. Each sample consists of a prefix and a suffix (possibly empty) that has already occurred
in 𝑆′, and a substring in between them (i.e., labelled 𝑢𝑖, in white) that is not assumed to necessarily
occur previously in 𝑆′.

Summing over all samples 𝑆𝑖, we thus get

𝑧𝑆′ ≤
𝑟∑︁

𝑖=1

(2 + |𝑢𝑖|) = 2𝑟 +

𝑟∑︁
𝑖=1

|𝑢𝑖| = 2𝑟 + 𝑛,

with the last equality using the fact that every position of 𝑋 occurs exactly once in some 𝑢𝑖.

Theorem 3 essentially says that the number of LZ phrases of 𝑆′, i.e. of the concatenation of
the samples in an arbitrary order, is at most the length of 𝑋 plus twice the number of samples.

5. Experimental Results

In order to gauge the tightness of our bounds, we computed the number of phrases in the
conventional LZ factorization (defined in Section 2) of the concatenation of the samples taken
from each of the texts in Table 1. We did this for a range of 𝑑 and𝑚 parameters, and concatenated
the samples both in string order and after a random shuffling.

5.1. Data

Our test data, which contains files of varying repetitiveness is shown in Table 1.
By nature, viruses contain very little recurrent genetic heritage, and so a viral genome

represents a real-world non-repetitive string. We used a genome of SARS-CoV2 taken from
the COVID-19 Data Portal [9] of length 29 836, that is factorized in 4 373 LZ phrases. We also
performed experiments on extreme cases between which real-life genomes lie: Fibonacci words
and random words.

Data Description 𝑛 𝑧 𝑛/𝑧

SARS-CoV2 Taken from the COVID-19 Data Portal [9] 29 835 4373 6.8

50 SARS-CoV2
Concatenation of 50 virus genomes

taken from the COVID-19 Data Portal
[9] 1 490 134 5421 275

Fibonacci word Fibonacci word of order 22 28 657 22 1302.6

Random
Word over an alphabet of size 4 built with

python function random.choices()
29 835 4575 6.5

Table 1
Data used in the experiments. The table shows the length (𝑛) and the number of phrases (𝑧) of each
text used for the experiments.

Let 𝑠0 = b, 𝑠1 = a, the Fibonacci word of order 𝑖+ 1 is the binary word 𝑠𝑖+1 = 𝑠𝑖𝑠𝑖−1. In
other words, the Fibonacci word of order 𝑖+ 1 is the concatenation of the Fibonacci words of
the two previous orders.

By construction, Fibonacci words have a very high degree of repetition, resulting in very few
phrases with respect to their length. Random words, on the other hand, could be considered,
instead, not repetitive at all. To perform a comparison with the virus genome, we chose a
random word of the same length of the genome, and the Fibonacci word of length 28 657, the
closest to the length of the genome. The strings are factorized in 4 575 respectively 22 phrases.

We also performed experiments with larger data. In particular, we counted the number of
phrases of the concatenation of 50 SARS-CoV2 genomes, which, due to the high similarity of
the individual genomes, constitutes a highly repetitive dataset.

5.2. Experiments

We are interested in simulating the coverage provided by the most used technologies in genome
sequencing. The coverage is given by the number of samples that cover a given position in the
text. In the context of genome sequencing, a reasonable coverage is given by large 𝑚 and small
𝑑, in order to have the coverage as large as possible with reasonable sample lengths.

We perform the experiments on each of the aforementioned texts with 𝑑 =
1, 2, 4, 8, 16, 32, 64, and 𝑚 from 50 to 1 000, in increments of 10. We counted the number
of phrases for 𝑚 > 𝑑.

Figure 4, on top, displays the number of phrases for concatenations of samples in string
order of a Fibonacci word (top-left corner), and of a random string of a similar length (top-right
corner). Below, we show the counts for an arbitrary ordered concatenation of the samples
of the same data. In all figures, the number of phrases for some selected 𝑚’s are shown in
distinct colours, in gray for all other 𝑚’s. The corresponding coloured line shows our bounds
for each 𝑚 and 𝑑 pair. Finally, the colored rounded points show the existing bound given by
Kärkkäinen [8], see Theorem 1.

The analogous comparison is shown in Figure 5 between a single SARS-CoV2 genome and
the concatenation of 50 genomes.

The overlapping of the bound lines in all plots reflects the small impact of the sampling length
𝑚 in the bound for fixed 𝑑.

When the samples are concatenated in string order (on the top of both Figure 4 and 5), the
number of phrases in the original string has a big influence on the bound. We can see that the
bound lines in the Fibonacci word’s plot are closer to the actual counts than in the other plots,
where the number of phrases of the original strings is higher. On the other hand, because of the
different nature of the bound for the samples in string order versus random order, we can see
that the latter bound has a similar trend for the three strings of similar length. In this case, the
length and the number of samples of the original string determine the bound rather than its
number of phrases.

Comparing the bound given in this paper (lines) to the one reported in Theorem [8] by
Kärkkäinen (rounded points), when repetitive strings are considered, our bound is not worse
than the existing one for the string order concatenation, while it gets more loose with the
concatenation in arbitrary order. See the plots for Fibonacci words and the concatenation of 50
genomes of SARS-CoV-2. On the other hand, for non repetitive strings, namely random strings
and the single viral genome in the plots, the existing bound is often better than ours.

Data 𝑑 = 1 𝑑 = 2 𝑑 = 4 𝑑 = 8 𝑑 = 16 𝑑 = 32 𝑑 = 64
Fibonacci
max 𝑚 1000 980 990 970 960 960 940
phrases 1336 1321 1308 1021 1007 910 603
bound 57 357 29 189 15 111 8049 4510.1 2733.1 1800.8

Fibonacci
shuffled

max 𝑚 1000 990 990 990 630 970 980
phrases 25 164 13 179 6802 3505 1802 942 521
bound 83 971 56 324 42 490.5 35 573.75 32 160.4 30 387.4 29 521.906 25

SARS-CoV2
max 𝑚 80 150 50 70 50 90 210
phrases 44 438 27 823 14 880 8945 6759 5575 4973
bound 68 417 38 655 23 697.5 16 258.25 12 506.38 10 665.93 9821.09

SARS-CoV2
shuffled

max 𝑚 200 260 350 540 780 680 760
phrases 45 725 27 898 17 538 11 620 7969 6142 5238
bound 89 108 59 412 44 574 37 185 33 468 31 658.25 30 744.63

Table 2
A summary of relevant results for the Fibonacci word and the single SARS-CoV2 genome. For each
sampling frequency 𝑑, we report the value of 𝑚 for which the maximum number of phrases in the
concatenation of the samples is produced in both string order and after the random shuffling. We
further show the counts and the value of our bound for the mentioned 𝑚.

In Table 2 we show, for fixed 𝑑, the maximum number of phrases in 𝑆, varying 𝑚. For
strings 𝑋 that are already very repetitive (Fibonacci word), the longer the string, the higher the
number of phrases. On the other hand, for strings that are not that repetitive (single SARS-CoV2
genome), introducing long repetitions may decrease the number of phrase starting positions
in contrast to having a shorter string with very short repetitions. The concatenation of 50

SARS-CoV2 genomes lies in the middle.

(a) Fibonacci word of length 28 657 (b) Random word of length 29 835

Figure 4: The number of phrases in log scale for concatenation of samples of a Fibonacci word (left
column) and a random word (right column), both in string order (on top) and in an arbitrary chosen
order (on bottom). The counts are shown for each concatenation of 𝑚-length samples at every 𝑑
position. Colored markers indicate the number of phrases for 𝑚 = 50, 100, 200, 400, 1000, while we
use grey points to mark all others 𝑚’s. The bounds shown in Theorem 2 and 3 for the concatenation
in string order respectively random order are shown with colored and shaped lines accordingly to the
corresponding 𝑚, 𝑑 pair, while the coloured rounded points indicate the bound given by Kärkkäinen [8],
see Theorem 1.

6. Concluding Remarks

This paper has explored the compressibility of collections of substrings sampled from a string.
In particular, given a string 𝑋 = 𝑋[1..𝑛] of length 𝑛 with an LZ parsing size of 𝑧𝑋 , and integers
𝑚 and 𝑑, such that 𝑛 > 𝑚 ≥ 2𝑑 > 0, we have shown that the size of the LZ parsing of the string

(a) SARS-CoV2 genome of
length 29 835

(b) Concatenation of 50 SARS-CoV2 genome, of total
length 1 490 134

Figure 5: The number of phrases in log scale for concatenation of samples of a single SARS-CoV2 genome
(left column) and of a concatenation of 50 SARS-CoV2 genomes (right column), both in string order
(on top) and in any arbitrary chosen order (on bottom). The counts are shown for each concatenation
of 𝑚-length samples at every 𝑑 position. Colored markers indicate the number of phrases for 𝑚 =
50, 100, 200, 400, 1000, while we use grey points to mark all others 𝑚’s. The bounds shown in Theorem 2
and 3 for the concatenation in string order respectively random order are shown with colored and
shaped lines accordingly to the corresponding 𝑚, 𝑑 pair, while the coloured rounded points indicate the
bound given by Kärkkäinen [8], see Theorem 1.

𝑆 formed by concatenating the substrings of 𝑋 of length 𝑚 starting at positions 𝑖 ≡ 1 (mod 𝑑),
is bounded by (2𝑛−𝑚)/𝑑+2𝑧+(𝑚−𝑑). We also proved a bound for the case of any arbitrary
chosen order of the samples in the concatenation.

There are several avenues future work could take. The most immediate perhaps is the question
of whether the bounds given in Theorem 2 and Theorem 3 can be improved. Another direction
is to derive bounds for other compression measures, such as the size of the smallest context-free

grammar for 𝑆 [10], the number of runs in its Burrows-Wheeler transform [11], the size of
its smallest string attractor [12], or other measures of compressibility discussed in Navarro’s
recent survey [13].

Along the lines of our original motivation from DNA sequencing, how are the bounds affected
by the introduction of some probability of error to the sample substrings, such as those errors
introduced in collections of strings produced by short-read sequencing technologies?

Finally, note that we have assumed 𝑑 ≤ 𝑚/2, which corresponds to the interesting case in
practice. However, it may be interesting from a theoretical perspective to also examine the case
where 𝑑 > 𝑚/2.

References

[1] R. Ekblom, L. Smeds, H. Ellegren, Patterns of sequencing coverage bias revealed by
ultra-deep sequencing of vertebrate mitochondria, BMC Genomics 15 (2014) 467.

[2] S. Al Yami, C.-H. Huang, LFastqC: A lossless non-reference-based FASTQ compressor,
PLoS One 14 (2019) e0224806.

[3] S. Chandak, K. Tatwawadi, I. Ochoa, M. Hernaez, T. Weissman, SPRING: a next-generation
compressor for FASTQ data, Bioinformatics 35 (2019) 2674–2676.

[4] S. Deorowicz, FQSqueezer: k-mer-based compression of sequencing data, Scientific
Reports 10 (2020) 1–9.

[5] C. Hoobin, T. Kind, C. Boucher, S. J. Puglisi, Fast and efficient compression of high-
throughput sequencing reads, in: Proceedings of the 6th ACM Conference on Bioinfor-
matics, Computational Biology and Health Informatics, 2015, pp. 325–334.

[6] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Trans. Inf. Theory 22 (1976)
75–81.

[7] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, IEEE Trans. Inf.
Theory 23 (1977) 337–343.

[8] J. Kärkkäinen, Repetition-Based Text Indexes, Ph.D. thesis, University of Helsinki, Faculty
of Science, Department of Computer Science, 1999.

[9] P. W. Harrison, R. Lopez, N. Rahman, S. G. Allen, R. Aslam, N. Buso, C. Cummins, Y. Fathy,
E. Felix, et al., The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19
research through rapid open access data sharing, Nucleic Acids Research 49 (2021) W619–
W623.

[10] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat, The
smallest grammar problem, IEEE Trans. Inf. Theory 51 (2005) 2554–2576.

[11] G. Manzini, An analysis of the Burrows-Wheeler transform, J. ACM 48 (2001) 407–430.
[12] D. Kempa, N. Prezza, At the roots of dictionary compression: string attractors, in: Proc.

50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), ACM, 2018, pp.
827–840.

[13] G. Navarro, Indexing highly repetitive string collections, part I: repetitiveness measures,
ACM Comput. Surv. 54 (2021) 29:1–29:31.

	1 Introduction
	2 Preliminaries
	3 Upper Bound on the Number of LZ Phrases of the Concatenation of Samples
	4 Upper Bound for Arbitrary Concatenation Order
	5 Experimental Results
	5.1 Data
	5.2 Experiments

	6 Concluding Remarks

