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NERO: a biomedical named-entity (recognition) ontology with
a large, annotated corpus reveals meaningful associations
through text embedding
Kanix Wang 1,2, Robert Stevens3, Halima Alachram4, Yu Li 5, Larisa Soldatova 6, Ross King7,8,9, Sophia Ananiadou3,10,
Annika M. Schoene3,10, Maolin Li 3,10, Fenia Christopoulou3,10, José Luis Ambite 11, Joel Matthew11, Sahil Garg11, Ulf Hermjakob11,
Daniel Marcu11, Emily Sheng11, Tim Beißbarth4, Edgar Wingender12, Aram Galstyan11, Xin Gao 5, Brendan Chambers13, Weidi Pan14,
Bohdan B. Khomtchouk 2,15✉, James A. Evans 13✉ and Andrey Rzhetsky 1,2,15,16✉

Machine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over
the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-
annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction
systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six
components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO)
developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging
the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts
annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for
curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438
events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f)
embedding models that demonstrate the promise of biomedical associations embedded within this corpus.
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INTRODUCTION
Even the relatively specialized subfields of present-day biology
and medicine are facing a deluge of accumulating research
articles, patents, and white papers. It is increasingly difficult to stay
up-to-date with contemporary biomedicine without the use of
sophisticated machine reading (MR) tools. MR tool development,
in turn, has been limited by the availability of biomedical corpora
carefully annotated by experts. This is especially true with respect
to information extraction, such as named entity recognition (NER)
and relation or event extraction. Although several corpora have
been developed for specialized biomedical subdomains, the need
for a corpus that can bridge biological, general scientific,
environmental, and clinical scientific sublanguages is greater than
ever before.
Unfortunately, the annotation of natural science texts is more

challenging than in other domains. Biomedical language is replete
with ambiguity distinct from that observed in news articles or
informal text online. When a word or phrase’s semantic meaning is
clearly separated (the east bank of the Danube versus Deutsche
Bank), we can implement automated sense disambiguation using
machine learning tools. In biomedical texts, however, alternative

meanings are not always clearly separated. The problem is not
that a phrase can refer to several distinct, real-world entities in
different contexts, but that scientists writing articles typically do
not separate competing, close meanings. For example, in some
biomedical contexts, the words for a named entity may refer to a
gene or a protein with nearly equal probability; for example, “a
mutant hemoglobin α2” can refer to either a gene or a protein. If
the author meant gene-or-protein A, and we force an annotator to
choose either interpretation gene A or protein A, the resulting
annotation is of limited utility because the choice between gene
and protein is random if the meanings are equally likely based on
context. Ideally, a specialized ontology of text entities would allow
an annotator to choose the proper level of annotation granularity
(the words represent a gene-or-protein, in this example), minimiz-
ing the need for forced, random decisions. To the best of our
knowledge, there is no biomedical ontology that meets the
requirements for capturing semantic ambiguity. We aimed to fill
this gap by developing a specialized, variable-level meaning
resolution ontology, a carefully curated corpus, along with corpus
annotation tools, and a collection of text embedding analyses to
evaluate our annotated corpus.
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RESULTS
Our new ontology, called NERO, short for Named Entity
Recognition Ontology, attempts to minimize unwarranted, arbi-
trary annotative semantic label assignments for textual entities,
see Fig. 1. NERO represents textual entities, and more specifically
named entities recognized by text mining tools. NERO is designed
as an extension of the IAO (Information Artifact Ontology: http://
www.obofoundry.org/ontology/iao.html), one of the widely used
OBO ontologies for representing information. The IAO class
InformationContentEntity is employed as the top-level class in
NERO. It has two subclasses: TextualEntity defined by IAO and the
class AnnotationInText to capture information about annotations.
The branch TextualEntity in IAO includes various parts of text (e.g.,
Document title, Abstract, and Table), but it does not include
entities that are of concern to text mining processes, e.g.
NamedEntity. NERO enables representations required by text
mining and formally defines such classes as NamedEntity, Name-
dEntityGroup, Relationship, and Pronoun as subclasses of the IAO
class TextualEntity.
NERO defines ambiguous concepts, such as GeneOrProtein,

which subsumes both Gene and Protein using the following axiom:
EquivalentTo: “Gene”or “Protein.” There are no biological entities
that are either a gene or a protein, but there are lexical entities
that can correspond to either or both of these entities. NERO uses
this pattern to express appropriate ambiguity regarding textual

entities, preserving uncertainty from the text. In this way, NERO
classes represent textual instances and not the actual biological
entities to which these instances refer. Often, it is possible to link
recognized in the text lexical entities to corresponding biological
entities, e.g., through a relationship “is about”.
For example, in some cases the considered previously textual

entity “a mutant hemoglobin α2” can be identified as a protein
and linked to the corresponding biological entity defined, e.g., by
UniProtKB with URI: U6A3P2. However, as previously discussed
sometimes that is not possible. The role of NERO is to provide a
logically sound and computationally processable representation of
such ambiguous cases.
Striving to make the ontology practically useful, we designed

guidelines for annotators making decisions in annotating text
entities, available in the Supplementary Data. Furthermore, by
recruiting a team of postdoctoral-level and industry experts, we
annotated a large biomedical corpus to enable a broad range of
natural language processing and biomedical machine learning tasks.
Our annotations span 35,865 unique sentences, 8650 of which were
annotated by multiple annotators with a remarkably high inter-
annotator agreement (see Supplementary Table 1). In our annotated
corpus, we aimed to encompass all entity types that might occur in
biomedical literature. In addition to named entities, our ontology
captures Events that represent relationships between biomedical
concepts. The frequencies of all diverse entity types in our corpus
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Fig. 1 Named Entity Recognition Ontology (NERO). The Ontology is shown here as a multifurcating tree, with taxonomy nodes
corresponding to ontology classes. Class name and class mentions count in the corpus are shown in parentheses next to each named entity
class. Each taxonomy class is provided with a unique pictogram (black and red shapes on yellow background) intended to simplify expert
manual annotation of the corpora. In total, we annotated 35,865 sentences. These sentences encapsulated 190,679 named entities and 43,438
events connecting two or more entities. In addition to the almost two dozen, more sparsely-used branches (such as ExperimentalFactor and
GeographicalLocation) under the NamedEntity cluster, there are three heavily-represented branches in our corpus: AnatomicalPart, Chemical, and
Process. Slightly more than half (51.6%) of all entities are from these three classes, with 26.6% of all entities originating from Process alone. We
designed our ontology and its annotations to capture the named entities associated with research activities and facilities; these types of
entities can be important for encoding methods used in scientific experiments or patient treatment. The semantic classes ResearchActivity and
MedicalProcedures turn out to be the ninth and the tenth most frequent, respectively. Other top concepts related to the research include
Measurement, IntellectualProducts, PublishedSourceofInformation, Facility, and MentalProcess.
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are shown in Fig. 2A, B shows the frequencies of relations
represented in the taxonomy. The most frequent text entity type
is GeneOrProtein, which accounts for 14.7% of all named entities in
the corpus (see Fig. 2A). The second most populous textual entity
category is Process, with nine percent tagged. Process has six sub-

concepts and almost half of Process instances (49.7%) are annotated
as more specific sub-concepts; the BiologicalProcess and the
MolecularProcess are the fifth and seventh most frequent text entity
types (see Fig. 2). Entity type frequencies follow a heavy-tail
distribution, with the least frequent types being Journal, Unit, and
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Fig. 2 The relative abundance of annotated named entity classes in our corpus. As is typically the case with human languages, semantic
classes are represented unevenly in free texts, following a heavy-tail (Zipf ’s) distribution. a In biomedical corpora, unsurprisingly, named
entities associated with genes and proteins are the most prevalent (15%), followed by processes (9%), medical findings (8.8%), and chemicals
(6.7%). At the low-frequency end of the named entity spectrum, we find journal names, units, citations, and languages. b Events connecting two
or more entities are also approximately Zipf-law distributed. Event frequencies are closely tracking corresponding named entity classes. For
example, the most frequent event, bind, is associated with the most frequently named entity, GeneOrProtein. We tried fitting the rank-ordered
frequency distribution of annotated named entities with a Discrete Generalized Beta Distribution (DGBD). The result showed a significant
deviation from Zipf ’s law33: The observed distribution’s tail was not heavy enough to match Zipf ’s distribution, most likely due to the relatively
small number of classes in our ontology34. In other words, we expect that frequencies of semantic classes in a very large corpus, annotated
with classes from a hypothetical perfect named entity ontology, would follow a Zipfian (discrete Pareto) distribution of named entity classes.
Our action annotations have moved beyond interactions between proteins and genes (e.g., bind, inhibit, phosphorylate, encode), into
interactions involving genetic variants and environmental factors (e.g., associated with, occur in presence of, trigger, lack). Ambiguity levels varied
broadly across the named entities captured in our corpus. For example, in the class AnatomicalPart, almost all (99.3%) are annotated at the
most specific levels, with the majority of entities belonging to BodyPart, CellularComponent, and Cell. In contrast, the general (most vague)
concept, Chemical, turns out to be the most annotated within its cluster, although more specific subclasses, such as Protein, NucleicAcid, and
Drug are also well represented in the corpus. In the Process concept cluster, about a third of all concept instances are annotated at a more
general Process level, and the rest of them are specific concepts, such as MedicalProcedure, MolecularProcess, ResearchActivity, and
BiologicalProcess. In addition to these major clusters of concepts, several individual concepts are well represented in the corpus. For example,
MedicalFinding represents 7.3% of all entities. Other well-represented concepts include Duration, IntellectualProduct, Measurement, Organism,
PersonGroup, PublishedSourceOfInformation, and Quantity. In total, about 70.4% of all entities are annotated at the most specific ontology level.
There are five concepts in the NERO ontology that allow the semantic flexibility needed to avoid arbitrary concept assignment. Entities
annotated as AminaoAcidOrPeptide, QuantityOrMeasurement, PublicationOrCitation, MedicalProcedureOrDevice, and GeneOrProtein account for
17.8% of all entities, while less than a quarter (23%) of entities representing either genes or proteins are cleanly annotated with class Gene or
class Protein. The remainder are annotated with class GeneOrProtein. In addition to the action bind, actions indicating entities’ attributes are the
next most frequent. Other biological relationships are also well-represented in this annotation, such as inhibit, activate, mediate, interact,
contain, and regulate. The top 30 action categories account for 64.4% of all actions annotated with the top ten action categories accounting for
52.2%. Interestingly, negations of actions were also quite abundant in our annotated corpus. For example, do not bind was the sixth most
frequent normalized action. Other well-represented negations of actions include do not affect and do not inhibit (see Supplementary Figs. 1–3).
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Citation (see Fig. 2). In addition to 190,679 named entities, we
annotated 43,438 action terms, events connecting two or more
entities. The most annotated action term is bind, accounting for
28.4% of all actions, see Supplementary Fig. 1. When we normalize
the action terms and combine actions such as bind, binds, and
binding, the normalized action bind accounts for 31.8% of all actions,
as shown in Supplementary Fig. 1. We deployed a package called
NERO-nlp for researchers interested in diving deeper into our
annotated corpus; the installation guides and scripts are available
online at https://pypi.org/project/NERO-nlp and https://github.com/
Bohdan-Khomtchouk/NERO-nlp respectively.
Below, we present two practical applications of our ontology

and text annotations: (1) Machine learning experiments, which
automatically identify named entities, and; (2) Word embedding
experiments, which leverage the automated discovery of semantic
relationships among real-world concepts referenced by a text’s
named entities.

Machine learning experiments
Using NERsuite5, we conducted a tenfold cross-validation, dividing
the corpus into training and test subsets. The classification results
are presented in Supplemental Tables 1 and 2. The overall
automated NER performance is moderate, with 54.9% precision,
37.3% recall, and a 43.4% F1 score. The best performance class,
GeneOrProtein, had baseline results of 67.0% precision, 65.3%
recall, and a 66.2% F1 score. In addition to the default baseline
implementation of NERsuite, we added additional features in the
training process to improve its performance6. These are dictionary
features derived from lookups in technical term dictionaries. The
classifier with dictionary features manifests 54.7% precision, 37.9%
recall, and a 43.8% F1 score. We observed a scant 0.35% increase in
F1 score from adding dictionary features. We then implemented
an ensemble method called stacking, where we trained a higher-
level model to learn how to best combine contributions from each
base model. The base model, in this case, is the baseline model
from NERsuite. Stacking yielded a 0.27% increase in F1 score
compared to baseline results. While ensemble methods are
commonly used to boost model accuracy by combining the
predictions of multiple machine learning models, choices of
second-level and base models can influence the amount of
improvement in model accuracy. The overall performance
statistics are shown in Supplementary Table 2. As our corpus is
made public with this study’s publication, we hope that other
researchers will use this training data to achieve core MR task
performance that surpasses our initial experiments.
To examine how NERsuite performs in comparison to other

popular open-source NER tools, we trained a custom NER model
on our annotated corpus using spaCy7. We evaluated the trained
model on the test subset, which consists of a random 10% sample
from the corpus. Overall automated NER performance is low, with
30.9% precision, 8.6% recall, and a 13.4% F1 score. The best
performance class, GeneOrProtein, had results of 45.1% precision,
36.4% recall, and a 40.3% F1 score. These statistics indicate a much
poorer performance of spaCy compared to that of NERsuite.
To help explain the huge difference in performance between

NERsuite and spaCy, we considered the set of input features used
by each tool for insight. NERsuite’s baseline implementation uses
an extra set of input features including the lemma, POS-feature,
and chunk-feature, whereas our custom spaCy NER model only
relies on character offsets and entity labels. There is potential for
further customizing spaCy’s processing pipelines by adding more
components such as tagger and parser7, but no established
approaches in this regard have been made available partly
because spaCy’s model architecture is different from those of
other popular NER tools. We also observed that some entity
classes, such as Gene and Protein, have zero values for precisions,
recalls, and F1 scores, which likely translate to no correct

classifications made for those entities. The zero values occur
partly due to the relatively smaller number of tokens for those
entity classes in the training set, and as a result, the trained NER
model generalized poorly on the minority class entities in the test
subset.
Due to spaCy’s computational demands, we did not conduct

tenfold cross-validation. NERsuite provides a well-integrated
pipelined system where training a new model consists of a few
lines of code. In addition, NERsuite has a demonstrated record5 on
two biomedical tasks, the BioCreative2 gene mention recognition
task and the NLPBA 2004 NER task. Therefore, one could argue
that it offers an advantage over spaCy for NLP tasks in specialized
domains such as biomedicine.
We further applied another package, called scispaCy8, that

contains spaCy models for processing biomedical, scientific, or
clinical text. SciSpaCy acts as an extension to spaCy and provides a
set of practical tools for text processing in the biomedical
domain8. In particular, scispaCy includes a set of spaCy NER
models trained on popular biomedical corpora, which covers
entity types such as chemicals, diseases, cell types, proteins, and
genes. As an extension to spaCy, it also has the flexibility for users
to train a custom NER model from scratch or update the existing
NER models with users’ own training data. Since our NER ontology
adopts a more diverse and detailed annotation methodology for
named entity types, it will be challenging to update scispaCy’s
pretrained named entity recognizer with our annotated corpora.
Note that NERsuite was implemented in C++ and consists of

three modularized programs: a tokenizer, a tagger, and a named
entity recognizer9,10. The algorithm used behind the named entity
recognizer is conditional random fields (CRF), which is often
applied in tasks such as NER, part-of-speech tagging, and gene
prediction. The NER model in spaCy features a sophisticated word
embedding strategy using subword features and “Bloom”
embeddings, a deep convolutional neural network with residual
connections, and a novel transition-based approach to named
entity parsing11–13. The Spark NLP library is inspired by a former
state-of-the-art model for NER, which adopts a novel neural
network architecture that automatically detects word- and
character-level features using a hybrid bidirectional LSTM and
CNN architecture, eliminating the need for most feature
engineering14.
Next, we built a NER model with BERT in the Spark NLP library,

which is inspired by a former state-of-the-art model for NER: Chiu
& Nicols, NER with Bidirectional LSTM-CNN. The paper presents a
novel neural network architecture that automatically detects
word- and character-level features using a hybrid bidirectional
LSTM and CNN architecture, eliminating the need for most feature
engineering. The overall automated NER performance is low, with
28.2% precision, 8.4% recall, and a 12.9% F1 score. The best
performance class, GeneOrProtein, had results of 32.3% precision,
27.2% recall, and a 29.5% F1 score. We observed 8 out of 13 entity
classes have zero values for precision, recalls, and F1 scores. The
zero values occur partly due to the relatively smaller number of
tokens for those entity classes in the training set, and as a result,
the trained NER model generalized poorly on the minority class
entities in the test subset. Another reason for the large proportion
of zeros in our results might be that Spark NLP requires a stricter
input data format, that is, conll 2003. Therefore, further data
normalization and cleaning can potentially improve upon our
current results.
Finally, we compared our work against a nested NER neural

learning model as proposed by Ju et al. (2018)15. Similar to our
previous experiments, we divide the corpus into training and test
data, where a full description of the results can be found in
Supplementary Tables 1–3. We chose to use the nested NER for
comparison, because of its ability to capture fine-grained semantic
information in text by stacking NER layers. This enables the
learning model to extract entities in an inside-out way using all the
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encoded information available15. Overall, the learning model
achieves a 53.527% precision, 54.29% recall, and 53.906% F1 score,
improving upon previous results using the NERsuite by 10%. The
best performing class is Gene or Protein achieving 65.64%
precision, 75.992% recall, and 70.439% F1 score.

Word embedding experiments
Semantic associations, automatically extracted from text using
neural network embedding operations, can function as a kind of
“digital double” of real-world phenomena embedded in the text,
facilitating inferences that were previously imagined only possible
from the original experimental data. For example, word embed-
dings built from chemical and materials science texts predict
much of the subsequent decades’material discoveries8, just as the
corpus of molecules can recover the periodic table9, and texts are
able to recover the subtle, psychological, and sociological biases
of cultures that produced them16,17. We used word embedding
models to evaluate the biomedical veracity of NERO and its text
annotation. Embedding models like Google’s word2vec18,19 initially
received substantial attention based on their capacity to solve
analogy problems and automatically capture deep semantic
relationships among concepts. Building on these capacities16,20,21,
we proposed a general method for constructing meaningful
dimensions by taking the arithmetic mean of word vectors
representing antonyms along a dimension and using them to
diagnose their meanings. This approach has been widely
validated11,21–24, and we employed it here to construct and

compare the meanings embedded in NERO and our annotated
corpus with ground truth data about drugs and diseases. In order
to evaluate word embeddings based on NERO, we identified two
disease properties —(1) severity and (2) gender specificity—and
likewise two therapeutic drug properties —(1) toxicity and (2)
expense—not directly present in the text, but highly relevant to
diagnosis and treatment, and on which text-independent ground
truth data exists.
We embedded named entities associated with diseases and

drugs into a high-dimensional space in which every NERO term
was assigned a 300-dimensional vector, (see Fig. 3 for a three-
dimensional projection of this embedding), along with a selection
of diseases and medications used to treat them. For all embedding
experiments, we used a word2vec18,19 implementation provided
by the package gensim25. The corpus that we used included (1)
English Wikipedia download; (2) A collection of articles from 15
Elsevier journals licensed to the University of Chicago; and (3) A
collection of Reuters newswire articles purchased from the
provider. The corpus was represented as a shuffled set of
sentences stored in an Oracle Berkeley DB, allowing dynamic
reordering of sentences, followed by feeding one sentence at a
time into a word2vec bag of words model. For incorporating
disease-specific vocabulary we used the dis2vec biomedical
wrapper for gensim12. The parameters used for analysis included
an embedding dimension (300, but we also tried 100 and 500 with
results essentially unchanged), a sentence window size of ten
words, and training run off 20 epochs.

Fig. 3 Projection of text embedding into three-dimensional space. Properties of diseases and drugs are visible in the first three principal
components of our multi-dimensional text embedding. The figure shows a projection of text embedding into three-dimensional space, with
named entities corresponding to diseases and drugs shown with prisms and spheres, respectively. The figure represents several projections of
the same embedding, preserving spatial layout and projection, with distinct elements of the embedding indicated by shape color. The central
image shows all disease systems and their corresponding medications together. More specifically, the additional projections show:
a Zollinger–Ellison syndrome and associated medications; b cancers and associated therapies; c central nervous system diseases and
corresponding medications; d, e Viral and bacterial infectious diseases, respectively, together with corresponding antiviral and antibiotic
agents, and f 3-dimensional projection of embedding drug- and disease-related named entities corresponding to CNS/Psychiatric- (red),
digestive- (yellow), infectious/immune- (green), neoplastic- (cyan), and other diseases (grey). Another view of the same dataset is presented in
Fig. 4.
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We then compared drug and disease projections into the
embedding dimensions for severity, gender, toxicity, and expense
with ground truth about these qualities. We constructed the
severe-mild axis with the following contrasting term pairs:
(harmful, beneficial), (serious, benign), (life-altering, common),
(disruptive, undisruptive), (dying, recovering), (dangerous, safe),
(threatening, low-priority), (high mortality, harmless), (costly,
cheap), (hospitalized, self-administered), (hospital, work), (debt,
savings), (low quality of life, undisruptive), and (hazard, routine).
Then we compared disease projection in this dimension with
World Health Organization data on the burden of living with each
of those diseases (DALYs13) and found a correlation of 0.329 (p=
0.0614, n= 33). We then constructed a gender dimension with
similarly contrasting pairs: (male, female), (prostate, ovary), (penile,
uterine), (penis, uterus), (man, woman), (men, women), (masculine,
feminine), (he, she), (him, her), (his, hers), (boy, girl), and (boys,
girls). We compared the disease projection in this gender
dimension with the prevalence of those diseases for men and
women from a substantial sample of doctor–patient insurance
records capturing ~47% of all of US doctor–patient visits between
2003 and 2011 and found a correlation of 0.436 (p= 1.46 × 10−13,
n= 261).
We tested the robustness of our 300-dimensional embedding

by comparing it with 100-dimensional and 500-dimensional
embeddings obtained using the same corpus and comparing
distances between the same pair of named entities (disease or
drug) in embeddings of different dimensionality. The results
appear to be very stable with respect to dimensionality of the
embedding: distances between named entities were highly
correlated at ρ= 0.89 for 100- and 300-dimensional embeddings
comparison, and at ρ= 0.95 for 500- to 300-dimensional embed-
ding comparison (see Fig. 4 in the Supplementary Data).
Next, we projected medication-related NERs onto a toxicity axis

composed from the following antonym pairs: (harmful, beneficial),
(toxic, nontoxic), and (noxious, benign) and an expense dimension
anchored by: (expensive, inexpensive), (costly, cheap), (brand,
generic), and (patented, off-patent). The embedding-derived drug

projections onto the toxic-harmless dimension correlates at 0.32
(p= 1.1 × 10−4) with the corresponding drug-specific median
lethal dose (dose required to kill 50% of model animals as
documented in the LD50 database26). Finally, the correlation of
drug projections into an expense dimension and the actual price
of each drug as listed in the IBM MarketScan database27 was 0.42
(p= 1.5 × 10−15) (see Fig. 4). When a disease projects low in the
male–female dimension, it is much more likely to afflict women
than men, such as ornithosis and related infectious diseases. When
a disease projects high in the serious–benign dimension like
leprosy, it is likely to incur substantial suffering. Medications
projecting with negative (toxic) values in the toxic–nontoxic
dimension, as the name suggests, tend to be associated with more
severe side effects. For example, the drug Riluzole, a treatment for
amyotrophic lateral sclerosis, has side effects ranging from
unusual bleeding to nausea and vomiting. Drug projections high
in the expensive–inexpensive dimension forecast a stiff medical bill,
as in the case of Simvastatin, which is used to reduce the risk of
heart attack and stroke, and which, before it went off-patent, used
to cost hundreds of dollars per bottle. The robustness of these
results suggests that scientific corpora can be used for the
automated generation of robust hypotheses meriting follow-up
empirical study.

DISCUSSION
This study’s main limitation is that, even though our NERO
ontology aimed to cover all entities contained in the biomedical
research literature, we did not cover all levels of granularity in
classifying entities. Moreover, while the major concepts are well-
annotated, several concept types were not well-represented
because of the heavy-tail distribution of ontological class
frequencies. In addition, we note that satisfactory results of NER
rely heavily on a large quantity of hand-annotated data, which is
often costly in terms of time and resources spent. Therefore, the
adoption of semi-supervised learning methods, which

Fig. 4 Two-dimensional projections of diseases and medications. Left We projected diseases into two dimensions: female-male (X-axis) and
severe-mild (Y-axis). We defined the “male–female” axis using the following pairs of terms: (“male,” “female”), (“prostate,” “ovary”), (“penile,”
“uterine”), (“penis,’’ “uterus”), (“man,” “woman”), (“men,” “women”), (“masculine,” “feminine”), (“he,“ “she”), (“him,” “her”), (“his,” “hers”), (“boy,”
“girl”), and (“boys,” “girls”). We defined the severe-mild axis with the following term pairs: (“harmful,” “beneficial”), (“serious,” “benign”), (“life-
altering,” “common“), (“disruptive,” “undisruptive”), (“dying,’’ “recovering”), (“dangerous,” “safe”), (“threatening,” “low-priority”), (“high
mortality,” “harmless”), (“costly,” “cheap”), (“hospitalized,” “self-administered”), (“hospital,” “work”), (“debt,” “savings”), (“low quality of life,”
“undisruptive”), and (“hazard,” “routine'). Right We projected medications into “benign-toxic” (X-axis) and “cheap-costly” (Y-axis). For the
“benign-toxic” axis, we used the following pairs of antonym words: (“harmful,” “beneficial”), (“toxic,” “nontoxic”), and (“noxious,” “benign”). We
defined the “expensive–inexpensive” dimension using the following pairs of terms: (“expensive,” “inexpensive“), (“costly,” “cheap”), (“brand,”
“generic”), and (“patented,” “off-patent”).
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incorporates unlabeled data to improve learning accuracy, could
reduce the need for manual annotation28.
While there is a popular belief that pretraining on general-

domain text can be helpful for developing domain-specific
language models, a recent study has shown that for specialized
domains, such as biomedicine, pretraining on in-domain text from
scratch offers noticeable improvements in model accuracy
compared to continual pretraining of general-domain language
models29. Therefore, we trained our annotated corpus from
scratch in our machine learning experiments30.
The resources offered in our study can be applied to a wide range

of scientific problems. First, the proposed NERO ontology can
facilitate more robust and accurate large-scale text mining of
biomedical literature. As discussed above, NERO is the first
knowledge graph in this field, accounting for context-relevant levels
of ambiguity. Graph neural networks31 can leverage such prior
knowledge from human experts for learning embeddings of
biomedical entities, which is likely to preserve both semantic
meaning in the original literature and domain knowledge from
human experts. Second, researchers can combine the curated
corpus from this study with self-supervised learning32. Such a
learning scenario can utilize the unlabeled data in a supervised way
by predicting part of the sentence using the rest of the sentence.
The annotated corpus from this study can be used to fine-tune
language models, orienting them for critical biomedical tasks.

METHODS
Snippets of methods are integrated with results.

DATA AVAILABILITY
The datasets generated during and/or analyzed during the current study are available
in the Github repository at https://github.com/arzhetsky/Chicago_corpus. NERO in
OWL format is available at: https://bioportal.bioontology.org/ontologies/NERO.

CODE AVAILABILITY
We also deployed a package called NERO-nlp for researchers interested in diving deeper
into our annotated corpus; the installation guides and scripts are available online at
https://pypi.org/project/NERO-nlp and https://github.com/Bohdan-Khomtchouk/NERO-nlp,
respectively.
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