
J Stat Phys (2016) 162:1353–1364
DOI 10.1007/s10955-015-1412-9

Know the Single-Receptor Sensing Limit? Think Again

Gerardo Aquino1 · Ned S. Wingreen2 · Robert G. Endres1

Received: 9 June 2015 / Accepted: 29 October 2015 / Published online: 23 November 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract How cells reliably infer information about their environment is a fundamentally
important question. While sensing and signaling generally start with cell-surface receptors,
the degree of accuracy with which a cell can measure external ligand concentration with even
the simplest device—a single receptor—is surprisingly hard to pin down. Recent studies pro-
vide conflicting results for the fundamental physical limits. Comparison is made difficult as
different studies either suggest different readout mechanisms of the ligand-receptor occu-
pancy, or differ on how ligand diffusion is implemented. Here we critically analyse these
studies and present a unifying perspective on the limits of sensing, with wide-ranging bio-
logical implications.

Keywords Information processing · Chemosensing · Physical limits · Ligand-receptor
binding

1 Introduction

In 1977, physicists Howard Berg and Edward Purcell published their results on the funda-
mental biological problem of sensing [1]. The question they addressed was how accurately
a biological cell, viewed as a tiny measurement device, can sense its chemical environment
using cell-surface receptors. The paper is not only highly cited, but, more importantly, a large
fraction of the citations stems from the last ten years, demonstrating how far ahead of its time
the study was. In essence, the message of the paper was simple: sensing in the microscopic
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world boils down to countingmolecules, which arrive at the cell surface by diffusion. Humans
encounter a similar limit when we try to see in the near dark as our photoreceptors count sin-
gle photons [2]. Berg and Purcell’s paper has influenced many fields of quantitative biology,
including nutrient scavenging [3–5], mating [6], signal transduction [4,7], gene regulation
[8], cell division [9–11], and embryonic development [12]. While there is no disagreement
on the importance of knowing the fundamental physical limits of sensing, there has been
disagreement on what this limit is, even for a single receptor. The analysis here interprets
and unifies these studies to yield a coherent picture of the limits of sensing.

2 Overview

To introduce the topic and to build intuition, we follow Berg and Purcell [1] and begin with
simplemodels formeasuring ligand concentration c0. The first is the PerfectMonitor [1]. This
model assumes a permeable sphere of radius a, capable of counting the number of molecules
N inside its volume (Fig. 1a). For concreteness, the sphere might represent a bacterial cell.
Since the molecules diffuse independently, finding a molecule in one small volume element
is independent of finding another one in a different small volume element, and so the number
of molecules N will be Poisson distributed. Since for the Poisson distribution the variance
equals the mean, i.e. δN 2 = N̄ (omitting ensemble-averaging brackets for simplicity of
notation), we obtain for a single measurement (“snapshot”)

δc2

c20
= δN 2

N̄ 2
= 1

N̄
= 1

c0V
, (1)

where c0 is a fixed, given ligand concentration and V is the volume of the monitoring sphere.
However, ifwe assume thePerfectMonitor has some time T available tomake ameasurement,
the uncertainty in the estimate of the true ligand concentration can be further reduced. In
time T , the Perfect Monitor can make approximately M ∼ T/τD statistically independent
measurements, where τD ∼ a2/D is the diffusive turnover time for the molecules inside the
sphere. This leads to the reduced uncertainty

δc2

c20
= 1

MN̄
= 1

(T/τD)c0V
∼ 1

Dac0T
, (2)

where we neglect prefactors for this heuristic derivation. (The exact result is 3/(5πDac0T ),
which can be derived by considering autocorrelations of the molecules inside the volume
[1].)

However, the Perfect Monitor is not the best one can do. A more accurate estimate can
be made if each ligand molecule is only measured once rather than being allowed to diffuse
in and out of the sphere. Thus, we consider a perfectly absorbing sphere [5], estimating
concentration from the number of absorbed ligand molecules NT in time T , and find (Fig.
1b)

δc2

c20
= 1

NT
= 1

4πDac0T
<

3

5πDac0T
(3)

This Perfect Absorber is thus more accurate than the Perfect Monitor (and even more so for
spatial gradient sensing by almost a factor of 10) [5]. This result contrasts with Berg and
Purcell’s original suggestion that rebinding previously measured ligand molecules does not
increase the uncertainty in measurement [1]. However, one of their many key insights was
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that a sphere with many absorbing patches for ligand is nearly as good at sensing as a fully
absorbing sphere, making room for multiple receptor types with different ligand specificity
without sacrificing much accuracy.

3 Single Receptor Without Ligand Rebinding

The single receptor is the simplestmeasurement device and thus needs to be thoroughly under-
stood. Unfortunately, different approaches to estimating its sensing accuracy have resulted
in significant discrepancies. We first disregard the effects of diffusion and rebinding of pre-
viously bound ligands, and just consider ligand binding and unbinding.

Consider the receptor shown in Fig. 2a, which binds ligand with rate k+c0 when unbound
and unbinds ligand with rate k− when bound. The probability of being bound is then p =
c0/(c0 + KD) with KD = k−/k+ the ligand dissociation constant. A potential time series
of receptor occupancy �(t) during time T is illustrated in Fig. 2b. Berg and Purcell argued
that the best a cell can do to estimate the ligand concentration is to average the occupancy
�(t) over time. For such an average, the variance δ�2 was derived from the autocorrelations
of occupancy, leading to the relative uncertainty in estimating the ligand concentration

δc2

c20
=

(
c0

∂p

∂c

)−2

δ�2, (4)

Fig. 1 Simplemeasurement devices for concentration. a The perfectmonitor is permeable to ligandmolecules
and estimates the concentration c0 by counting the molecules in its volume during time T . b The perfect
absorber estimates the ligand concentration from the number of molecules incident on its surface during time
T

Fig. 2 Measuring ligand concentration with a single receptor. a A receptor binds ligand with rate k+c0 when
unbound, and unbinds ligand when bound with rate k−. b Time series of receptor occupancy during time
interval T . Berg and Purcell considered the accuracy obtained by taking the average (dashed horizontal line)
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where the derivative ∂p/∂c is the gain or amplification. Naively, one could be tempted
to set δ�2 = p(1 − p) equal to the variance of a Bernoulli random variable (binomial
trials). However, this would correspond to the uncertainty in the concentration estimate
following a single instantaneous observation of the state of the receptor, or equivalently to the
frequency integral of the noise power spectrum δ�2 = ∫

dω/(2π)S�(ω) (see Supplementary
Information for details). This snapshot limit can be improved if we assume T>>1/(k+c0) +
1/k−, i.e. that the receptor is allowed to average over a time T much larger than the correlation
time of ligand binding and unbinding. In this case, one can take the low-frequency limit
δ�2 ≈ S�(ω = 0)/T instead, and Eq. 4 leads to the Berg-Purcell limit for a single receptor

δc2

c20
= 2τb

T p
= 2

N̄
→ 1

2Dac0(1 − p)T
, (5)

where τb = 1/k− is the average duration of a bound interval. The simple formulation as
2/N̄ follows because the average number of binding and unbinding events in time T is
N̄ = T/(τb + τu), where τu = (k+c0)−1 is the average duration of an unbound interval. The
final result in Eq. 5 follows from detailed balance for diffusion-limited binding.

But is it true that averaging receptor occupancy is the best way to estimate concentration?
More recently a limit lower thanEq. 5was found by applyingmaximum-likelihood estimation
to a time series �(t) of receptor occupancy [13]. Here the probability P(�, c) of observing a
time series � is maximised with respect to the concentration c. The resulting best estimate of
the concentration comes only from the unbound intervals, since only they depend on the rate
of binding and thus on the ligand concentration. To obtain a lower limit on the uncertainty
the Cramér-Rao bound [14] can be used, leading to

δc2

c20
≥ 1

c20 I (c0)
→ 1

N
, (6)

where I (c0) = −∂2 ln(P)/∂c2 is the Fisher information evaluated at c0 and averaged over
all trajectories with the same N (when employing maximum-likelihood estimation it is eas-
ier to work with a fixed number of binding/unbinding events N than a fixed time T ). The
limit on the right-hand side of Eq. 6 is obtained for long time series for which the inequal-
ity becomes an equality. Note, however, that a slightly sharper bound 1/(N − 2) can be
obtained when using a further improved estimator (see Supplementary Information). Eq. 6
shows that the uncertainty in Eq. 5 can be reduced by a factor of two. This is because only
unbound intervals carry information about the ligand concentration. In contrast, the bound
intervals only increase the uncertainty and hence are discarded by the maximum-likelihood
procedure.

What does the maximum-likelihood result imply about tuning receptor parameters to
minimise the uncertainty?Theminimal uncertainty is obtained for Nmax, themaximal number
of binding events provided by very fast unbinding (k− → ∞). This ideal limit corresponds to
the Perfect Absorber from Eq. 3 as every binding event is counted. (However, the increased
accuracy comes at the expense of specificity as any ligand molecule dissociates immediately
and hence different ligand types cannot be differentiated.) Maximum-likelihood estimation
can also be extended to ramp sensing (temporal gradients) [15] andmultiple receptors [16,17].

Adding a downstream signaling molecule cannot increase the accuracy of sensing, in fact
this only adds noise. For example, consider an integrating receptor à la Berg and Purcell,
which signals while being ligand bound (Fig. 3a) [20]. In this simple network a downstream
signaling molecule with concentration n is phosphorylated by ligand-bound receptors with
the phosphorylated concentration given by n p with lifetime τ (beyond this time the protein
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Fig. 3 Three schemes of receptor readout. a Integrating receptor, which signals while ligand bound (left) [1].
For example, the active receptor might phosphorylate a protein with concentration n. The concentration of
the phosphorylated protein is n p (right). b Alternatively, the receptor may signal in generic bursts at onset
of ligand binding (left) [13]. This scheme can be implemented by an energy-driven cycle of L active/bound
receptor conformations, which reduces variability (right) [18]. c A receptor could also retain a memory of
previous binding and unbinding events, potentially improving its accuracy of sensing [19]

converts back to the unphosphorylated form). Now, instead of taking the snapshot limit, i.e.
the total variance δn2p , we time average to reduce the uncertainty. Specifically, let us assume
a long averaging time, that is T >> τ >> 1/(k+c0)+1/k−, allowing us to use again the low-
frequency limit of the corresponding power spectrum. We then obtain (see Supplementary
Information for details)

δc2

c20
=

[
2

N̄τ

+ 2

n̄(1 − p)2

]
τ

T
(7)

= 2

N̄︸︷︷︸
BP limit

+
[

2

n̄(1 − p)2

]
︸ ︷︷ ︸

Poisson-like

τ

T︸︷︷︸
time ave

. (8)

Eq. 8 shows that by integrating receptor output one cannot do better than the Berg-Purcell
limit, given by the first term. The second term represents additional Poisson-like noise from
number fluctuations of the signaling molecule due to imperfect averaging [21]. For T>>τ

the Berg-Purcell limit is approached from time averaging this noise. While we focus here on
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averaging in time of stationary stimuli, non-stationary ligand concentrations may be more
accurately sensed via non-uniform time averaging, requiring appropriately designed signaling
cascades [22].

There has been some confusion about whether sensing actually costs energy. On the one
hand, C. H. Bennett pointed out long ago that sensing does not need to cost if done reversibly
(and hence extremely slowly) [23]. On the other hand, cells obviously consume energy, e.g.
using ATP to phosphorylate proteins. In other words, what energy cost is actually necessary
for performing a measurement? As stressed by the authors in [20] the process of sensing in
terms of ligand-receptor binding does not need to cost energy if done using an equilibrium
receptor in the spirit of Berg and Purcell. However, to accurately infer the external ligand
concentration, the cell needs to time average, which cannot be done without consuming
energy. This is in line with the Landauer erasure principle [24], which predicts a lower
theoretical limit of energy consumption of a computation. In essence, to keep a record of the
past for averaging, old information needs to be erased and time-reversal symmetry broken
[25]. Time averaging can be implemented by phosphorylation of a downstream protein: when
the receptor is bound it phosphorylates and when unbound it dephosphorylates. Since these
are energetically driven reactions the reverse reaction, e.g. dephosphorylation by a bound
receptor is extremely unlikely, and time averaging is very efficient. The issue of the cost was
avoided in Berg and Purcell’s analysis by providing an effective averaging time T without
specifying how this averaging is achieved.

How is the maximum-likelihood result, Eq. 6, useful? The maximum-likelihood result
makes interesting predictions about sophisticated sensing strategies cells might employ. For
example, to implement maximum likelihood in the fast unbinding limit a receptor should
only signal upon a ligand-binding event as illustrate in Fig. 3b (thin arrows), rather than con-
tinuously signaling while ligand is bound (see [26] for further discussion). How can the cell
achieve such short and well-defined signaling durations? Reducing variability and achieving
determinism requires energy consumption and irreversible cycles [18]. Examplesmay include
ligand-gated ion channels [27] and single-photon responses in rhodopsin of rod cells [28].

Maximum likelihood provides another valuable insight - it shows that information from
an estimate and memory from a prior are equivalent, and both can contribute to lowering the
uncertainty (Fig. 3c). This kind of receptor “learning” frompast estimates can be implemented
using the Bayesian Cramér-Rao bound for the uncertainty. Using prior information I (λ), one
obtains [19]

δc2

c20
= − 1/c20

I (c0)︸ ︷︷ ︸
Fisher info.

+ I (λ)︸︷︷︸
prior

= 1

2N
, (9)

assuming the prior had variance 1/N , identical to the actual measurement. Importantly,
memory can even help in fluctuating environments if a filtering scheme is implemented by
the cell [19]: if the environment fluctuates weakly and/or with long temporal correlations,
memory improves precision significantly. If, on the other hand, the environment fluctuates
very strongly and/orwithout any correlations, the cell can still rely on the currentmeasurement
(and disregard memory). A form of memory is implemented by receptor methylation in
bacterial chemotaxis [29], and in principle memory could be implemented by any slow
process in the cell, e.g. the expression of LacY permease in enzyme induction in the lac
system [30], or the remodelling of the actin cortex in eukaryotic chemotaxis [31,32].
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4 Single Receptor with Ligand Rebinding

So far we have neglected the possibility of rebinding by previously bound ligands. In fact,
the role of ligand rebinding in the accuracy of sensing is a tricky issue, because rebinding
can introduce non-trivial correlations between binding events. In practice, these correlations
can only be included approximately in analytical calculations, and so the question is how to
proceed. Originally Berg and Purcell made the reasonable suggestion that a molecule that
fails to bind to a receptor may return to the receptor by diffusion and rebind, and that this
effect may be included by considering diffusion-limited binding with a renormalised receptor
size [1]. However, the question is how to formally separate ligand binding and unbinding
from ligand diffusion.

Bialek and Setayeshgar addressed this problem by coupling ligand-receptor binding and
unbinding to the diffusion equation [4]. Assuming that the averaging time is long compared
to the typical binding and unbinding time, the low-frequency limit can be used. This results
in

δc2

c20
= 2

k+c0(1 − p)T
+ 1

πDac0T
(10)

with a now the size of the receptor. Equation 10 indicates noise contributions from two
independent sources. According to Ref. [4], the first term represents binding and unbinding
noise and depends on the rate parameters, while the second depends on diffusion and was
interpreted as aBerg-Purcell-like noise floor. However, we argue for a different interpretation:
For diffusion-limited binding, the first term in Eq. 10 is not zero, but rather k+ needs to be
set to a Kramer-like expression, which is proportional to the diffusion constant [33] and
an Arrhenius factor at most equal to one [34]. Due to their dependence on the diffusion
constant, both terms can be combined [35]. Indeed, for diffusion-limited binding it is the
first, not the second term of Eq. 10 that captures the Berg-Purcell limit. Since Berg and
Purcell did not consider rebinding by diffusion, the second term constitutes increased noise
due to a rebinding correction that does not arise in Berg and Purcell’s derivation [1]. Bialek
and Setayeshgar also applied their method to multiple receptors, and showed that the second
term can introduce correlations among receptors, as ligand unbinding at one receptor can
lead to re-binding at another nearby receptor [35,36]. Hence, while multiple independent
receptors allow for spatial averaging [37], mutual rebinding among different receptors by
diffusion increases the uncertainty of sensing.

More recently, Kaizu et al. readdressed this problem [38] by applying a formalism devel-
oped by Agmon and Szabo for diffusion-influenced reactions [39]. By calculating survival
probabilities of bimolecular reactions with a number of simplifying assumptions (see below),
they obtained for the relative uncertainty of a single receptor

δc2

c20
= 2

k+c0(1 − p)T
+ 1

2πDac0(1 − p)T
. (11)

Similar to Bialek and Setayesghar, there are two noise contributions with the first terms in
Eq. 10 and 11 formally identical. The second term is, however, different. While the lost factor
2 in the second term in Eq. 11 can be traced to different definitions of the receptor geometry
(cubic in Eq. 10 and spherical in Eq. 11), the factor 1 − p in Eq. 11 is missing from Eq. 10.
Due to this factor, both terms of the uncertainty in Eq. 11 diverge if the receptor is fully bound
on average (p = 1), while in Eq. 10 only the first term diverges. Unlike Eq. 10 Kaizu et al.
made the additional assumption that during a bound interval the external ligand equilibrates.
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As a result, an unbound ligand molecule cannot diffuse away and rebind at a later time with
another ligand bound in between. However, using exact simulations they showed that such
delayed rebinding is only a minor effect under biologically relevant conditions. Hence, as
the factor 1− p in the second term of Eq. 11 also appears in the Berg-and-Purcell limit, Eq.
5, Kaizu et al. argue that their result is more accurate than Eq. 10.

However, we propose a slightly different interpretation of Eq. 11. Similar to [4] we suggest
that the second term is not the Berg-Purcell limit (Eq. 5) for diffusion-limited binding since
the first term captures the Berg-Purcell limit [38]. As described above, for diffusion-limited
binding the first term cannot be neglected. This aside, howmay the factor 1− p in the second
term be interpreted? In Kaizu et al.’s derivation, diffusionmeans that a ligandmolecule enters
the ligand pocket of a receptor without actually binding (hence the factor 1− p in the second
term since they assume only an unbound receptor can be approached by a ligand molecule).
In Bialek and Setayeshgar’s derivation, no such factor appears as the second term describes
fluctuations in ligand concentration simply in the vicinity of the receptor. Can further insight
into the effects of diffusion be obtained by yet an alternative method?

Maximum-likelihood estimation can also be applied to a receptor with ligand diffu-
sion, albeit only in a special case. The probability of observing a time series of receptor
occupancy of N binding and unbinding events can be formally written down even with dif-
fusion [13]. However, the rate of binding will depend on the current ligand concentration,
which is influenced by the history of all previous binding and unbinding events (even before
the first recorded binding event). To estimate the uncertainty, the Cramér-Rao bound can
be applied but cannot be evaluated exactly. Nevertheless, for fast diffusion or slow bind-
ing an approximate expression can be derived for both 2D and 3D (see Supplementary
Information)

δc2

c20
≈ 1

N

(
1 + 2

	c

c0

)
= 1

k+c0(1 − p1/2)T
+

⎧⎨
⎩

ln(4πD/(k+c0a2))
2πDc0(1−p1/2)T

for 2D

1
πDac0(1−p1/2)T

for 3D
. (12)

In Eq. 12 the average local “excess” ligand concentration 	c due to previous binding and
unbinding events is k+c0/(4πD) · ln[4πD/(k+caa2)] in 2D and k+c0/(2πDa) in 3D (for
the derivation half occupancy p1/2 = 1/2 is required). The ratios in the excess concentration
reflect the competition between rebinding and diffusion.As expected, in 2D this concentration
decays more slowly to zero with increasing diffusion constant than in 3D, and also the spatial
dependence on the receptor size is weaker in 2D than in 3D.

Coming back to the different receptor models with diffusion, the first term of Eq. 12
produces exactly half the uncertainty of the first terms of Bialek and Setayeshgar (Eq. 10)
and Kaizu et al. (Eq. 11) by utilizing only the unbound time intervals. However, due to factor
1 − p the second term of Eq. 12 resembles the second term of Kaizu et al. (both Eq. 11 and
Eq. 12 for 3D use a spherical receptor). This suggests that Kaizu et al. is the correct result
for the accuracy of sensing by time averaging, while Eq. 12 is the more accurate result when
using maximum-likelihood estimation.

5 Single Receptor as a Decision Maker

All the above approaches considered the accuracy based on a fixed measurement time (or
number of binding and unbinding events). However, similar to humans, cells might follow
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a different strategy and approach a problem from a decision-making perspective [40,41]:
either deciding based on existing information or waiting to accumulate more data.

Recently, Siggia andVergassola considered decisionmaking in the context of cells, propos-
ing that the above maximum-likelihood estimate can further be improved in this way [41].
The simplest implementation of a decision-making strategy is the so-called Wald algorithm
[42]. For a single receptor, the Wald algorithm requires calculating the ratio R of the likeli-
hoods of the time series of binding and unbinding events of a receptor � (data), conditioned
to either of two hypothesised values of external ligand concentration

R = P(�|c1)
P(�|c2) . (13)

The cell then concludes that the ligand concentration is c1 if R ≥ H1, that the ligand
concentration is c2 if R ≤ H2, or keeps collecting data if H1 < R < H2. H1 and H2 are
thresholds that set the probability of error, i.e. concluding the concentration is c1 if the true
concentration is c2 andvice versa. This algorithm, bynot having afixed-time constraint, canbe
shown to be optimal, i.e. the average time tomake a decision between the twooptions is shorter
than provided by any other algorithm with the same accuracy (decision-error probability).

How can decision making be compared with maximum-likelihood estimation and the
Berg-Purcell limit? Siggia and Vergassola suggested a fixed-time log-likelihood-ratio esti-
mation à la Eq. 13 based on the Neyman-Pearson lemma. Due to the fixed-time constraint
the Neyman-Pearson algorithm is in spirit similar to maximum-likelihood estimation. Siggia
and Vergassola showed that the Wald algorithm leads to a shorter decision-making time,
on average, than the Neyman-Pearson algorithm, and so suggested that the Wald algorithm
provides the ultimate limit for sensing.

The result for the Wald algorithm indeed shares properties with the maximum-likelihood
estimate and the Berg-Purcell limit. All three reveal a dependence of the measurement (deci-
sion) time on the inverse of the square of the difference of concentration (i.e.	c2). Although
no decision making is involved in maximum-likelihood estimation or the Berg-Purcell limit,
one can still conclude that concentrations c1 and c2 can be distinguished if the measurement
uncertainty is smaller than the difference δc2 < (c2 − c1)2, and that, assuming either c1 or
c2 as the true value, an incorrect decision occurs if measurement returns a value closer to the

a b

Fig. 4 Comparison of decision-making algorithms and fixed-time algorithms. aDecision-making algorithms:
Wald algorithm (solid curve) has lower uncertainty than fixed-time log-likelihood ratio estimation based on
the Neyman-Pearson (NP) lemma (dashed curve). Uncertainty is calculated by converting decision error into
variance. b Uncertainty estimates based on direct measurement of ligand concentration in a fixed amount of
time: Maximum-likelihood (ML) estimation (solid curve) based on the Cramér-Rao bound of Fisher informa-
tion has only half the uncertainty of the Berg-Purcell (BP) limit (dashed curve) for the standard error of the
mean concentration. For further details see Supplementary Information
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wrong concentration. This way a decision error can be converted into a type of measurement
uncertainty and vice versa (see Supplementary Information for details).

Fig. 4a shows the thus derived uncertainty in measuring a ligand concentration by the
Wald algorithm and the Neyman-Pearson lemma as a function of average measurement time.
For comparison the maximum-likelihood estimate and the Berg-Purcell limit are shown in
Fig. 4b. However, since the fixed-time likelihood algorithms (Neyman-Pearson lemma and
maximum-likelihood estimate) do not agree, it is difficult to directly compare Wald with the
Berg-Purcell limit. After all, Wald and Neyman-Pearson algorithms are about hypothesis
testing and discrimination, while time averaging (Berg-Purcell) and maximum likelihood are
about estimation.

What types of algorithm are cells actually implementing? Consider chemotaxis in the
bacterium Escherichia coli as a prototypical example of chemical sensing. Downstream
signaling, especially slow motor switching, could provide a time scale for Berg-Purcell-type
time averaging. In contrast, biological systemswith hysteresis, that is two different thresholds
for activation and deactivation of the downstreampathway,may implement a type of decision-
making algorithm. The classical example is the lactose utilisation system in E. coli, which
can be stimulated by the non-metabolisable ’gratuitous’ inducer TMG [30,40]. When TMG
is high enough enzymes of the lac system become induced. Once induced, however, the TMG
level must be reduced below a much lower threshold in order to uninduce the lac system.

6 Outlook

While the question of the physical limits of sensing has been around for decades, only over the
last few years has the importance of this question become clear and its predictions testable by
quantitative experiments [43,44]. While current work is mostly about chemical sensing, the
limits of sensing other stimuli, such as substrate stiffness during durotaxis (or temperature,
pH, particles, and combinations of them, etc.) may be next. For such measurements, the role
of domain size and spatial dimension are interesting questions. Measurements are often done
inside a cell, on 2D surfaces, or along 1D DNA molecules, and correlations due to rebinding
depend on these parameters [45].

The question of the limits of sensing has also opened up completely new directions,
including the role of active, energy-consuming sensing strategies [18,20,46,47], and hence
the importance of nonequilibrium-physical processes in cell biology. This then connects to the
Landauer limit of information erasure and cellular computation in general [48,49]. In this area,
important questions are linking information theory, statistical inference, and thermodynamics
e.g. in order to produce generalized second laws [50]. Additionally, analysis may move away
from only considering receptors to considering receptors and their downstream signaling
pathways, and questions of optimal resource allocation in such pathways emerge [25].

Other areas of study have started to benefit from this work as well, such as gene regulation.
For instance, why do cells often use bursty frequency modulation of gene expression under
stress and in development [51]? This may either reflect a need for accurately sensing and
monitoring chemical cues, or simply enhance robustness, e.g. similar to when information is
transmitted between neurons by action potentials. The questions whether cells sense at the
physical limit and if so, how they reach it, and how to design experiments to answer these
questions will occupy us for a while.
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