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Abstract 

The frequency assignment problem is a computationally hard problem with many ap­

plications including the mobile telephone industry and tactical communications. The 

problem may be modelled mathematically as a T-colouring problem for an undirected 

weighted graph; it is required to assign to each vertex a value from a given set such that 

for each edge the difference in absolute value between the values at the corresponding 

vertices is greater than or equal to the weight of the edge. This problem was solved using 

novel and existing metaheuristic algorithms and their relative successes were compared. 

Early work of this thesis used greedy, steepest descent and backtracking algorithms as 

a means of investigating the factors which influence the performance of an algorithm 

(selection of frequency, ordering of variables, provision of an incremental objective 

function). Later simulated annealing, tabu search and divide and conquer techniques 

were used and the results compared. A novel divide and conquer technique incorpo­

rating metaheuristics is described and results using test data based on real problems 

is presented. The divide and conquer technique (with either tabu search or simulated 

annealing) was found to improve significantly upon the corresponding metaheuristic 

when implemented alone and acting on non-trivial scenarios. The results were signifi­

cant and consistent. The divide and conquer (with simulated annealing) algorithm in 

particular was shown to be robust and efficient in its solution of the frequency assign­

ment problems presented. The results presented in this thesis consistently out-perform 

those obtained by the Defence, Evaluation and Research Agency, Malvern. In addition 

this method lends itself to parallelisation since the problem is broken into smaller in­

dependent parts. The divide and conquer algorithm does not exploit knowledge of the 

constraint network and should be applicable to a number of different problem domains. 

Algorithms capable of solving the frequency assignment problem most effectively will 

become valuable as demand for the electromagnetic spectrum continues to grow. 
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Chapter 1 

Introduction 

The frequency assignment problem is a combinatorial optimisation problem which seeks 

to assign frequencies to communication links in such a way that the interference suffered 

is minimised and demand is satisfied. 

In recent years the demand on the electromagnetic spectrum due to the wider use of 

communications has increased dramatically. However the frequency spectrum available 

is limited and this has led to extensive research into techniques that are able to use 

the available frequencies in the most economical way. Frequencies must be reused 

many times. However, some pairs of allocated frequencies must be separated by a 

predetermined amount, depending on distance between transmitters and geographical 

terrain, in order to minimise interference. Ideally we wish to obtain a solution with zero 

interference using a small set of frequencies of minimal span (the difference between 

the largest and smallest frequencies used by the assignment). However the density of 

the transmitters and restricted frequency set means that minimal interference is a more 

reasonable aim. Since the communications industry looks set to increase further in the 

future, the management of the available frequencies is becoming an increasing concern. 

A great deal of research has already been done in this field which investigates the 

effectiveness of various heuristic techniques in the solution of the frequency assignment 

problem. The primary aim of this research project was to investigate how to split the 

frequency assignment problem into subproblems for more rapid solution and to establish 

a software library of techniques based on existing and novel algorithms (comparing the 

performance of the alternative techniques). Further aims were to investigate factors 

1 



CHAPTER 1. INTRODUCTION 2 

which influenced performance, ways of dividing the problem into subproblems and the 

development of metrics for measuring the goodness of an assignment. 

In order to solve the practical problem we need to represent it as a model which 

inevitably becomes an abstraction of the problem to be solved. Some loss of information 

is acceptable since the simpler model can be solved efficiently on a computer and 

enables us to reach reasonably good solutions in a reasonable time. It is convenient 

to represent the frequency assignment problem as a graph where the nodes represent 

the communication links and the edges represent possible interference between those 

links. It can be shown that if all the constraints are of the co-channel type (frequencies 

assigned to interfering links must be different) then the problem is equivalent to the 

classical graph colouring problem. Obtaining a feasible colouring of the graph leads to 

a zero interference frequency assignment. 

Since the frequency assignment problem is a special case of the general graph colouring 

problem it is classified computationally as NP-Hard. Hence, there is no known algo­

rithm that can generate a guaranteed optimal solution in an execution time that can 

be expressed as a polynomial of the problem size. 

This study of the frequency assignment problem was initiated by the tactical communi­

cations division of the Defence Evaluation and Research Agency (D.E.R.A) in response 

to a need for techniques which would provide better solutions in less time than those 

currently available. Current algorithms, implemented in ADA and running on a VAX 

4000 workstation, were unable to produce solutions of sufficient quality in the limited 

time available. Preliminary studies, resulting in a North Atlantic Treaty Organisation 

(NATO) report by Lanfear [Lan89], indicated that further investigation into hybrid 

heuristic techniques would prove fruitful. 

The divide and conquer, simulated annealing and tabu search algorithms described in 

this thesis were tested using 46 tactical communications scenarios supplied by D.E.R.A. 

at Malvern. These scenarios were generated to represent real-life scenarios. 

The divide and conquer strategy described in this thesis subdivides the original problem 

into a number of smaller frequency assignment problems, which are solved using a 

neighbourhood search algorithm. The subproblems are significantly smaller and can be 

solved more effectively. The solutions of the subproblems are then combined to give a 

solution of the initial problem. 
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Experimental results have shown that final solutions obtained when using pre-ordered 

links are of better quality than solutions obtained using unordered links. Several meth­

ods for dividing the search space have been investigated and the outcomes compared. 

The provision of an incremental objective function has been shown to improve the final 

solution quality in a fixed amount of time. In the implementations described here a 

move from one solution to another involves the assignment of a new frequency to a 

chosen link. The method of selecting a possible frequency has been shown to affect the 

amount of spectral resources required. 

The divide and conquer algorithm was compared with classic implementations of sim­

ulated annealing and tabu search algorithms acting on the same data. Solutions were 

compared using several metrics: speed of execution, interference measures of solutions, 

span (difference between the largest and smallest frequencies used by the assignment) 

and order (number of distinct frequencies used by the assignment). 

The results showed the divide and conquer algorithm to be superior to each of the single 

metaheuristic algorithms (simulated annealing and tabu search) applied with respect 

to solution quality, use of resources and computational time when acting on non-trivial 

scenarios. Some further improvements have been suggested to capitalise on the results 

presented. 

The D.E.R.A. data sets have been solved by the divide and conquer algorithm and have 

obtained solutions far superior to those obtained using existing methods. 

The use of problem-specific knowledge has been shown to improve significantly the final 

solution quality and execution time of algorithms used to solve the frequency assignment 

problem [THL95]. The divide and conquer technique uses information about the co-site 

constraints when dividing the problem into subproblems. 

Some of the divide and conquer results from earlier work presented in this thesis have 

been published in 'Artificial Neural Nets and Genetic Algorithms', Springer Computer 

Science [PS9S], a summary of results from chapter 10 can be found in [Whi9S]. 

The divide and conquer technique has been shown to obtain superior solutions when 

compared with classic implementations of TS and SA, and when compared with results 

obtained by the program currently in use at D.E.R.A. The results have shown the 

divide and conquer technique to be effective and robust for the D.E.R.A. data. Since 

it does not exploit any problem-specific knowledge it should prove to be robust enough 



CHAPTER 1. INTRODUCTION 4 

to deal with a variety of different test data sets. In addition the divide and conquer 

technique lends itself to parallelisation. 

It is hoped that this research may be useful for operation researchers, computer scien­

tists and practitioners investigating into heuristic solution methods for the frequency 

assignment problem since it has given an insight into a new technique that works well 

for the FAP as well as factors that may influence their performance. This research is 

also informative for those interested in heuristic techniques in general. Knowledge of 

how well these techniques can perform is encouraging and provides some valuable ideas 

and information. 

1.1 Thesis Outline 

The second chapter begins by establishing why the frequency assignment problem 

(FAP) is important at the current time. The problem is then defined and its prac­

tical applications outlined. The third section discusses the various types of interference 

which can occur and how the interference is defined in terms of constraints for the 

FAP. In the fourth section the mathematical model of the problem is given. Section 

five describes the objective function used in the main investigation discussed in this 

thesis, and also outlines other functions from the literature. Finally the computational 

complexity of the FAP is shown to be NP-Hard. 

The third chapter outlines the recent developments in the field of metaheuristics with 

particular attention being paid to techniques used to solve the frequency assignment 

problem (FAP). An earlier report [Lan89] covered this research area up to 1989 and this 

chapter aims to bring the study up to date. Variations of the FAP, are also mentioned. 

The research objectives for this thesis are given in the context of recently published 

work. Finally, the research contributions are given. 

In chapter four the algorithms used in the investigations described in this thesis are 

given in their general form. The term combinatorial optimisation is explained: this 

is followed by a description of exact techniques which guarantee that a globally op­

timal solution will be found. The need for heuristic techniques is then discussed and 

metaheuristics are briefly introduced. General heuristic algorithms are then described 

along with the relevant terminology, before a more detailed discussion on several meta-
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heuristic techniques is given. Simulated annealing and tabu search are described and 

definitions of the terms used when discussing these algorithms are given. Finally the 

divide and conquer technique is described. 

The fifth chapter explores the influence of three factors on the performance of a back­

tracking and a greedy algorithm (frequency selection, vertex ordering, provision of an 

incremental objective function). A summary of results is given. 

In the sixth chapter the test data are described. Three different formats of test data 

were used in this research: EUCLID, MATRIX and TNET. The EUCLID data set is 

a small example problem, the MATRIX data set describes 3 moderate-size problems, 

and finally, the TNET scenarios represent real-life problems. There are 46 TNET 

scenarios. The EUCLID and MATRIX data sets were used only during preliminary 

experimentation as described in Chapter 5. The TNET data were used for the heuristic 

algorithm investigation. 

In the seventh chapter some benchmark results are established for the simulated anneal­

ing and tabu search heuristics. Common decisions regarding problem representation 

are discussed followed by descriptions of the simulated annealing and tabu search al­

gorithms as implemented for the F AP. Computational results are given and discussed 

before concluding remarks and suggestions for further work. 

In the eighth chapter the divide and conquer implementation is described in detail. 

Possible ways of dividing a problem into subproblems and ways of overcoming non­

independent subproblems are discussed. The various stages of the technique are de­

scribed in detail including the metaheuristic improvement stages which use either sim­

ulated annealing or tabu search. Results are provided for both implementations of the 

divide and conquer technique. The chapter ends with conclusions and suggestions for 

further work. 

In chapter nine the results obtained in chapters seven and eight are compared. The 

divide and conquer algorithm was found to significantly improve upon the results ob­

tained by the respective improvement heuristic on its own. Some conclusions and ideas 

for further work are given. 

In chapter ten the results obtained in chapter eight (using the divide and conquer 

algorithm) are compared with results provided by D.E.R.A. for the same scenarios. 

Some comparison difficulties are discussed. 
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Finally. chapter eleven discusses the relevance and importance of the results obtained, 

the research contributions of this thesis and some ideas for further work. 
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Chapter 2 

Frequency Assignment Problem 

This chapter first establishes why the frequency assignment problem (FAP) is important 

at the current time. The problem is then defined and its practical applications outlined. 

The third section discusses the various types of interference which can occur and how 

the interference is defined in terms of constraints for the FAP. In the fourth section 

the mathematical model of the problem is given. Section five describes the objective 

function used in the main investigation discussed in this thesis, and also outlines other 

functions from the literature. Finally the computational complexity of the F AP is 

shown to be NP-Hard. 

2.1 Available Spectrum IS Limited 

During the last two decades significant developments have been made in communi­

cations technology. This has placed great demand on the electromagnetic spectrum 

resulting in extensive research into techniques that use the available frequencies in the 

most economical way. Owing to these rapid developments the spectrum has become a 

significant but limited resource, as the range of frequencies available for radio commu­

nication is only a fraction of the electromagnetic spectrum. In order for the available 

spectrum to be fully utilised there must be cooperation among the users. The In­

ternational Telecommunications Union (ITU), in Geneva, is responsible for overseeing 

this cooperation. The spectrum has been compartmentalised and made available to 

various users such as the military, broadcasting, amateur radio and aeronautical radio 

7 
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navigation. The resource must be utilised to the maximum economic benefit whilst 

safeguarding access for defence, emergency services and social use. 

It seems likely that demand on the spectrum will continue to increase and so effective 

solution of the frequency assignment problem will become even more important in 

the future. Frequency assignment techniques that are able to reduce the spectral or 

computational resources required will continue to be of practical value both in civil and 

military communications systems. 

2.2 The Frequency Assignment Problem 

In order to effect radio communication it is necessary to emit a signal from a transmit­

ter to be picked up by a receiver. Interference occurs when signals combine to produce 

unwanted frequencies or when a receiver is unable to distinguish between similar fre­

quency signals. A transmitter-receiver pair makes up a communication link. In order to 

reduce interference, constraints are imposed on the assignment. For each pair of links 

a separation value for the frequencies can be computed from path loss prediction data 

which will ensure no interference. Essentially path loss is dependent on the physical 

separation of the radios together with terrain information. 

The primary objective of the frequency assignment problem is to assign frequencies, 

from F, a discrete set within the available band-width, to the communication links, 

subject to the set of constraints, so that minimal interference is suffered. Depending 

on the problem, the discrete set of frequencies may have different forms, for example, 

1. Integers / real numbers. 

2. Equally distributed across the possible range, fixed differences between consecu­

tive frequencies. 

3. Randomly generated within the possible range, variable differences between con­

secutive frequencies. 

Constraints are of the form: 
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where Ii and Ii are the frequencies assigned to links i and j respectively and Cij is the 

separation required measured in MHz. If there is no constraint, Cij is zero. There are 

two types of constraints. co-site and far-site (see section 2.3). 

Ideally we wish to obtain a solution with zero interference using a small set of frequen­

cies of minimal span (difference between the largest and smallest frequencies used by 

the assignment). However the density of the transmitters and restricted frequency set 

means that minimal interference is a more reasonable aim. Typically there are a large 

number of transmitters and a relatively low number of frequencies available so solving 

frequency assignment problems of a practical size continues to present a difficult prob­

lem. For example, a problem containing 100 frequencies and 500 nodes would have a 

search space of 100500
. Fig 1 shows the physical model of an example communication 

network. The lines represent required communication links (not constraints as in the 

mathematical model). The nodes represent different types of tactical communications 

bases with varying communication requirements (the numbers). Unfortunately further 

information cannot be given due to confidentiality imposed by D.E.R.A. 

There are two factors contributing to the difficulty of the frequency assignment prob­

lem. The first is the enormous number of candidate solutions among which a feasible 

solution must be found. Secondly the number and variety of constraints which must 

be satisfied to produce satisfactory assignments tend to destroy nice mathematical 

structures preventing the use of efficient exact algorithms used to solve simpler prob­

lems. As optimal solutions can be extremely difficult to determine, much research has 

concentrated on heuristic procedures capable of generating near-optimal solutions. 

There are hvo distinct frequency management problems; the bulk assignment problem 

and the updating assignment problem. In the bulk assignment problem all transmitters 

from the band are known in advance and the task is to assign a frequency to each of 

them. The manager has complete knowledge of all the assignments to be made. In the 

updating assignment problem the transmitters to be assigned are presented sequen­

tially, either individually or in small groups, and frequencies must be assigned without 

knowledge of future demands on the spectrum. A practical management problem may 

well be a combination of the two with an initial assignment of many requests followed 

by a sequential assignment against this background. The work presented in this study 

refers to the bulk assignment problem where all values of Cij are known constants. 

_ C _ '_I 
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In order to reduce interference, constraints are imposed on the assignment. Interference 

occurs when certain pairs of links are assigned frequencies which are the same or close 

together. This can happen when transmitters or receivers of links are at the same site, 

within a few tens of metres of each other (co-site interference) or when equipment is 

at a distance of several kilometres or more (far-site interference). For details of how 

the required frequency separation is calculated refer to [Lan89]. In essence the required 

frequency separation is calculated using path loss prediction [SH88] and interference 

predictions. In the literature constraints formulated in this way are often referred to as 

frequency-separation constraints, they are thought to provide a more accurate model 

than frequency-distance 1 constraints [Bat et al. 98]. 

2.3.1 Co-site 

Co-site interference occurs when transmitters or receivers of two links are closer than 

two kilometers. Co-site interference is due to the technical limitations of the equip­

ment used; the receivers cannot differentiate between frequencies which are very close 

together. A mutual interference chart (Fig 2), dominated by a diagonal band, shows 

that the transmitter and receiver frequencies should differ by more than a certain fre­

quency separation. The width of the band depends on the power of the transmitter. 

Co-site constraints are of the form Iii - ijl ~ Cij, where Cij is large. Typically co-site 

frequency separations may have values between 15 - 49% of the total range available. 

For example, if the range of frequencies available is 400MHz then co-site constraint 

values Cij may be between 60 and 196MHz. 

1 frequency-distance constraints are based on minimum euclidean transmitter separations on a sim-

plified geographic model 
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2.3.2 Far-site 

Figure 2. Mutual Interference Chart 
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Far-site interference occurs between equipment separated by some distance. The sepa­

ration required depends on the design of the transmitter and receiver, the alignment of 

the antennae and path loss calculations which depend on terrain. The most important 

factor is co-channel interference which states that a pair of communication links cannot 

be assigned the same frequency unless they are sufficiently geographically separated. 

Constraints are of the form Iii - Iii > O. 

Similarly, adjacent-channel constraints prevent certain link pairs from interfering if the 

equipment is using similar frequencies. Constraints are of the form Iii - fjl ;::: Cij , 

where Cij is small. Typically adjacent-channel constraint separations may have values 

up to 5% of the total range available. For example if the range of frequencies available 

is 400MHz then constraint values Cij may be up to 20MHz. 

For each pair of links a separation value for the frequencies can be computed from path 

loss prediction data which will ensure no interference. The path loss prediction calcu­

lation is based on the two communication frequencies, Ii and fj, the distance between 

the communicating links and terrain information. Interference may also depend on 

the prevailing weather conditions and the power of the transmitters. When processing 

these data to formulate the constraints a worst-case scenario is used. The resulting 

constraints, in the form Iii - Iii ;::: Cij, therefore represent the minimum frequency sep­

aration required to guarantee zero interference between the links under consideration. 

Of course, the required minimal separation may be zero if no possible interference can 
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occur between two links whatever the assignment. 

2.3.3 Intermodulation Constraints 

Intermodulation constraints are a form of co-site constraint. When two or more sig­

nals enter a non-linear system further signals may be generated which are related to 

the frequencies of the initial signals. The new signals are called intermodulation prod­

ucts. If an intermodulation product has a frequency close to the frequency of one of 

the required links the receiver may not be able to distinguish between them and so 

interference will be suffered. A typical intermodulation constraint has the form 

where A and f.L are small positive integers and fi, fj, fk are the frequencies assigned to 

the three links and Cijk is the required frequency separation. A typical intermodulation 

product gives the constraint 

12fi - fj - fkl ~ 0 (two signal, third order) 

Intermodulation constraints involve three or more transmitters and therefore cannot 

be represented by the chosen model (see section 2.4) which restricts the problem to 

constraints between transmitter pairs. 

After discussions with Roger Edwards at D.E.R.A. Malvern it became clear that such 

constraints accounted for only a small percentage of the total number of constraints. 

In addition the value of the required frequency separation Cijk is small, usually 1 or 2 

MHz. Intermodulation constraints do not have a significant impact on the interference 

suffered by a network. The systems at D.E.R.A. do not consider intermodulation 

constraints, nor have they been included in the investigations described in this thesis. 

It is common for such constraints to be considered after a good assignment has been 

found. 
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For any practical optimisation problem we must first model the physical situation so as 

to derive the mathematical function to be minimised. Since we are optimising a model 

of the real-world problem there is no guarantee that an optimal solution to the model 

is also an optimal solution to the real problem. However, the objective functions and 

constraints of real problems are very difficult to express as an exact model since they 

are rarely linear. Approximate models enable more complicated problems to be mod­

elled since they are more flexible. In recent years, the development of heuristic search 

techniques has enabled very good solutions to be obtained to approximate models of 

challenging real-world problems. Examples of application areas (see Chapter 3 section 

3.1.6) include the travelling salesman problem, bin packing and vehicle routing. An 

excellent bibliography of heuristic applications is given in Osman and Laporte [OL96]. 

The pursuit of finding good solutions to an approximate model using heuristics is the 

corner stone of the research described here. 

Graph theory provides a useful analytical tool and appropriate model for the frequency 

assignment problem. In particular if only co-channel constraints are considered then the 

problem is equivalent to the classical graph colouring problem and as such is classified 

computationally as NP-hard (see section 2.7). The classification NP-hard indicates 

that there is no known algorithm that can generate a guaranteed optimal solution in a 

maximum execution time that may be expressed as a polynomial of the problem size. 

The problem of frequency assignment in tactical communications can neatly be mod­

elled as a T-colouring problem as outlined by Hale [Hal80]. A graph-theoretic approach 

has been widely used in the literature [Lan89] [ZB77] [SHT98]. 

In the general graph colouring problem (GCP) a graph G = (V, E) has colours assigned 

from a finite colour set to each vertex such that no adjacent vertices have the same 

colour. That is, the integer values representing the colours differ by at least 1. Ex­

pressing this constraint in graph notation: the edge joining two vertices has a weight of 

1. In T -colouring the edges of the graph may take weights other than 1. The edge Txy 

that joins vertices x and y has a non-zero weight, for example T12 = 3. This constraint 

means that the integers assigned to vertices 1 and 2 must differ by at least 3. 
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A function, f(x) returns the integer assigned to x, the constraint is satisfied if 

If(x) - f(y)i ~ Txy 

If it is possible to find a solution such that all the constraints are satisfied it is called 

a 'feasible colouring'. 

The N communication links of the FAP can be considered as the vertices of an undi­

rected weighted graph. Two vertices are adjacent if the corresponding links may not 

use the same frequency. The weight of an edge between two vertices i and j is the 

constraint value Cij . The problem is to assign to each vertex i a frequency Ii from 

a frequency set F such that V i,j, Ifi - fjl ~ Cij. A solution to this model can be 

interpreted back into terms of the physical context of the problem, that is, the interfer­

ence of the network can be calculated given knowledge of the edges violated. A feasible 

colouring is synonymous with a network which suffers no interference. 

For example the following constraints (Table 1) are shown in the physical and mathe­

matical models in Fig 3. 

Table 1. Example Constraint Values for Physical and Mathematical Models 

Link i Link j Frequency Separation 

1 2 10 

1 3 20 

2 3 15 
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Figure 3. Physical and Mathematical Models 
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2.5 Objective Function 

An objective function considers the current solution and uses knowledge of the problem 

to arrive at some measure of desirability of the solution, usually expressed as a real 

number. Which parameters of the problem are considered and their relative importance 

are defined in such a way that the objective function is able to estimate as well as 

possible whether the solution under consideration will lead to an optimal solution. 

Clearly what constitutes a good solution depends on the problem being solved. 

A number of possible objective functions have been suggested for measuring the qual­

ity of a proposed assignment. One such objective function measures interference by 

calculating the sum of the positive discrepancies [Cas97], 
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The numerical value resulting from the objective function calculation is often referred 

to as the cost of a solution. The term cost has been used extensively in the literature 

and is also used in this thesis. The terms objective junction and cost junction are used 

interchangeably. 

In evaluating an assignment attention is also paid to the span (the difference between 

the largest and smallest frequencies used by the assignment) and the order (the number 

of distinct frequencies used by the assignment). Ideally we seek a solution that firstly 

satisfies all the constraints (no interference) and secondly minimises span and thirdly 

minimises order (releasing frequencies for other applications). 

Other measures for evaluating infeasible assignments include 

1. Calculating the number of violated constraints [Lan89] [DKR 93] [MM93] [CHS93] 

[CHS94b] [CS95] [HTS96]. 

2. The difference between the largest and smallest frequencies used - the span of 

the assignment. This measure is typically used after zero-interference solutions 

have been obtained [Met70] [ZB77] [Gam86] [Lan89] [Cos93] [dWG94]. 

3. Weighting the constraints to reflect their importance and calculating the weighted 

sum of constraint violations [CAL95] [THL95]. 

4. The distinct number of frequencies used; this is the order of the assignment. This 

has been used by [Bou et aI95b]. 

5. Calculating the sum of the percentage deviations from the required separation. 

6. Calculating a weighted sum of the above interference measures. 

2.6 Objective Function and Representation Used 

Most of the decisions regarding constraint data structures and ordering of links has 

necessarily depended on the data set being used. A description of these elements has 

been given later, where the implementation is described. However, some definitions 
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were common and these are described here to orient the reader already familiar with 

the FAP. 

2.6.1 Objective Function 

Preliminary experimentation described in chapter 5 used the number of violated con­

straints for the objective function. 

L Xij whereXij = 
i,j;=.V-l { 1 if Iii - fjl < Cij 

i,j=O,j=j:i 0 otherwise 

For all of the heuristic algorithms (chapter 7 onwards) the sum of the positive discrep-

ancies was used. 

i,j=N 
L max(O, Cij -Iii - fjl) 

i,j=l 

2.6.2 Representing an Assignment 

Throughout this thesis a frequency assignment, A = (fl, 12, ... fN), is represented using 

an array of frequencies. The indices l..N refer to the link to which the frequency is 

assigned. 

2.6.3 Definition of a Move and a Neighbourhood 

For all implementations a move was defined as the assignment of a new frequency to a 

chosen link. If an assignment A is (fl, 12, ... fs) then a neighbour of A can be described 

as A' = (f{, f~, ··fv), where for precisely one i, fI i= Ii- A neighbourhood of A is the 

set of all possible A' and has size (IFI - I)N. 

2.7 Computational Complexity 

Computational complexity is used to express the 'degree of difficulty' of a problem to 

be solved using a computer. It is useful to know the complexity of a problem for two 

reasons: first, if a problem belongs to a very difficult class then the methods used to find 
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a solution can concentrate on obtaining near-optimal rather than optimal solutions. 

Secondly, when two problems belong to the same class then often one problem can 

be transformed into the other problem and the same methods used to solve each of 

them. It is not always straight-forward to identify which problem belongs to which 

class. The classification of a problem indicates how the algorithm will behave under 

the worst possible case; of course it may behave better on average. The complexity of 

an algorithm does not change depending on the encoding of the data or the computer 

used to solve it. A formal approach of the theory of NP-complete problems can be 

found in Garey and Johnson [GJ79]. 

2.7.1 P 

P stands for Polynomial. This class contains all decision problems that have polynomial­

time deterministic algorithms. For example O(n), O(nlogn), O(n2 ) and so on. Here n 

represents the size of the problem; for example, the number of bits required to represent 

the values of the inputs to the algorithm. Polynomial algorithms are better than expo­

nential algorithms when the problem is large. A function is considered an exponential 

function if n appears in the exponent, thus O(2n) is considered an exponential function. 

2.7.2 NP 

N P stands for Nondeterministic Polynomial. This class contains all decision problems 

that have polynomial-time non-deterministic algorithms. Such problems have expo­

nential deterministic algorithms but it has not yet been proven that they cannot have 

polynomial-time algorithms. 

For example. the travelling salesman problem (finding the shortest circuit in a graph 

such that all vertices are used) a (deterministic) backtracking algorithm that takes 

exponential time will implicitly try all of the tours and find the shortest tour. If the 

same problem is solved using a nondeterministic algorithm then the algorithm can 

correctly guess which arc should be travelled next and so takes polynomial time. Thus, 

this problem is in the class N P. 

P is a subclass of N P and it is still unknown whether P = N P. To prove that P = N P, 

it needs to be proven that all problems in N P can be solved in polynomial time by 
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deterministic algorithms. To prove P t= N P it must be shown that there is a problem 

in N P which cannot be solved deterministically in polynomial time. This remains a 

leading question in theoretical computer science today. It is generally thought that 

P t= NP. 

2.7.3 NP-Complete Problems 

The Hamiltonian circuit problem asks if there is a tour which visits every vertex exactly 

once. The travelling salesman problem (TSP) asks if there is a tour of sufficiently short 

distance which visits every vertex of the graph. The Hamiltonian circuit problem can 

be transformed to the TSP, this transformation takes a polynomial amount of time. 

If a polynomial time determinisitic algorithm is found for the TSP, there is also a 

polynomial algorithm for the Hamiltonian circuit problem. 

There is a subset of problems in NP (see Fig 4) which are the hardest in the following 

sense: Any problem in N P can be polynomially transformed to any problem in the 

subset. So if there exists a polynomial algorithm for a problem in the subset then all of 

the problems in N P can be solved in polynomial time. The algorithms in this subset 

are called NP-complete problems and they are the hardest problems within N P. If we 

have a new algorithm L then to prove that it is NP-complete requires two things to 

be proven: first that the problem L belongs to N P, and second that there is a known 

NP-complete problem which reduces to L. A list of NP-complete problems was given 

by Garey and Johnson [GJ79] and is updated periodically in the Journal of Algorithms. 

Figure 4. Diagrammatic Representation of NP 

cEcom~ 
NP 
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If a problem L is such that every problem in N P is polynomially transformable to L, 

then L is NP-hard. If in addition problem L belongs to N P, then L is NP-complete. 

Problems in N P are either 'decision' problems or 'optimisation' ones. Using the TSP 

as an example: the decision version might be 'is there a tour of length less than X?' 

whereas the optimisation version would ask 'what is the optimal tour length for this 

TSP?' The two versions are similar and clearly an algorithm for the decision version 

can be used a number of times to solve the optimisation version (although there is 

often a more efficient way to solve the optimised version). The terms NP-hard and 

NP-complete are frequently misused in the literature on combinatorial optimisation 

problems. When a problem is referred to as being NP-complete, what is often meant 

is that 'the decision version of this optimisation problem is NP-complete'. NP-hard is 

preferred for describing optimisation problems. 

2.7.5 Complexity of the FAP 

This section shows that the frequency assignment problem is NP-hard. To find an F­

colouring of a graph G = (V, E), where V = {I, ... , N}, is known to be NP-hard. This 

can be transformed to the FAP with N links. A colouring of G is a set {iI, ... , h·} 

of integer colours and the corresponding frequency assignment is the set {iI, ... , fN} 

of frequencies satisfying the constraints Ifi - fjl 2: Cij, where Cij = 1 if the edge 

connecting vertices i and j is in E and 0 otherwise. This shows that graph colouring is 

polynomially reducible to the FAP and hence that FAP is also NP-hard. Since the FAP 

is NP-hard exact algorithms will be computationally unrealistic for large problems (for 

approximately N > 50 [HST97]) and so this thesis concentrates on the development of 

heuristic algorithms. 



Chapter 3 

Literature Overview 

In the last decade there have been major developments in communications technology. 

Unfortunately technological advances have not been able to expand the usable spectrum 

at the same pace. The electromagnetic spectrum is limited and has become a scarce 

resource. To accommodate the high demand the frequencies must be assigned in an 

optimal way. The frequency assignment problem and heuristic search have provided a 

highly active research area. 

This chapter outlines the recent developments in the field of metaheuristics with partic­

ular attention being paid to techniques used to solve the frequency assignment problem 

(FAP). An earlier report [Lan89] covered this research area up to 1989 and this chapter 

aims to bring the study up to date. Variations of the FAP are also mentioned. In the 

second section the research objectives for this thesis are given in the context of recently 

published work. Finally the research contributions are given. 

3.1 Research Motivations 

3.1.1 Radio Communications 

The first transatlantic radio signals were transmitted by Guglielmo Marconi at the 

beginning of the 20th Century. Many advances in radio communications have been 

made in the last century. Further developments will continue to be required to keep 

22 
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pace with the expanding vision of communications researchers. 

Some everyday examples of radio communications technology are: television, pagers, 

cellular phones, cordless phones, garage door openers, radio controlled model airplanes 

and security systems. The existence of radio communication is often taken for granted 

in today's living environment. 

3.1.2 Frequency Use 

There are many varied uses for radio communications. The three examples below give 

an indication of the frequencies used by familiar technology. 

(Very) Low Frequencies (VLF and LF) in the range 3-300KHz create signals that can 

span thousands of miles and are typically used by submarine and maritime communi­

cations. 

Frequencies in the range 300KHz-30MHz are not usually used for communications. 

Their lower bandwidth means that they support fewer channels. An example of this is 

AM broadcast stations. 

Signals above 30MHz are typically used when the transmitter and receiver are within 

25-30 miles of each other. An example of this is the FM broadcast band. 

3.1.3 The Radio Frequency Spectrum 

The usable frequency spectrum is limited both physically and in addition by constraints 

imposed by the ITU. In order that frequency availability can keep pace with increasing 

user demand it is essential that frequency use (and reuse) is maximised whilst still 

maintaining low interference levels. The recent developments that have made mobile 

communications widely available have acted as a catalyst for research in this area. Many 

papers on the solution of frequency assignment problems (F APs) have been published 

in the last decade. This chapter aims to provide an overview of the developments and 

indications of where to look for further information. 
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3.1.4 Frequency Assignment Problems 

In its most general form the frequency assignment problem simply requires frequencies 

to be assigned to communication links in such a way that demand is satisfied and 

interference is minimised. However, even a brief investigation into the literature will 

show that the FA.P area encompasses a range of related problems which all differ in 

subtle, but important, ways. A theoretical treatment of many FAPs is given in [HaI80], 

where they are classified according to their computational complexity. It is beyond 

the scope of this chapter to survey each of the problems. A brief overview is given for 

each in the next section. The F AP is often formulated as a generalised graph colouring 

problem: [ZB77] [HaI80]. A review of FAPs and their relation to graph theory is given 

in [Lan89]. 

In addition to the various types of FAP there are also several other assignment descrip­

tors. For example, bulk assignment problems assume knowledge of the positions of all 

transmitters and frequencies must be assigned to all communication links. The natural 

extension of this problem is the update assignment problem whereby transmitters are 

presented sequentially (with new requirements) and no knowledge of future demands is 

known. Variations on the general problem are also given in the aims of minimum span 

frequency assignment and fixed spectrum frequency assignment. For minimum span 

frequency assignment the aims are to satisfy demand, minimise interference and also 

to minimise the span (difference between the smallest and largest frequencies used) of 

frequencies used. In contrast, fixed spectrum frequency assignment requires frequencies 

to be assigned from a fixed set of frequencies. Typically this set is too small and not 

all constraints can be satisfied, so instead an objective function is minimised. 

3.1.5 Types of FAP 

Broadcast Frequency Assignment Problem (BFAP) 

In the BF AP. found in terrestrial broadcasting, applications are made for transmission 

frequencies and the objective is to find an assignment which does not violate either the 

co-channel or adjacent-channel constraints. In addition the order (number of distinct 

frequencies used) of frequencies used in the final assignment should be minimised. 

Existing users are treated as new applicants with the additional constraint that they 
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should be assigned frequencies that they are currently licensed to use [Bay82]. 

Air Ground Air problem 

This problem is based on the need for air bases to communicate with aircraft. The 

region of space in which it is possible for a base to communicate with an aircraft is 

known as the service volume. For convenience these are usually described by poly­

gons or circles. Service volumes may overlap. The objective of the AGA-FAP is to 

enable communication between aircraft and ground station without interference from 

another ground station or any aircraft flying in the same or another service volume 

[Lan89]. Adjacent-channel, co-channel and intermodulation constraints are considered. 

Additional constraints may be imposed due to the tuning range of equipment, pre­

assignment of frequencies to the transmitters and the existence of pools (collections of 

transmitters assigned the same frequency). Further details of the AGA-FAP can be 

found in Chadwick et aL[CMB92]. 

Frequency Assignment for Cellular Radio 

Cellular net\vorks (found in mobile telephony) typically exhibit regular geometries, the 

most commonly studied geometry is a mesh of regular hexagons. In its simplest form 

the area covered by the hexagon is served by a single transmitter at its center and all 

transmitters are identicaL 

The geometry of these problems is exploited when solving the FAP. In addition assign­

ments are made to channels rather than frequencies. In fact the channels are simply a 

convenient way of labelling a narrow band of frequencies by using the central frequency. 

The required channel separation which will guarantee no interference between a given 

pair of links is referred to as the spectral unit. Work on cellular networks can be found 

in [And73] [Lee94] [Lee97] [CS98] [SHT98] and [Lee99-to appear]. 

Radio Link Frequency Assignment Problem 

The bulk assignment, fixed spectrum Radio Link Frequency Assignment Problem (RL­

FAP) has been investigated in the research presented in this thesis (see Chapter 2). 
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The RLFAP [Ray92] [Bat et al. 95] is also referred to as the Radio Relay Network 

Frequency Assignment Problem (RRNFAP)[Lan89]. In the RLFAP the principal goal 

is to minimise the interference suffered whilst satisfying demand for communication 

links. Co-channel, adjacent-channel and far-site interference may be considered. Both 

minimum span assignments and fixed spectrum assignments have been applied to this 

problem. In addition bulk and update assignments have also been considered. The 

transmitters vary in power (and range) and are irregularly placed. A more detailed 

description is given in Chapter 2. 

3.1.6 Heuristics 

The FAP is NP-hard (see Chapter 2 section 2.6.5). This means that there is no 

known algorithm that can generate a guaranteed optimal solution in an execution 

time that may be expressed as a polynomial of the problem size. Practical problems 

involve large numbers of communication links and constraints and so solution by exact 

algorithms (see Chapter 4 section 4.2) are computationally infeasible. Heuristics (see 

Chapter 4 section 4.3) provide near optimal solutions within a reasonable amount 

of time. Many earlier heuristics mimicked the method used when solving problems 

manually - a form of sequential assignment. Whilst heuristic algorithms may improve 

on the solutions obtained by exact methods in a fixed time period the solutions are still 

often far from optimal for large problems. Since heuristics do not guarantee to find 

an optimal solution their success is often measured in terms of distance from a lower­

bound (where one is available). The family of heuristics known as local search (LS) 

heuristics are moderately successful for large problems. They are often incorporated in 

the so-called metaheuristics. An introduction to local search is given in [Sch98], this is 

followed by local search and genetic algorithm implementations for scheduling. 

Guided Local Search (GLS) has been applied to the RLFAP and has been shown to 

provide good results for the CELAR problems [VT96]. However, in the same study, it 

was found that GLS was out-performed by GAs. Descent algorithms have been applied 

to the Vehicle Routing Problem (VRP) [Osm93]. A greedy algorithm for T-colouring 

was investigated by [Ray94]. A dynamic locking heuristic is developed in [Hof94] and 

applied to the design of VLSI chips (graph bipartitioning). A problem-specific heuristic 

was developed in the implementation of an intelligent timetable information system for 

an integrated public transport system [Leh93]. 
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Colin Reeves has written several introductions to heuristics and metaheuristics [RB95] [Ree96a] , 

these concentrate on SA, TS and GAs [Ree95c] in the most part but some also outline 

the distinction between heuristics and metaheuristics and briefly cover other areas of 

interest to researchers new to this field (No Free Lunch Theorem, 'hard' and 'easy' 

problems) [Ree96b]. 

3.1.7 Metaheuristics 

'A metaheuristic is formally defined as an iterative generation process which 

guides a subordinate heuristic by combining intelligently different concepts 

for exploring and exploiting the search space, learning strategies are used to 

structure information in order to find efficiently near-optimal solutions' [OL96]. 

Some examples of metaheuristics are tabu search, simulated annealing, genetic algo­

rithms, neural networks and their hybrids. Metaheuristics are discussed in more detail 

in Chapter 4 section 4.4. Implementations of tabu search and simulated annealing for 

the FAP are described in Chapter 7. Anyone considering investigating metaheuristics 

will find the paper 'Metaheuristics : A bibliography' [OL96] invaluable, it lists and cate­

gorises over 1400 papers on the theory and application of metaheuristics. Also included 

are sections on hybrid combinations of metaheuristics and comparative results. Meta­

heuristics have provided good quality solutions to a range of large-scale commercial 

optimisation problems. Applications which have been solved using metaheuristics are 

wide and varied, an indication of these areas follows. 

Tabu Search Applications 

An introduction to tabu search (TS) is given by Glover [Gl089] and refinements to the 

original algorithm are given in[Gl090][GTdW93] [DV93] [GTdW93] [WZ93]. A more 

recent publication by Glover and Laguna can be found in [GL95], this is an excellent 

review paper providing an extensive list of TS applications. Some examples of applica­

tions are error correcting codes [BB95], quadratic assignment problem [CSK93], maxi­

mum clique problem [GSS93], bandwidth packing [LG93], employee scheduling [MG86], 

scheduling [MR93], vehicle routing [Osm93], graph partitioning [RPG96], and convoy 

problem, course scheduling and flow shop problems are all discussed in [HdW90]. Herts 
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and de Werra have also applied tabu search to university course scheduling [HdW90]. 

Strategic oscillation and stochastic tabu search have been applied to a class of schedul­

ing problems [MR93]. A reactive tabu search has been investigated by Battiti [Bat96], 

in this implementation feedback parameter tuning uses the past history of the search to 

increase its efficiency in solving the QAP. Finally, tabu search with strategic oscillation 

is used by Kelly et al [KGA93] to investigate large scale rounding of census data. 

Simulated Annealing Applications 

Simulated annealing (SA) was introduced by Kirkpatrick et al [KGV83]. This tech­

nique has been applied to a large number of applications and a number of variants have 

been implemented. A good introduction to simulated annealing is given by Dowsland 

[Dow95], this paper also gives an overview of recent application areas. Some applica­

tions are multi-objective scheduling and timetabling [TD96][Dow96]' graph partitioning 

[Joh et al. 89], graph colouring [Joh et a19I], vehicle routing with time windows [CR96], 

and the travelling salesman problem (TSP) [M096]. A parallel application of SA for 

the TSP was investigated by [Soh96]. The convergence of simulated annealing with 

feedback temperature schedules applied to job-shop scheduling problems was investi­

gated by [KT97]. A hybrid application combining SA with a SFC (space-filling curve) 

heuristic has been applied to the TSP by [LH94]. A review of many applications is 

given by Johnson and McCeoch [JM96]. 

Genetic Algorithms Applications 

Genetic algorithms (GAs) were first introduced by Holland [Ho175] and have since been 

applied to a variety of applications, many variants have also been developed. A good 

overview of genetic algorithms is given in [BBM93a] with applications and research 

topics being covered in [BBM93b]. A variant known as expansive coding is discussed 

in [BBM93c] and [BBM94]. Expansive coding is a representation methodology which 

makes complicated Combinatorial Optimisation Problems (COPs) easier to solve for 

a GA. The representation, operators and fitness function used by the GA are more 

complicated but the search space becomes less epistatic and is therefore easier for the 

GA to solve. Reeves [Ree95c] also provides a good introduction to genetic algorithms 

and brings the review of applications up to date. Two examples of genetic algorithm 
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applications are graph colouring [FF96], and the travelling salesman problem [FM96]. 

Hybrids and Their Applications 

Yamada and Reeves [YR98] have investigated a SAjTSjGA hybrid and applied this 

to the flow-shop scheduling problem. Their algorithm obtained very good results com­

pared to published benchmarks. Variants of SAjTS have been applied to the Vehi­

cle Routing Problem (VRP) with success [Osm93]. A theoretical paper proposing an 

algorithm which combines features of TSjSAjGA with potential applications in opti­

misation is given in [Fox92]. Another GA hybrid has been used to solve a crossword 

problem with an expensive evaluation function [Ran et a1.93]. 

Comparisons of Heuristics and Metaheuristics 

Several authors have carried out experiments to compare the performance of different 

(meta)heuristic approaches: 

A comparison of GA, hill-climbing, random search, SA and TS in solving the Vehicle 

Routing Problem (VRP) where the time is limited to ten minutes has been carried out 

by [BMP95]. Simulated annealing proved to be the best technique overall, and was also 

robust when acting on a variety of problem instances. When the algorithms were run 

for four hours SA still obtained the best (and most reliable) solutions. SA and TS are 

compared by [AC96] for 0-1 linear programs. TS, SA and GAs have been applied to a 

special case of the Quadratic Assignment Problem (QAP) for a real-world application 

[Sin93]. TS and SA were applied to T-colourings and compared to a branch-and-bound 

algorithm by Costa [Cos93]. A comparison of SA and GAs applied to the ring-loading 

and ring-sizing problem is given in [MS98], Mann and Smith have also applied SA and 

GAs to traffic routing for telecommunications with the aim of load-balancing [MS96]. 

Further Comments 

Problem-specific implementations should out-perform generic ones but, in my opinion, 

it is also important to carry out experiments with general purpose algorithms which 

are able to deal with problems without any special structure. Generic versions of TS 

and SA have been implemented in the research presented in this thesis. 
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A modified SA has been applied to workforce scheduling by Lesiant [Les98]. In this 

paper he stresses the importance of having generic problem modelling and solving 

capabilities which still allow for the customisation and fine-tuning of core resolution 

mechanisms. Radcliffe and Surry [RS95] advocate the exploitation of domain-specific 

knowledge in order to provide techniques acceptable to practitioners (requiring solutions 

to complex real-world search problems). 

3.1.8 Evaluating Heuristic Performance 

Guidelines for reporting on heuristic and metaheuristic investigations are given in [Bar 

et al. 95] [Ree 95b]. Both references highlight three main ways in which the effectiveness 

of (meta)heuristics can be compared. 

1. Analytical. 

Analysis of worst-case and average performance analysis. As yet developments in 

this area for heuristic (rather than exact) algorithms is sparse. Some work has 

been done on finding lowerbounds for the FAP [SH97], there is some dispute as 

to whether the conditions under which these bounds are constructed are effective 

for practical assignment problems [Bat et a198] [JDB98]. 

2. Empirical Testing 

Comparison of performance against existing techniques on a set of benchmark 

problems. Unfortunately real data are scarce and so benchmarks are often ran­

domly generated to reflect assumed characteristics of real problems. A large 

number of instances for a variety of problems can be obtained electronically as 

described in [Bea90]. 

3. Statistical Inference 

Again this is an area where there is much scope for further research. It has 

been suggested that the statistical theory of extreme values (which applies to 

continuous distributions) can be applied to COPs (with discrete objective function 

values). 

The method of empirical testing is widely used to compare the results of heuristic algo­

rithms. There are no set guidelines for empirical testing although several performance 
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measures have been proposed [Bar et al 95] [Ree 95b]. The three main performance 

measures are quality of solution, computational effort and robustness. All of these per­

formance measures have been considered when evaluating each of the metaheuristics 

developed in this thesis. 

In addition to performance measures Bar et aL give detailed guidelines on the design 

of heuristic experiments [Bar et aL 95]. The abstract of this paper reads: 

"This report discusses the design of computational experiments to test 

heuristic methods and provides reporting guidelines for such experimenta­

tion. The goal is to promote thoughtful, well-planned, and extensive testing 

of heuristics, full disclosure of experimental conditions, and integrity in and 

reproducibility of the reported results." 

Key points taken from this paper have lead to the following guidelines being adopted 

throughout the research presented in this thesis. 

• The quality of a solution should be defined by a stated evaluation metric or 

criterion. 

• The experimenter should fully specify the steps and stopping rules of new meth­

ods. 

• A research experiment should have a purpose, stated clearly and defined prior to 

the actual testing. 

• Algorithms should be tested with their best competition. Rather than mak­

ing comparisons with published results on different problems and machines, it is 

preferable to obtain (or create if necessary) software for the competing methods 

and make comparisons within the same computing environment. All of the al­

gorithms developed were written by the same programmer and run on the same 

platform. 

• It is important to "stress-test" the codes by running as large instances as possible. 

Many factors do not show up on small instances, and running on smaller sizes 

may not yield accurate predictions for larger, more realistic problems. Real-world 

problems reflect the ultimate purpose of heuristic methods, and are important for 

assessing the effectiveness of a given approach. 
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• Values of any parameters employed by the heuristic should be defined and, where 

problem-dependent, the rules for establishing appropriate values should be spec­

ified. 

• Some attempt to identify factors or factor combinations that seem to contribute 

to (are correlated to) performance. 

• Time taken should clearly state whether creation of data structures, preprocessing 

and other preliminary stages are included in the timing. The times given in this 

thesis include all stages. 

• Reproducibility. All experiments should be thoroughly documented including 

detail of the algorithm, parameters and non-trivial data structures. 

3.1.9 (Meta)Heuristics for the FAP 

An investigation of the suitability of metaheuristics for the FAP is given in [Lan89]. A 

great deal of work has already been done for the frequency assignment problem which 

investigates the use of heuristic neighbourhood search and other techniques. Much of 

this work is referred to below. A number of technical documents resulted from the 

CALMA project and these can be obtained from [CAL95], and also include [Aar et al. 

95] [BB95b] [THL95]. 

Heuristic Approaches 

F AP (with multiple frequency domains) has been formulated as an integer linear pro­

gramming problem and solved using a branch-and-cut algorithm which employs prob­

lem reduction methods [Aar et al.95]. A generalised greedy algorithm for FAP was 

presented by deWerra and Gay [dWG94]. Kim and Kim [KK94] proposed an effi­

cient two-phase optimisation procedure for the channel assignment problem based on 

frequency reuse patterns. 

Tabu Search + Variants 

Tabu search seems to be a promising method for the RLFAP, as shown in the literature 

[Cos93] [CSH93]. Castelino [CS95][CHS96] investigated the application of genetic al-
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gorithms, tabu search and tabu thresholding. Castelino [Cas97] also investigated tabu 

search with surrogate constraints and gives a good overview of the literature for the 

FAP until 1997. Boyce and Boujou [BB95b] have applied TS to the RLFAP, they 

show that arc-consistency is an effective pre-processing operation for the CELAR prob­

lems which could be dramatically simplified by its use. In addition they discovered 

that by satisfying constraints with higher required frequency separation values first the 

run-time of the algorithm was reduced. 

Simulated Annealing 

Two independent approaches to the use of SA to solve channel assignment problems 

each using different models and different neighbourhood structures were proposed by 

[DKR93] and [MM93]. 

Genetic Algorithms + Variants 

A comparison of several chromosome representations used within a parallel genetic 

algorithm has been carried out by [CHS94a]. Crompton et al have investigated the ap­

plication of GAs [CHS94a] and parallel GAs to the FAP [CHS93][CHS94b]. A hybrid 

GAjgreedy algorithm has been investigated [VJH98] on small minimum span frequency 

assignment problems and has been found to obtain better results than sequential algo­

rithms. 

Problem l\tlodelling and Bounds 

Lower-bounds for the FAP have been investigated by Gamst [Gam86], Geomans and 

Kodialam [GK93] and Smith and Hurley [SH97]. Lower-bounds for a simplified (us­

ing problem reduction) cellular constraint network has also been investigated [SH97]. 

Smith, Hurley and Thiel [SHT98] exploited their lower-bound findings by assigning a 

maximal clique to generate an initial solution, fixing this assignment and then solving 

the remaining graph. By using this technique they have obtained the best results pub­

lished so far for some of the Philadelphia problems. For a regular hexagonal lattice 

it is suggested by [JDB98] that binary constraint satisfaction problems do not suffi­

ciently represent the F AP and that higher-order constraints are able to provide a more 
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adequate model which potentially uses fewer spectral resources. In addition to this ar­

gument Bater et al. [Bat et al. 98] cast doubt on the validity of lower-bounds calculated 

using maximal cliques [SH97]. They suggest that 'holes' in the coverage which occur 

as a result of using binary constraints make the use of binary constraints inadequate 

and consequently that lower-bounds calculated using maximal cliques on a binary con­

straint graph lead to optimistic estimations of the required spectral resources. Work 

on modelling the FAP has also been carried out by [GL97] [Bat et al.98] [BJC98] [Dun 

et al 98] [JDB98]. 

Cellular Assignments 

Cellular radio assignment has unsurprisingly enjoyed the most industrial funding. This 

is due to the direct application of this problem to mobile telephony which has seen 

a dramatic increase in popularity in recent years. Publications in this area have been 

prolific in the last couple of years, research has been carried out by [MM93] [You], appli­

cations using simulated annealing [DKR93] have also been considered. A comprehensive 

survey of assignment schemes for channel assignment is given in [KN96]. A two-phase 

approach is considered by [KK94] and graph-theoretic developments are described in 

[Sen et al. 94]. Leese [Lee99] has presented a unified approach to the problem of using 

regular tilings to cover a lattice of hexagonal cells, this approach combines co-channel 

and adjacent-channel lattices. A two-phase adaptive local search algorithm has been 

applied to cellular radio networks. This approach combines a deterministic-probabilistic 

neighbour generation with a two-phase local search [WR96]. Further work on cellular 

frequency assignment can be found in [And73] [Lee94] [HST97] [GL97] [Lee97] [SH97] 

[ SHT98] [JDB98] [Dun et al. 98] [CS98] 

Graph Theory 

FAPs are commonly solved using techniques borrowed from the theory of abstract 

graphs, more specifically, graph colouring. Roberts [Rob91] concisely reports on the 

graph-theoretic proofs applicable to T-colouring and highlights some open problems 

concerned with T-colourings and their variations and generalisations. A variation on 

SA, called probabilistic iterative improvement [Mor89]' has been applied to the graph 

colouring problem (GCP). This paper also investigates other definitions of a 'move' 
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applicable to restricted graphs. Chromatic scheduling and frequency assignment are 

discussed in [dWG94] where upper-bounds are given for a generalised chromatic num­

ber. Graph colouring algorithms have been applied to the FAP [Pee91] [PL96] [Smi88]. 

Chromatic scheduling and frequency assignment is the topic of a paper by de Werra 

and Gay [dWG94]. Raychaudhuri investigates maximal clique frequency assignment 

and traffic phasing in [Ray92]. Graph colouring by cliques has been investigated by 

[WZ93b] [HaI93]. Finally, Tuza presents a paper on graph colouring [Tuz92]. 

Hybrid Approaches and Metaheuristic Comparisons 

Hybrids using SA, TS and GA and local search techniques have been applied to both 

the FAP [SHT98] and to a wide variety of other problems [Fox93]. Comparisons of 

several metaheuristics applied to the FAP are given in [HST97] [HTS96]. 

Divide and Conquer 

An extensive literature search has revealed very few papers which consider divide and 

conquer techniques applied to the FAP. Some divide and conquer papers for general 

applications are [FK92] [KMD95] and [WF96]. A divide and conquer algorithm for 

the minimal cut bisectioning of graphs is given in [LSM96]. Some early results from 

the methods described in this thesis were given in [PS98], results from chapter 10 can 

be found in [Whi98] and a further paper is soon to be submitted. Despite extensive 

literature searches and discussion with experts in the field, there are no papers consid­

ering the combination of divide and conquer with heuristics that the author is aware 

of. Most of the F AP publications describe techniques that have been applied to the 

whole problem throughout computation, although early processing may concentrate on 

the vertices with large vertex degree. 
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3.2 Benchmarks 

3.2.1 CELAR 

In 1994/5 an 18 month project was undertaken by the French, Dutch and British in­

dustries and academia. The CALMA 1 project [CAL95] was funded by EUCLID2. The 

main objective of the project was to gain a better understanding of what makes a com­

binatorial problem-solving approach adequate on some problems, and inadequate on 

others, in order to improve the cost effectiveness of the many military systems relying 

on the proper treatment of difficult combinatorial problems. This investigation was car­

ried out using a characteristic example: RLFAP. A realistic data set was obtained from 

CELAR3 , France and each member of the consortium applied its own expert knowledge 

to solve the radio link frequency assignment problem. Methods tried included: genetic 

algorithms; interior point methods; constraint satisfaction methods; simulated anneal­

ing; local search and tabu search. The resulting performances of these techniques were 

compared and their success assessed. It was found that standard local search was able 

to give reasonable solutions in moderate running times. However, there was a strong 

positive correlation between the amount of problem-dependent information used, the 

extent to which mathematical insight is exploited, the development and implementation 

effort required and the quality of the results obtained [THL95]. Many of the techniques 

developed to solve the CELAR problems relied heavily on the special property of the 

data, in particular the existence of an equality constraint between consecutive odd and 

even links [Aar et al. 95] [Bou et al.95b]. 

The CELAR data set was fundamentally different from the TNET data used in this 

thesis, a brief discussion of these differences is given in Chapter 6 section 6.4. 

3.2.2 Philadelphia 

A large number of papers relating to mobile communications have been published re­

cently, for example [SHT98] [Lee94] [Lee97]. For the most part these are based on 

the 'Philadelphia' problems, originally presented by Anderson [And73] where the un-

lCALMA = Combinatorial Algorithms for Military Applications. 

2EUCLID = European Cooperation for the Long Term in Defence. 

3CELAR = Centre d'Electronique d' Armement. 
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derlying graph is based on a regular hexagonal cell structure. Unfortunately these do 

not generalise to random graphs and so the principles cannot be exploited in solving 

tactical communications-based problems. 

3.3 Software 

Three software toolkits have been developed at the University of East Anglia (UEA): 

GAmeter, SAmson and TABasco. Each of the toolkits is based on a different meta­

heuristic: genetic algorithms, simulated annealing and tabu search respectively. All of 

the toolkits have been built on the Common Toolkit Framework (CTF). This allows 

the problem-specific parts of the program to be ported to each of the toolkits developed 

thus enabling a direct comparison of the techniques. The CTF also defines many of the 

user interface routines providing consistency across the toolkits developed. 

GAmeter [MKS95a] is a software toolkit which enables the user to specify the problem 

dependent parts to be acted on by a standard genetic algorithm (GA) with optional 

add-ons. GAmeter provides an environment for developing and experimenting with 

optimisation problems. This toolkit was used during the CALMA project. Several 

representation options, crossover operators and mutation operators are available. Ex­

tensive statistics are used to provide performance measurement of the toolkit. Empiri­

cal studies implied that the developed GA was less sensitive to parameter tuning than 

simulated annealing; this was seen to be an advantage. Typically the success of GA 

approaches are dependent on 'good' representations of the problems, particularly for 

problems where the search space is epistatic. 

SAmson is a general software package which enables the user to specify the problem 

dependent parts to be acted on by a simulated annealing algorithm. Like GAmeter, 

SAmson can be used with several representation options. A number of neighbourhood 

functions are available for use on those representations (for example, for binary rep­

resentations, a neighbour is obtained by replacing one bit by its complement and, for 

integer representations, one integer is replaced by another chosen at random). However, 

studies have shown that for most problems, a problem-specific neighbourhood function 

will outperform many of these standard functions. 

TABasco, the third software toolkit from UEA, is a general purpose tabu search toolkit. 
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As with the previous toolkits, many of the representations and neighbourhood functions 

are provided. In addition the tabu memory data structures are linked to the chosen 

representation. The parameters can be fine-tuned after the problem-specific aspects 

have been specified. This toolkit is currently a beta release. 

FASoft is a system for discrete channel frequency assignment problems. It incorporates 

simulated annealing, tabu search and genetic algorithms for solving the FAP as well 

as backtracking and hill climbing. Numerous vertex ordering, frequency selection and 

move definition options are available and a weighted multi-objective objective function 

is used. The system is able to act on data which can be described using a constraint 

matrix (see Chapter 5 section 5.4.4). More details of FASoft are given in [HST97] with 

extensive references to the lower-bounding techniques described in [SH97]. In [HST97] 

results are primarily presented for minimum span cellular radio applications including 

the Philadelphia problems. 

3.4 Research Objectives 

Having described the general problem and discussed previous work, it is now possible 

to state the objectives of this research. The main concern of this thesis is to conduct an 

investigation of tabu search, simulated annealing and divide and conquer methodologies 

for the solution of a class of simulated but realistic FAPs. 

The research objectives for this thesis are: 

1. To establish a software library of techniques based on existing and novel algo­

rithms and to compare the performance of the alternative techniques. 

2. To develop metrics for measuring the goodness of assignments. 

3. To investigate how to split the problem into subproblems for more rapid solution. 

4. To investigate the benefits of the divide and conquer technique compared with 

the application of a single heuristic. 

5. To study the significant factors which influence performance, e.g. vertex ordering, 

frequency selection and the provision of an incremental objective function. 
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6. To devise suitable experiments to assess the performance of each algorithm in 

isolation, and with other available techniques for solving a class of simulated but 

realistic problems. 

7. To compare the difference between problems considered in this thesis and others 

in the literature; for example the CELAR data. 

3.5 Research Contributions 

1 To establish a software library of techniques based on existing and novel algorithms 

and to compare the performance of the alternative techniques. 

A suite of programs have been developed. The following algorithms are 

available for solving the MATRIX test data: hill descending, steepest de­

scent, greedy, backtracking. The following algorithms are available for solv­

ing the TNET test data: hill descending, steepest descent, greedy, SA, TS, 

DCSA and DCTS. 

2 To develop meirics for measuring the goodness of assignments. 

The initial suggestion of counting the number of constraint violations has 

been superceded by a new objective function which calculates the sum of 

the positive discrepancies of the violated constraints. 

3 To investigate how to split the problem into subproblems for more rapid solution. 

The divide and conquer program divides the problem by dividing the fre­

quencies available into separate bands and then solves the smaller versions 

of the problem before recombining them to obtain a solution to the whole 

problem. Several division criteria were investigated and division of the fre­

quency set yielded the higher quality results. This division criterion has the 

benefit of being independent of the constraint network and should therefore 

be applicable to a range of FAPs. 

4 To investigate the benefits of hybrid techniques compared with the application of 

a single type of algorithm. 
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The divide and conquer (DC) program, using either simulated annealing 

or tabu search as the improving heuristic, outperforms the corresponding 

heuristic when used alone. The DC algorithm obtains solutions with less 

interference, in less time and using fewer resources than the single heuristic 

program for realistic non-trivial data sets. 

5 To study the significant factors which influence performance, e.g. vertex ordering, 

frequency selection and the provision of an incremental objective function. 

Early experimentation showed that the best results were obtained by pre­

ordering the links in descending order of co-site vertex degree. For algo­

rithms evaluating all possible neighbourhood moves at each iteration the 

selection of an equivalent best-cost frequency at random provided the best 

results. The implementation of an incremental objective function was found 

to have significant speed advantages enabling better assignments to be found 

in a fixed time period. Data structures are described which enable a very 

fast incremental objective function to be employed. 

6 To devise suitable experiments to assess the performance of each algorithm in 

isolation, and with other available techniques for solving a class of simulated but 

realistic problems. 

Extensive computational results are provided to compare the effectiveness 

of each of the algorithms developed (simulated annealing, tabu search and 

divide-and-conquer). In conclusion simulated annealing was found to yield 

good quality results consistently and these were further improved upon 

when simulated annealing was used within the divide and conquer frame­

work. Tabu Search proved effective for the easier problems but was less 

predictable. Once again results were improved when tabu search was incor­

porated into the divide and conquer framework. The low-cost divide and 

conquer results were found in less time, using comparable of fewer resources 

than either simulated annealing or tabu search used alone when acting on 

non-trivial data sets. 

7 To compare the difference between problems considered in this thesis and others 

in the literature; for example the CELAR data. 



CHAPTER 3. LITERATURE OVERVIEW 

Chapter 6 section 6.4 describes the differences between the TNET and 

CELAR data and explains why the techniques employed here are not ap­

propriate for solving the CELAR scenarios. 

41 



Chapter 4 

Basic Techniques 

Perhaps the simplest of all search algorithms is one of generate-and-test. A solution 

is generated randomly and this is compared with some acceptance criteria. If it meets 

these then it is accepted; otherwise a new random solution is tried. Such primitive 

methods rarely give satisfactory results. Fortunately research over the last couple 

of decades has provided a variety of more advanced search techniques from which 

to choose. These make use of the approximate smoothness of the objective function 

- the objective function evaluated at two solutions 'close' in the search space have 

similar values. The techniques are described with particular reference to the frequency 

assignment problem. However, they are general techniques which can be applied to most 

combinatorial optimisation problems. Algorithms can be classified into two distinct 

types; exact and heuristic. 

In this chapter the term 'combinatorial optimisation' is explained. This is followed by 

a description of exact techniques which guarantee that a globally optimal solution will 

be found. The need for heuristic techniques is then discussed and metaheuristics are 

briefly introduced. General heuristic algorithms are described, along with the relevant 

terminology. before a more detailed discussion on several metaheuristic techniques is 

given. Simulated annealing and tabu search are described and definitions of the terms 

used when discussing these algorithms are given. Finally the divide and conquer tech­

nique is described. All of the algorithms described in this chapter have been used in 

the investigations described in this thesis. Chapters 7 and 8 will discuss the imple­

mentation details of simulated annealing, divide and conquer and tabu search for the 

42 
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Frequency Assignment Problem (FAP). 

4.1 Combinatorial Optimisation 

In its simplest form the frequency assignment problem can be described as a minimi­

sation problem taking the general form: minimise f(x) subject to 9i(X) 2: bi Vi. Here 

x is a vector of variables, for example, an ordered list of frequencies describing the 

assignment, f (.) and 9i ( .) are general functions. In the particular case f (.) would be 

the objective function used to evaluate the interference of a proposed assignment. If 

we restrict the values that the decision variables may take to a discrete set then the 

problem assumes a combinatorial nature. The probiem of finding an optimal solution 

to a problem like this is therefore known as combinatorial optimisation. 

Over the past few years there has been considerable academic interest in the develop­

ment of combinatorial optimisation techniques; it remains a fruitful area of research 

largely owing to the vast number of practical applications. Well known combinatorial 

optimisation problems include the travelling salesman, knapsack and the frequency as­

signment problems. Applications such as vehicle routing and bin packing are readily 

described as combinatorial optimisation problems. 

Typically combinatorial optimisation problems have very large numbers of possible bad 

solutions and considerably fewer good solutions. There are generally several good solu­

tions which are a long distance from one another and which would require a number of 

transition moves to arrive at one from the other. Typically the series of moves required 

are not all improving steps making it difficult to recognise paths leading to alterna­

tive good solutions. This is essentially what makes solving combinatorial optimisation 

problems so difficult. 

4.2 Exact Techniques 

For small combinatorial problems it is possible to guarantee that certain algorithms 

will find the (globally) optimal solution. Such methods are known as exact techniques 

and rely on some form of implicit enumeration. Techniques such as backtracking and 

branch-and-bound [HS78j examine the possible solutions systematically and generally 
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find optimal solutions in less time than would be required for complete enumeration. 

4.2.1 Exhaustive Search / Complete Enumeration 

By definition finding a solution to a combinatorial optimisation problem requires that 

some vector of values from a set of discrete elements is found. If we were to generate all 

the possible solutions to a problem we could evaluate each in turn and would then be 

able to find the best solution. This method would guarantee to find the global optimum 

solution if one exists. The simplicity of complete enumeration is appealing. However 

it is far from efficient and its computing time grows exponentially with problem size. 

This phenomenon is commonly known as combinatorial explosion. 

Consider the frequency assignment problem. If there are N = 10 links, and IFI = 10 

frequencies then the search space has size IFIN = 1010. If we have a machine capable of 

enumerating all solutions to this problem in one hour then for an 11 link, 10 frequency 

problem it would take 10 hours. Similarly the following table (Table 2) indicates how 

long it would take to consider all solutions for other values of N with IFI = 10. 

Table 2. Combinatorial Explosion 

N IFI Time 

10 10 1 hour 

11 10 10 hours 

12 10 4 days 

13 10 1.5 months 

14 10 over 1 year 

15 10 over 1 decade 

16 10 over 1 century 

An average tactical communications network could have 250 links and 50 frequencies 

giving a search space of 50250 which is more than 10400 . Clearly this method is suitable 

only for very small problem instances. More advanced techniques are needed to solve 

more realistic problems. 
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4.2.2 Backtracking 

Backtracking is in its worst case equivalent to complete enumeration but on average it 

performs far better and is a reliable technique for small problems. 

When the solution space consists of ordered configurations of elements then each prefixl 

to a solution represents a partial solution. If it can be shown that the prefix does not 

lead to any desired solutions then there is no need to expand the prefix and continue 

searching that branch. For frequency assignment an optimal solution is ideally a com­

plete assignment with zero interference; alternatively a non-zero lower-bound of the 

problem may be known. The backtracking algorithm begins with the smallest possible 

configuration and continues to add elements until an optimal solution is reached or 

until it can be proven that no optimal solution exists with that prefix. If the latter is 

true the algorithm backtracks by removing the last element from the configuration and 

replacing it with the next possibility. The pseudocode is given in Fig 5. 

A variation on backtracking uses a threshold cost value and any solutions which would 

incur a cost greater than this threshold are not investigated. In this way the algorithm 

can prune the remaining solutions to evaluate and so reduce the time which would 

be required to evaluate all the solutions. Conventional backtracking has a threshold 

value of zero, that is a perfect solution is sought and the lowerbound is zero. However 

it is sometimes the case that a good but imperfect solution will suffice or that the 

lowerbound is known (and non-zero) and in this case the threshold value can be set 

higher. Using a threshold value greater than lowerbound prevents the algorithm from 

guaranteeing optimality but enables good but imperfect solutions to be found more 

quickly. A number of backtracking variants have been investigated by Prosser [Pro93]. 

1 A possible solution to the frequency assignment problem is represented as an ordered list of fre­

quencies which are assigned to the links in the corresponding position. For this problem a prefix to a 

solution might be an assignment of frequencies to only the first x links, the rest being unassigned 
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Figure 5. Backtracking Pseudocode 

C := SENTINEL 

While (links unassigned) AND (iteration < max-iters) AND (still soIns to check) Do 

For all nori-forbidden frequencies (forbidden if previously backtracked) 

Cf := number of violations if assign this frequency to this link 

note frequencies yielding minimum cost 

calculate 6C := C - Cf 

EndFor 

If C f < threshold 

Then assign frequency according to selection criteria 

Else undo last assignment and make frequency forbidden 

EndWhile 

4.3 Heuristic Techniques 

The word' heuristic' means 'guiding in investigation,2. Heuristic has become a term in 

common usage in the field of combinatorial optimisation to describe techniques which 

do not guarantee to find the global optimal solution. The following definition is well­

established. 

'A heuristic is a technique which seeks good (i.e. near-optimal) solutions at 

a reasonable computational cost without being able to guarantee either fea­

sibility or optimality, or even in many cases to state how close to optimality 

a particular feasible solution is.'[RB95] 

2From Collins Dictionary and Thesaurus 1987 
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In the last twenty years several thousands of papers have been published that use 

heuristics to solve combinatorial optimisation problems. Whilst many mathematicians 

consider the approach to lack rigour and despair at the lack of proofs it is clear that 

empirically these methods have been very successful. 

If we take the naive approach of complete enumeration it is not difficult to see that 

whilst it is possible in principle to solve any problem, in practice it is not. This is 

because of the vast number of possible solutions to any problem of a reasonable size. 

Generally the search space increases exponentially with problem size thereby limiting 

the size of problems which can realistically be solved using exact techniques. 

Heuristic techniques search the problem space 'intelligently' using knowledge of previ­

ously tried solutions to guide the search into fruitful areas of the search space. Local 

search is an example of a heuristic technique. In recent years a number of so-called 

metaheuristic techniques have been developed; typically these use other heuristics to 

guide the local search procedure. Examples of such metaheuristics are simulated an­

nealing, tabu search and genetic algorithms. Briefly these can be outlined as follows. 

Genetic algorithms are based on population evolution. At each iteration a population 

(set) of possible solutions is considered. By selecting pairs of solutions and combining 

them to produce new solutions the set is increased. Lower quality solutions are then 

removed from the set and the process is repeated. Combinations of good characteristics 

from the solutions are propagated into the next population and so the average quality 

of the solutions in the population gradually improves. The algorithm is generally 

terminated after a set number of iterations. 

Tabu search always performs a move to the best solution in a certain subset of a 

neighbourhood. The quality of solutions visited during the search is not necessarily 

always improving. To prevent this method from cycling, usually several recently visited 

solutions are removed from any neighbourhood. A stopping criterion has to be defined, 

for example the number of iterations without improvement. 

Simulated annealing modifies a solution to one chosen at random from its neighbour­

hood. Improvements are always accepted. Deteriorations are accepted with a certain 

probability, decreasing during the run. Simulated annealing stops when this probability 

becomes smaller than a specified parameter or a solution below a specified threshold is 

found. 
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Several papers [HTS96] [THL95] have indicated that simulated annealing and tabu 

search are more effective for solving the F AP than genetic algorithms and so these two 

metaheuristics have been investigated in the research presented in this thesis. 

An in-depth discussion of genetic algorithms is outside the scope of this thesis, the inter­

ested reader may refer to a [BBM93a] [BBM93b] [Ree95c]. Tabu search and simulated 

annealing are described in more detail in sections 4.4.2 and 4.4.1 respectively. 

4.3.1 Local Search 

Local search is a general heuristic algorithm which can be applied to find approximate 

solutions to hard combinatorial optimisation problems in a reasonable time. The set of 

all solutions is known as the search space. Starting with an initial solution we define 

its neighbourhood as the set of solutions which differ from the initial solution in some 

small way. The technique used to change the solution to a neighbour is referred to as a 

'move'. At each iteration of the search we apply a move to the current solution with the 

aim to reach, after more iterations, a better solution in the search space. Various search 

strategies use the neighbourhood mechanism, the concepts of 'move', 'neighbourhood' 

and 'local' and 'global' optima will be helpful in understanding the strategies. 

Local and Global Optima 

A feature of many combinatorial optimisation problems is that they have only a small 

number of 'global' optima, and considerably more 'local' optima. This causes problems 

for a number of search paradigms - consider the graph (Fig 6). 

If an algorithm accepts improving moves only it will become trapped at A. In order 

for the search to continue it must also accept dis improving moves, in which case it can 

escape the local optimum at A and may then find the global optimum at B. In order 

fully to understand what is meant by local and global the concept of a neighbourhood 

must be explained. 



CHA.PTER 4. BASIC TECHNIQUES 49 

Figure 6. Graph Showing Local and Global Optimum 

COST 

B 

Neighbourhoods 

If we have a solution x then its neighbours are those solutions which can be reached 

from x by some simple operation. This simple operation is often referred to as a 

'move'. A typical move for the frequency assignment problem might be the assignment 

of a different frequency, from the set F, to one of the N links, in which case any given 

solution has N(IFI - 1) neighbours. If a solution x is better than any solution in its 

neighbourhood then x is the local optimum with respect to this neighbourhood. A 

global optimum is defined as a solution whose cost is less than or equal to any solution 

in the whole search space. 

Defining a Move 

A 'move' is a usually a small change of one of the variables defining the current solution. 

In frequency assignment a typical move involves assigning a different frequency to a 

given link. The frequency may be chosen at random from those available or it may 

be the best frequency available after evaluating all possible alternatives. For a more 

basic technique such as generate-and-test a 'move' may mean generating an entirely 

new solution by randomly assigning frequencies to links, a rather larger change to the 

solution. The definition of a move is problem and algorithm dependent. 
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4.3.2 Selective Algorithms 

Selective algorithms are so called because they begin with a complete solution and 

move from one solution to another in search of a global optimum. In moving from 

one solution to the next the characteristics of the original solution are changed. The 

acceptance (or selection) of the generated move will depend on the search algorithm 

being used. 

Hill Climbing 

Hill climbing is the term used to describe iterative search techniques which accept only 

improving moves. 'Climbing' implies maximising some function describing the solution 

quality, but the technique could similarly be used for minimising functions. In hill 

climbing (descending) the heuristic is simply 'accept a solution if it is better (in some 

sense) than the current one'. If no disimproving moves are accepted the technique is 

susceptible to becoming trapped in the first local optimum it finds, which mayor may 

not be the global optimum. Typically a single move is generated at random from the 

available neighbourhood at each iteration. 

Steepest Descent 

Steepest descent is a variation on hill climbing (descending) whereby all possible moves 

from the current solution are considered and the best one is selected to provide the 

next solution. The generation of the initial solution and the definition of a 'move' are 

the problem specific decisions which affect the quality of the final solution. Pseudocode 

for the steepest descent algorithm is given in Fig 7. 

The steepest descent algorithm is easy to code and results can be obtained quickly. 

The major disadvantage of this technique is its tendency to become stuck in a local 

optimum (minimum) early in the search. This local minimum may not necessarily be 

the global optimum and once a local optimum is reached the algorithm terminates. It 

is common to use steepest descent to obtain a reasonably good initial solution to be 

acted on by more advanced algorithms. It may also be used as a fast final step, to 

improve further the best solution obtained by a different heuristic - if possible. 
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Figure 1. Steepest Descent Pseudocode 

LocalOptimum := FALSE 

C := cost (Sinitial) 

Scurrent := Sinitial 

While LocalOptimum = FALSE AND C> 0 Do 

BestCost := SENTINEL 

For all Si E N(Scurrent)' i = 1 ... N(JFI- 1) 

C' := cost(Sd 

If C' < B estC ost Then 

BestCost:= C' 

BestSoln := Si 

EndIf 

EndFor 

IF B estC ost < C Then 

C:= BestCost 

ScuTrent = BestSoln 

Else LocalOptimum:= TRUE 

EndIf 

EndWhile 

4.3.3 Constructive Algorithms 

51 

Constructive algorithms differ from selective algorithms in that they gradually build 

up a solution to the problem. Backtracking is an example of an 'exact' constructive 

algorithm, and the greedy algorithm is a 'heuristic' constructive algorithm. Initially 

the 'solution' is empty, elements are added one by one after some selection criteria have 

been satisfied. Arriving at a complete solution to the problem usually terminates the 

algorithm. These methods use a form of sequential assignment which mimic the way a 
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frequency assignment problem may be solved manually. 

Greedy Algorithm 

Greedy heuristics attempt to solve the problem in a single pass. Consider the frequency 

assignment problem. The general principle is to place the links in some order and then 

consider them in sequence, assigning a frequency to each in turn. The assignment of 

frequencies is based only on knowledge of previously assigned links and lacks any look­

ahead facility which causes it to incur large costs towards the end of the algorithm. The 

cost of a solution is some measure of the level of interference caused by the assignment. 

With this method the initial ordering of the links is essential to the success of the algo­

rithm, while the method of selection of a frequency is also important. Several methods 

have been suggested for the initial ordering of the links: random ordering, numerical 

ordering and largest vertex degree ordering. The vertex degree is the number of other 

links with which the given link has a constraint. Often the frequency selection method 

is to accept the frequency which would yield least cost although frequency reuse and 

less exhaustive methods have also been used. Some algorithms allow the ordering to 

be changed during the search incorporating knowledge of previously assigned transmit­

ters. Another possible extension of the basic greedy algorithm is to repeat the process 

after finding an initial assignment. This involves making another pass of the links, but 

whereas the first pass had only knowledge of the assignments made to previous links, 

the second pass has knowledge of the whole first pass assignment. The algorithm is 

still greedy in the sense that the best re-assignment possible is made each time a link 

is considered. The pseudocode for the greedy algorithm is given in Fig 8. 

The greedy heuristic generally only makes one pass of the links and so (assuming that 

the time taken to select a frequency is constant) takes time O(N). Whilst this method 

is simple and fast it does not produce good results for complex problems. It is often 

used to generate the initial solution that is acted on by algorithmically superior search 

methods which make many iterations and explore the search space systematically. 
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Figure 8. Greedy Algorithm Pseudocode 

Initialise assignment to nil 

Order the links 

For each link (in turn) Do 

For all frequencies (in ascending order) Do 

cost := number of violations if assign this frequency to this link 

note frequencies yielding minimum cost 

EndFor 

assign frequency according to selection criteria 

EndFor 

4.4 Metaheuristics 

4.4.1 Simulated Annealing 

Simulated annealing is an iterative heuristic search procedure which begins with a 

possible solution and proceeds to explore the neighbourhood space via a sequence of 

moves in search of optimal solutions. In this algorithm one possible random move 

is considered at a time. The neighbourhood solution is compared to the current one 

according to an appropriate cost function, and improving moves are always accepted. 

Simulated annealing overcomes the problem of solutions becoming trapped in a local 

optimum by accepting inferior moves occasionally, according to some probability. The 

probability decreases exponentially to zero as the number of moves increases. This 

allows a large area of the search space to be reached initially but constrains the search 
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towards the end of the algorithm causing it to become trapped in a local optimum, 

which is hoped to be the global optimum. 

Probability is calculated using a parameter T - called 'temperature' because of the 

origins of the idea in thermodynamics. The algorithm executes a number of iterations, 

k, with this temperature and then reduces the temperature by a constant factor every 

k iterations. The algorithm terminates when T reaches some small predefined mini­

mum value. The probability also depends on b.C, the difference between the objective 

function for the disimproving move and the current move. Probability is calculated 

using the equation p = e -~c . The success of the algorithm is largely dependent on the 

cooling schedule which will vary from problem to problem. 

The classical algorithm [KGV83] is given in Fig 9. For a detailed description of the 

method and its refinements the reader is referred to Dowsland [Dow95] [Dow96]. An 

indication of some of the applications solved using simulated annealing is given in 

Chapter 3 section 3.1.7. 

Selection of T start 

The initial value of Tstart is determined in such a way that virtually all new assignments 
-~c 

are accepted i.e. Tstart is such that e---r- ::;::: 0.8 for almost all b.C. 

This is implemented as follows: Select a moderate value for Tstart and perform a number 

of moves. If the proportion of accepted moves is less than 0.8 then double the value 

of Tstart. Continue this procedure until the observed acceptance rate is > 0.8 i.e. 

no...accepted > 0 8 
no_tried . 
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Figure 9. Simulated Annealing Pseudocode 

initialise parameters, T := Tstart 

generate initial random assignment 

evaluate initial assignment, C 

While T > MinTemp and C> 0 

iteration := 0 

While iteration < M axlterations and C > 0 

suggest a move 

evaluate the suggested move, C f 

calculatel::,.C := C f 
- C 

If l::,.C > 0 (inferior solutions) 
-ClC 

p:=e-r 

guess := random(O,l) 

If guess < p 

accept move 

Else accept move 

CurrentCost := C 

iteration := iteration + 1 

EndWhile 

T=T*cool 

EndWhile 

55 
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4.4.2 Tabu Search 

Tabu search is an iterative heuristic search procedure which begins with a possible solu­

tion, s, and proceeds to search the solution space for optimal solutions, via a sequence 

of moves. It was first developed by Glover [Glo89] and has since been applied to a 

wide variety of problems with success (see Chapter 3 section 3.1.7). Two fundamental 

elements of tabu search are to constrain the search by classifying certain of its moves 

as tabu, and to free the search by a short term memory function that provides strategic 

forgetting. Tabu restrictions allow a move to be admissible if they do not apply, while 

aspiration criteria allow a move to be admissible if they do apply. Associated with each 

move is a move value which represents the change to the objective function value as 

a result of the proposed move. Since the algorithm aims to minimise the interference 

suffered, a positive move value indicates a disimproving move whilst a negative move 

value indicates an improvement over the current objective function value. At each it­

eration a set of possible moves defines the neighbourhood and the best possible move 

is selected subject to its tabu status. 

In order to diversify the search and prevent cycling (returning to solutions recently 

visited) the algorithm makes a list of the prime attributes of recently and frequently 

made moves. Recency and frequency refer to the short-term and long-term history of 

moves. Any moves whose attributes appear on the list are said to be tabu and are 

therefore passed over in favour of other non-tabu moves. In some circumstances it may 

be beneficial to over-ride a tabu status. When a tabu move would result in a solution 

better than any visited so far, its tabu classification may be overridden. This is one 

example of an aspiration criterion. 

The dual relationship between tabu restrictions and the aspiration criteria is a means 

for constraining and guiding the search process. The motivation underlying this form 

of integration of aspiration criteria and tabu restrictions is the hypothesis that different 

attributes of moves can have relatively different influences on the quality of solutions 

generated, and thus should be subject to different tenures of tabu status. Initially 

the search acts like a steepest descent algorithm (see section 4.3.2) because none, or 

very few, of the moves are tabu. In order that the search is not constrained by the 

tabu status of moves that were made many iterations ago, the algorithm incorporates 

strategic forgetting - after a certain time a move may have its status changed from 

tabu (T) to non-tabu (NT). 
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Tabu Status 

Tabu restrictions prevent cycling and induce vigour into the search. In some instances, a 

good search path will result in revisiting a solution encountered before. The procedure 

is given a memory to prevent reversal of moves but allows the memory to decay so 

choices are not influenced by decisions that should be regarded as ancient history. 

The values given to the parameters R (recent, short-term) and Q (frequent, long-term) 

prevent cycling. This prevents the search becoming trapped in a local optimum and 

has proven to be an effective strategy. 

For memory conservation and ease of processing it is often desirable to record less than 

the full range of attributes required to characterise a move, so partial range attributes 

are often stored instead. 

Short-term memory: Recency 

If notes were made on all of the solutions previously visited it would be extremely space 

consuming and inefficient. Instead a more practical and effective memory structure is 

employed, where a list of moves performed in the last R iterations is maintained. This 

list is used as a lookup table to see if a considered move is the reverse of a move on 

the list. If the reverse move is present in the list the candidate move is given the 

classification tabu. 

Long-term memory : Frequency 

The use of frequency is a simple diversification approach which penalises frequently 

occurring solution attributes. Frequency based memory provides a type of information 

that complements the information provided by recency based memory. Frequency of a 

move is usually expressed as a percentage of the iterations done so far. 

Objective Function 

A perfect assignment (as distinguished from an optimal assignment) occurs when all the 

constraints are satisfied. To this end we need some way of establishing the 'goodness' 

of a proposed solution. The objective function fulfils this task and provides a measure 
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of a solutions 'goodness' as a numerical value. Various objective functions have been 

suggested for the frequency assignment problem and these are given in Chapter 2 section 

2.5. 

A Move 

A move is a transition from one solution to another. The aim is to move from the current 

solution to a solution that yields greatest improvement - or, lacking the possibility 

of improvement, the least dis improvement - in the objective function subject to the 

restriction that only non-tabu moves are allowed. In fact tabu moves are often also 

evaluated and their selection depends on the aspiration criteria. 

Associated with each reassignment is a move value, which represents the change in the 

objective function value as a result of the proposed reassignment. Move values generally 

provide a fundamental basis for evaluating the quality of a move. 

Neighbourhood 

Tabu search methods operate under the assumption that a neighbourhood can be con­

structed, N(s) ~ S, to identify an adjacent solution, S', that can be reached from any 

current solution, s. An adjacent solution is one which can be reached by executing a 

single move from the current solution. Tabu search generates a candidate list N(s) of 

neighbours of s and moves to the best solution S' E N(S). 

Aspiration Criteria 

The appropriate use of aspiration criteria can be very important for enabling a tabu 

search method to achieve its best performance levels. In some instances the conditions 

which make a move tabu are too restrictive in that they also forbid moves which may 

lead to previously unvisited solutions - more specifically, to attractive unvisited solu­

tions. We therefore design aspiration criteria that define conditions under which a tabu 

move may be accepted. The role of aspiration criteria is to provide added flexibility to 

choose good moves whilst retaining the ability to avoid cycling. 

A simple aspiration criterion might be: if the tabu move under consideration is better 
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than any solution found so far then accept it. 

Termination Criteria 

A number of possible termination criteria can be suggested: the reaching of some 

predefined maximum number of iterations; the solution reaches a predefined level of 

optimality deemed 'good enough'; or the number of iterations done since the solution 

value last changed is greater than a specified maximum number. 

Tabu Search Algorithm 

The classical algorithm is given in Fig 10 [CHS96j. For a detailed description of the 

method the reader is referred to Glover [Gl089j. Refinements to the original algorithm 

are described in Glover [Gl090j. Tabu thresholding and surrogate constraint tabu search 

have been applied to the frequency assignment problem with success, [CS95j. 

Figure 10. Tabu Search Pseudocode 

step 1: Generate an initial solution s in S and set best solution so far Sb := S 

step 2:Determine the neighbourhood of the solutions s, N(s) 

step 3: Select Sf from N(s) such that Sf is the best tabu move also satisfying 

the aspiration criterion or else the best nontabu move 

step 4:Set s := Sf and if Cost(s) < Cost(Sb) then Sb := s 

step 5: Update memory structures 

step 6: If termination criteria not satisfied then go to Step 2 

4.4.3 Divide and Conquer 

The divide and conquer strategy involves dividing a problem into smaller similar sub­

problems, solving these subproblems either individually or recursively and then com­

bining the results to obtain a solution to the whole problem. The subproblems can be 

solved more quickly than the problem can be solved taken in its entirety. 
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Ideally the subproblems should be independent problems - that is, the solution of 

one has no effect on the solution of another part and they can be recombined without 

further computations to obtain a solution to the whole. Not all problems can be divided 

into independent subproblems; the frequency assignment problem is one such problem. 

In order to use the essence of the strategy a problem can be divided as best possible and 

an approximate solution obtained. A minimal amount of further computation is then 

required to obtain a valid solution after combining the solution parts. The pseudocode 

is given in Fig 11. 

When using a divide and conquer strategy there are two main components to consider: 

how to divide the original problem and how to solve the subproblems. Neither of these 

decisions is trivial; both will affect the computation time and quality of the solution 

obtained. 

Figure 11. Divide and Conquer Pseudocode 

Initialise data structures 

Generate frequencies (given number and range) 

Sort links into descending co-site vertex degree order 

Divide the problem into k bands according to division criteria 

Generate Initial Solution 

Solve the k bands individually 

Recombine solutions from separate bands 

If non-independent subproblems then apply improvement heuristic 

Report results for whole problem 
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Dividing the Problem 

Identifying ways in which a problem may be divided into smaller, independent sub­

problems requires knowledge of the problem and how various elements interact. Often 

there is more than one way to divide the problem and these alternatives should be 

considered carefully. 

Conquering the Subproblems. 

Solution of the subproblems individually ideally provides a final solution more quickly 

than trying to solve the problem in its entirety. Often the application of the same 

algorithm to the subproblems as the whole problem exhibits this characteristic due to 

the efficiency of the algorithm in solving simple instances of the problem. Another 

approach is to solve the subproblems using naive algorithms if the subproblems are of 

significantly reduced size. 

These two goals are in conflict giving rise to a trade-off situation. If the problem is 

divided into many small subproblems then their individual solution may be more readily 

found. However, the overhead involved in the division and subsequent recombining of 

the subproblems may mean that the total time-saving is reduced. 

lj sing the divide and conquer method in a recursive framework can be particularly 

effective if the problem lends itself well to this approach, recursively dividing the prob­

lem down to a trivial case. Alternatively, parallel computing can massively reduce 

computation time if the problem can be divided into independent problems. 

The implementation details for the application of tabu search, simulated annealing and 

divide and conquer to the F AP are given in Chapters 7 and 8. 



Chapter 5 

Factors Influencing Algorithm 

Performance 

The algorithm chosen to solve a particular problem will affect the quality of the solutions 

obtained and is therefore the primary decision when attempting to solve a problem. 

However, having selected an algorithm there are often other factors able to influence 

the quality of the final solution. For example, if the algorithm evaluates all possible 

moves and several of those moves yield solutions of equal improvement which should 

be chosen? The selection strategy will influence the search and ultimately the quality 

of the final solution. 

This chapter explores the influence of three factors on the performance of a given 

algorithm: 

1. The order in which the data is presented. 

2. The selection of a move from those yielding equivalent cost solutions. 

3. The provision of an incremental objective function. 

The MATRIX and EUCLID test data (described in Chapter 6) was used for this in­

vestigation. The problems are relatively small and were solved using greedy and back­

tracking algorithms (described in Chapter 4). The results are summarised and some 

62 
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conclusions are drawn. These conclusions were used when developing the simulated an­

nealing and tabu search algorithms described in Chapter 7 and the divide and conquer 

algorithm described in Chapter S. 

5.1 Ordering the Links 

Intuitively, if the vertices of the graph (links) are ordered in some sensible way then it 

would not be unreasonable to anticipate better results than if no ordering was imposed. 

If the links are placed in descending order of difficulty then the most difficult links will 

be assigned frequencies first and this could avoid problems later in the algorithm when 

trying to find a suitable frequency for a difficult link. The ordering of the links has 

a significant impact on the quality of the solutions obtained by sequential assignment 

algorithms, particularly greedy algorithms where only one pass of the links is made. 

Firstly the concept of 'difficult' needs to be defined, various definitions have been used 

in the literature. For example the difficulty of a given link may be calculated by: 

1. The number of other links with which it has a non-zero constraint (vertex de­

gree)[ZB77j [Met70j. 

2. The sum of the frequency separation values (weights) on the incident edges 

[HaISOj. 

3. The number of other links with which it has a co-site constraint [PS9Sj. 

4. The number of distinct frequencies used by assigned adjacent links plus the sum 

of the weights on any edges whose links are as yet unassigned [LanS9j. 

The advantage of the first three definitions is that they do not change during the algo­

rithm and so need only be computed once. Definition 4 is clearly dynamic and would 

need to be recomputed during the running of the algorithm. Other measures of 'diffi­

culty' use arbitrary weightings. The above definitions describe the criteria by which the 

links are assigned a 'difficulty' but do not specify the ordering. Typically a list of links 
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is based on largest first l [ZB77] or smallest last2 [Met70] ordering - both of these order­

ings have proven successful for networks with only co-channel constraints. Generalised 

vertex degree orderings were introduced by Hale [HalSO]; these are more appropriate to 

networks with co-channel and adjacent-channel constraints. In the generalised largest­

first and generalised smallest last orderings the weighted degree (definition 2 above) of 

the vertex was used. 

Another method has been suggested by Smith and Hurley [SH97] whereby a maximum 

clique3 is assigned first. This method has been used with success for their data sets 

although they recognise that constraint graphs exist with no large cliques, or even 

triangles. The EUCLID and MATRIX data sets were small and solvable using exact 

techniques and so analysis of the graphs was unnecessary. The TNET data used for the 

majority of the work described in this thesis has no large cliques and so the maximum 

clique method was inappropriate in this case. In addition the algorithm used to search 

the graph for cliques takes a few minutes on a 133MHz PC. This run-time increases 

rapidly if a less than effective initial vertex ordering is used. The maximum run-time 

for the solution of the TNET data is 15 minutes and so this type of preprocessing was 

infeasible. 

5.2 Selecting a Frequency 

Assume that at each iteration the frequency assigned to a given link is changed. If all 

available frequencies are evaluated at each iteration and several frequencies yield equiv­

alent best-cost solutions a criterion for selecting one of these frequencies is required. 

One possibility is to select the first frequency which yielded a best-cost solution, this 

would generate different frequencies depending on whether the frequencies were evalu­

ated at random or in some predefined order. Another criterion is to select a frequency 

if it is the smallest, largest or least frequently assigned so far. Alternatively a frequency 

could be selected at random from those which yielded equivalently best-cost solutions. 

lLargest-first order sorts the nodes of a graph according to their vertex degree with the node of 

largest degree at the beginning of the list. 

2Smallest-last order is found by repeatedly deleting the node of minimum vertex degree from a graph 

and finally reYersing the order so that the last node to be deleted is the first in the list. 

3 A clique is a ma.ximal set of mutually interfering transmitters 
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When randomly selecting a frequency it is typical to maintain a list of the frequencies 

yielding the best-cost solutions and to generate an index at random which in turn 

indicates the selected frequency. This method is satisfactory although there may be 

a predetermined upper limit on the list size in order to reserve memory, otherwise 

dynamically allocated memory must be used. 

A more efficient method (with respect to storage space and probably with respect to 

time) for selecting a frequency at random (from those yielding solutions of equivalent 

best-cost) is described in Chapter 7 section 7.3.4. This method does not rely on lists to 

preserve the best frequencies found. Rather than maintain a list of all the equivalently 

best-cost frequencies it is possible to just store one frequency whilst still maintaining the 

random selection strategy. This method is preferred for data sets with large numbers 

of frequencies or where many equivalent-cost solutions are anticipated. 

5.3 Incremental Objective Function 

If all of the constraints are inspected each time the objective function is evaluated then 

the complexity of computing the objective function is O(C). Typically a move only 

makes a small change to the assignment during a single iteration; therefore only links 

involved in that move need re-evaluating, the evaluation of the rest of the assignment 

remains unchanged. If there are C constraints and N links, then a given link is involved 

in approximately ~ constraints and so it should be possible to reduce the complexity 

of the objective function to O( ~). Given that the objective function is evaluated after 

every move, of which there may be tens of thousands, it is clear that substantial time 

savings are possible by using an incremental objective function. Ideally the constraints 

should be presented in such a way that the constraints involving any given link are 

easily identifiable. 

5.4 Implementation 

During this early experimentation the 'quality' of a solution, given by the evaluation of 

the objective function, was determined by the number of violated constraints. All the 

results were obtained on a 486 Desktop PC, the code was written in C using Turbo C 
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version 2.01 software. 

5.4.1 Algorithms 

The EUCLID and MATRIX data sets were small and were solved using three algo­

rithms: greedy algorithm, repeated greedy algorithm and a backtracking algorithm. 

The greedy and backtracking algorithms are given in Chapter 4. The repeated greedy 

algorithm simply repeated the greedy algorithm until no further improvement was ob­

tained (described in chapter 4 section 4.3.3). 

5.4.2 Ordering the Links. 

For this investigation three presentations of the vertices were considered. In the first 

two the links (vertices) were placed in descending order of difficulty using definitions 1 

and 2 as described in section 5.1. To recall: 

• Def 1 The number of other links with which it has a non-zero constraint (vertex 

degree). 

j=N-l { 1 ifCij > 0 
vertex_degreei = I: 8ij , where8ij = 

j=O,ji:i 0 otherwise 

• Def 2 The sum of the frequency separation values (weights) on the incident edges 

j=N-l 
vertex-sumi = I: Cij 

j=O,ji:i 

The third presentation was to leave the vertices as they were originally presented, in 

random order. 

5.4.3 Selecting a Frequency 

If several frequencies exist that yield equivalent best-cost solutions then a criterion for 

selecting one of these frequencies is required. Two criterion were used during this early 

investigation : 

• Def 1. Selection of the smallest frequency from those yielding equivalent best-cost. 
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• Def 2. Selection of a frequency at random from those yielding equivalent best-cost. 

Another selection criteria used in minimum span frequency assignment problems is 

to try and eliminate the largest frequency used. Therefore, if the largest currently­

assigned frequency is in the set of frequencies yielding equivalent best-cost solutions 

then a different frequency would be chosen in preference. The frequencies were assessed 

in ascending order and so the first frequency to obtain the best-cost solution was also 

the smallest frequency. The data sets used for this investigation were small making 

it feasible for the equivalent best-cost frequencies to be held in a list and a randomly 

generated index used to select a frequency. 

5.4.4 Incremental Objective Function 

The way in which the frequency assignment constraints are represented determines the 

method used to exploit that representation to achieve the most efficient evaluation of 

the objective function. In many cases the constraints are simply provided in a list 

and the implementor is able to translate this into the most appropriate data structure 

(depending on problem size and any currently existing software). 

Representing the Constraints 

Co-site and far-site constraints describe a relationship between two links, and so a 

matrix is a convenient way to describe the constraints. The row and column indices 

represent the links and the matrix values represent the required frequency separation. 

This method is suitable for smaller problems where storage of the (relatively sparse) 

matrix does not present a difficulty with the memory available. For larger problems 

other data structures can be used which are less memory intensive; an indexed linear 

linked list representation is described in Chapter 7, section 7.1.4. 

The EUCLID data set was very small (85 constraints), and also contained constraints 

between three links, and so the presented list was used during the evaluation of the 

objective function, the total run-time for the greedy algorithm was less than 2 seconds 

and so optimising the objective function was not pursued. 

The MATRIX data set has constraints of the form IIi - Ijl ~ Cij with Cij integer and 

positive, for this data set the value 0 represents 'no constraint'. An example is given 
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in Fig 12. The matrix is upper diagonal with valid constraint values of 1, 2, 3, 4 and 9 

which are defined as : lfi - fjl ~ x where x E {I, 2, 3, 4, 9}. Recall that fi and Ii are 

the frequencies assigned to links i and j respectively. In the example given the value 

representing the constraint I fI - 12 I ~ 3 is emboldened. The metrics describing the 

MATRIX data set are given in Chapter 6. 

Figure 12. Matrix Showing FAP Constraints 

0 2 3 4 

0 0 1 2 9 0 

1 0 0 3 4 1 

2 0 0 0 3 2 

3 0 0 0 0 1 

4 0 0 0 0 0 

Objective Function 

The purpose of the objective function is to evaluate the current solution and provide 

a measure of its desirability (cost), usually expressed as a number. This information 

is used by the search technique in its pursuit of optimal solutions. Since the current 

solution (assignment) is being altered during each iteration of the algorithm then the 

cost of the assignment also needs to be re-evaluated at each iteration. 

In the naive method the objective function considers every constraint in turn, decides 

whether the most recent iteration of the algorithm has affected that constraint, and re­

evaluates its contribution to the total cost as necessary. This method has computational 

complexity of O( C) where C is the number of constraints. By exploiting data structures 

used to represent the constraints it is often possible to develop an incremental objective 

function which updates the current cost depending on the most recent move. This is 

explained further in the next section. 
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For this investigation the objective function used was the number of constraints vio­

lated. 

i,j=.'i-l 

L Xij 
i,j=O,j#i 

Matrix Objective Function 

WhereXij ~ { 
o otherwise 

Using a naive evaluation of the solution cost using the matrix data structure would 

require inspection of each value of the matrix, this has complexity O(N2) where N is 

the number of links. Clearly this method can easily be improved by inspecting only 

the values in the upper diagonal O( ~2). These naive methods are satisfactory but they 

would become impracticable as N increases, for realistic problems N can have values 

over 1000 and so any improvement in the time taken to evaluate the objective function 

would be an advantage. 

An incremental objective function updates the current cost according to the changes 

made (or proposed) during the current iteration. Assume that in the current iteration 

a single link, x, is assigned a new frequency. To calculate the effect of this change on 

the current solution cost only the constraints involving that link need to be considered. 

For the matrix representation all constraints involving a link x are found in 

row x (columns x + 1 to N - 1) and in column x (rows 0 to x-I). It is not necessary 

to check entry x, x since this is 0 ('no constraint') in each case. The complexity of the 

incremental objective function is O(N). Partial assignments (incomplete solutions) can 

also be evaluated using this method - any unassigned links involved in a constraint 

are assumed to satisfy the constraint. The matrix entries considered in the incremental 

objective function for x = 1 are shown in Figure 13. 
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Figure 13. Incremental Matrix Evaluation 

0 1 2 3 4 

0 0 1 2 9 0 

1 0 0 3 4 1 

2 0 0 0 3 2 

3 0 0 0 0 1 

4 0 0 0 0 0 

The incremental objective function previously described can be optimised further for 

the greedy algorithm (not the repeated greedy algorithm) and the backtracking algo­

rithm when no ordering is imposed on the links. For these two algorithms the links 

are assigned frequencies in ascending numerical order, therefore any links with higher 

index numbers (appearing later in the list), do not need to be checked since they are 

unassigned and therefore unable to contribute to constraint violations. In relation to 

the matrix this means that only constraints in column x (rows 0 to x-I) need to be 

re-evaluated. This is shown in Fig 14 for x = 2. The complexity of this incremental 

objective function is O( ~). 

Figure 14. Improved Incremental Matrix Evaluation 

0 1 2 3 4 

0 0 1 2 9 0 

0 0 3 4 1 

2 0 0 0 3 2 

3 0 0 0 0 1 

4 0 0 0 0 0 

The above discussion demonstrates the implications of using an efficient incremental 

objective function when solving realistic frequency assignment problems. The exam­

ples show how exploiting the matrix representation can reduce the complexity of the 

objective function from O(N2) to O(N) (the final improvement was for a special case 
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and so is not included). 

5.5 Summary of Results 

The algorithms applied to the EUCLID and MATRIX data sets were: greedy, repeated 

greedy and backtracking algorithms. The links were ordered using the definitions in 

section 5.4.2. A frequency yielding equivalent best-cost solutions was chosen according 

to the criteria given in section 5.4.3. Every combination of ordering and frequency 

selection was investigated for each of the algorithms. The best solutions possible for 

each of the data sets was known ( 1 constraint violation for EUCLID and MATRIX32, 

o constraint violations for MATRIX38 and MATRIX50). 

For ease of reference the following notation has been used for the ordering criteria : 

definition 1 = vertex-degree, definition 2 = edge-sum, definition 3 = no-order. Similarly 

for selection of frequencies: definition 1 = smallest, definition 2 = random 

• The greedy algorithm consistently obtained solutions with a relatively high cost 

- however these solutions were obtained very quickly (approximately 1 second) 

and provided lower cost solutions than a randomly generated solution especially 

when the links were considered in vertex-degree ordering. 

• The backtracking algorithm consistently obtained the lowest-cost solutions, ob­

taining optimal solutions for two of the data sets within the time allocated. 

• The two greedy algorithms generally obtained lower cost solutions using smallest 

frequency selection than random frequency selection. The reverse was true for 

the backtracking algorithm. 

• The time taken to obtain solutions when vertex-degree or edge-sum ordering or 

random frequency selection were used was longer due to overhead involved. This 

time oyer head seemed excessive for the greedy algorithm, considering the total 

run time. 

• Solutions obtained with random frequency selection generally used a smaller range 

of the available frequencies. 

• Solutions with the lowest cost were generally obtained using vertex degree order­

ing. 
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• For the EUCLID data set the span used in the final solution was less for links 

which were ordered using vertex-degree, for the other data sets there was little 

discernible difference. 

• The speed advantages due to the use of an incremental objective function were 

only noticeable for the longer runs of the backtracking algorithm. 

• The backtracking algorithm had the longest run-times of the three algorithms 

investigated (maximum of 40 minutes). Even for these small problems the time to 

evaluate all solutions in the search space would have been 1010years for MATRIX38 . 

5.6 Conclusions 

All of the algorithms were naive. However they provided a means for judging the effect 

of the various ordering, selection and objective function factors that were investigated. 

The greedy algorithm yielded relatively poor cost solutions compared to the back­

tracking algorithm. However, reasonably low cost solutions (using comparable spectral 

resources) were found quickly. The solutions had a lower cost than randomly generated 

solutions. The use of a greedy algorithm to obtain an initial solution has been used in 

the investigations carried out in Chapters 7 and 8. 

The backtracking algorithm consistently obtained the lowest cost solutions, the number 

of solutions investigated (in a fixed time period) increased when the incremental objec­

tive function was used. This algorithm had the longest run-times, it was also the only 

algorithm to obtain optimal solutions. The lowest cost solutions were found with ran­

dom frequency selection, they also used a smaller range of frequencies. Any algorithm 

that executes a high number of iterations, or acts on a realistic data set will benefit 

from the implementation of an incremental objective function. All of the investigations 

described in later parts of this thesis have used an appropriate incremental objective 

function. The selection of a random frequency generally enabled lower cost solutions 

to be found which used a smaller range of frequencies - this selection criteria has been 

used in all further work described in the thesis. 

The time overhead incurred when using vertex-degree ordering, edge-sum ordering or 

random frequency selection seemed excessive. However, the extra time for ordering is 

only incurred once (at the beginning of the algorithm) and the selection of a frequency 
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at random from those yielding equivalent best-cost solutions has benefits in terms of 

cost and reduction of frequencies used. Whilst the time taken for the greedy algorithms 

was doubled it should be considered in perspective of the extremely short run-times. 

For algorithms running for a longer time period it is suggested that the additional time 

overhead will be small in comparison to the total run time and that using these ordering 

and selection measures will continue to improve solution quality. 

When links were ordered using vertex-degree solutions with the lowest cost were gener­

ally found. In addition the EUCLID data set used a smaller range when vertex-degree 

ordering was used, for the other data sets the range was comparable. The objective 

function used in this investigation calculated the total number of constraint violations. 

The lower cost solutions were found when using the vertex-degree link ordering. A 

further investigation considered an alternative objective function which found the sum 

of the positive discrepancies (see Chapter 2 section 2.5). When this objective function 

was used the lower cost solutions were found when using the edge-sum link ordering. 

It would appear that the ordering criteria is directly linked to the definition of the 

objective function and so the two should be chosen to complement each other. 

When using the vertex-degree ordering the connectivity of the graph is used to describe 

the difficulty of a vertex. However the frequency separation requirements of the adja­

cent edges are not included in the measure of difficulty (co-site constraints have larger 

frequency separation requirements than far-site and are thus harder to satisfy). When 

using the edge-sum ordering the difficulty of a link gives an indication of the number 

of co-site constraints with which that link is involved. With edge-sum ordering links 

with a high vertex degree and many far-site constraints will still be considered to be 

difficult. However the connectedness of the link is not reflected in the difficulty of a 

link. 

When the objective function sums violations the vertex-degree ordering is most ap­

propriate, when the cost is calculated using the sum of the positive discrepancies the 

edge-sum ordering is most appropriate. Ideally the difficulty of an edge should reflect 

both its connectedness and the values of the weights on adjacent edges. 



Chapter 6 

Test Data 

Three different formats of test data have been used during this research: EUCLID, 

MATRIX and TNET. The EUCLID data set is a small example problem, the MATRIX 

data set describes 3 moderate-size problems, and finally, the TNET scenarios represent 

real-life problems. There are 46 TNET scenarios. The EUCLID and MATRIX data 

sets were used only during preliminary experimentation as described in Chapter 5. The 

TNET data were used for the heuristic algorithm investigation. 

6.1 EUCLID 

The EUCLID l test data set is a description of one simple scenario intended as an ex­

ample only. It was provided by the EUCLID group in appendix 3 of the CALMA 2 

project specification [EUC]. There are constraints between pairs of links and also be­

tween triples of links. There are four different types of constraints. If Ii, Ii and fk 

are the frequencies assigned to links i, j and k respectively, the objective is to find an 

assignment satisfying all of the constraints, there are four types of constraint: 

• C2 Iii - fjl >= 3 

IEUropean Co-operation for the Long-term In Defence 

2Combinatorial ALgorithms for Military Applications 
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• C4 Iii + Ij - 2Ikl >= 5 

Table 3 gives an indication of the size and complexity of the data set. The values given 

are: the number of frequencies IFI, the number of links N, the number of non-zero 

constraints C, the number of constraints of each type, and S the size of the search 

space. 

Table 3. Euclid Data Metrics 

IFI N C IC11 IC21 IC31 IC41 S 

14 18 85 34 34 6 11 1020 

6.1.1 Input Format 

The data are presented as a single text file containing the pairs (and triples) of links 

involved in each type of constraint. 

6.1.2 Objective Function 

The objective function gives the number of constraints that are violated. 

6.2 MATRIX 

The MATRlX data set was provided by Steve Hurley at Cardiff University. The gen­

eration of the realistic scenarios was made possible by discussions with several people 

at the Defence, Evaluation and Research Agency at Malvern and the Army EMC 3 

Agency. The data sets are based on combat net scenarios. There are three computer 

generated scenarios having 32, 38 and 50 links respectively. 

The constraints are between pairs of links and take the form Iii - hi >= Cij where 

Ii and fJ are the frequencies assigned to links i and j respectively and Cij is the 

3Electro?-.Iagnetic Compatibility 
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required frequency separation. The objective is to find an assignment satisfying all 

of the constraints. For the 32 link data set the optimal solution has one constraint 

violation, while for the other two sets the optimal solution has no constraint violations. 

There are five different types of constraint: 

• C111i -ijl >= 1 

• C2 Iii -iii >= 2 

• C3 Iii -iii >= 3 

• C4 Iii - ijl >= 4 

• C5 Iii - ijl >= 9 

Table 4 gives the metrics for the data sets. The values given are: the number of 

frequencies IFI, the number of links N, the number of non-zero constraints C, the 

number of constraints of each type, and S the size of the search space. 

Table 4. MATRIX Data Metrics 

IFI N C IC11 IC21 iC31 IC41 IC51 s 

25 32 199 60 58 48 33 0 1044 

30 38 248 73 62 18 33 62 1056 

40 50 465 143 136 141 45 0 1080 

6.2.1 Input Format 

The data are provided in a single data*.txt file containing the constraint matrix (see 

Chapter 5 section 5.4.4). The frequencies generated are numbered consecutively from 

1 to some user-defined percentage of the number of links. 

6.2.2 Objective Function 

The objective function gives the number of constraints that are violated. 
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6.3 TNET 

The TNET data was supplied by Mr. Roger Edwards at the Defence, Evaluation and 

Research Agency in Malvern. The data sets represent 46 different scenarios, which 

are constraint-based descriptions of real life scenarios used in tactical communications. 

The networks were generated randomly. However, they exhibit features atypical ofreal 

networks and are sufficiently close to reality to demonstrate the validity of the algo­

rithms. Tables 5, 6 and 7 give an indication of their size and complexity. Tables 5 and 

6 describe scenarios for which there are known zero interference solutions, henceforth 

referred to as Group A data. The starred entries in tables 5 and 6 show scenarios for 

which D.E.R.A. had obtained zero cost solutions prior to supplying the data, the other 

entries have subsequently been shown to have zero-cost solutions by the algorithms 

implemented in the research described in this thesis. Table 7 describes scenarios for 

which there are no known zero interference solutions, henceforth referred to as Group 

B data. The metrics for each scenario are: the number of frequencies IFI, the number 

of links N, the number of non-zero constraints C, the percentage of co-site constraints, 

the span of the frequency set, the largest vertex degree, the largest co-site and far-site 

channel separation values (L.co - site and L.far - site) and S the size of the search 

space. 
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Table 5. Group A Data 

Scen IFI N C %co- span(F) Largest L.co- L.far- Search 

ario site MHz V.degree site Cij site Cij Space 

1 40 158 3099 5.3 169 123 27.1 9.1 10253 

2* 40 60 244 16.4 169 25 27.1 6.1 1096 

3* 80 98 193 35.8 209 18 40.1 8.1 10187 

4 40 124 215 63.3 399 8 195.9 9.5 10199 

5 40 158 4058 3.3 169 93 27.1 9.1 10253 

6* 40 12 20 0.3 169 6 27.1 0.6 1019 

7 80 164 846 17.0 209 24 40.1 8.1 10312 

8 40 92 1298 5.70 169 59 27.1 9.1 10147 

9* 40 16 30 26.67 169 5 27.1 0.6 1026 

10 80 224 1363 15.55 209 29 40.1 8.1 10426 

11 40 312 1105 43.80 399 18 195.9 9.5 10500 

12 40 170 3565 4.57 169 88 27.1 9.1 10272 

13* 40 4 4 50.00 169 2 27.1 6.1 106 

14 80 312 2129 14.19 209 41 40.1 8.1 10594 

15 40 174 3177 4.82 169 85 27.1 9.1 10279 

16* 40 4 2 100.0 169 1 27.1 0.0 106 

17 80 364 2655 14.16 209 34 40.1 8.1 10693 

18 40 470 1666 43.64 399 15 195.9 9.5 10753 

19 40 164 3956 3.6 169 94 27.1 0.1 10263 

20* 40 12 27 22.2 169 7 27.1 0.3 1019 
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Table 6. Group A Data contd. 

Scen IFI N C %co- span(F) Largest L.co- L.far- Search 

ario site MHz V. Degree site Cij site Cij Space 

21 80 344 2570 13.1 209 43 40.1 0.1 10655 

22 40 484 2016 35.5 399 23 195.9 0.1 10775 

23 40 164 257 55.3 399 7 195.9 1.1 10263 

24 40 154 3495 3.5 169 103 27.1 9.1 10247 

25* 40 12 16 37.5 169 6 27.1 6.1 1019 

26 80 358 2230 29.6 209 38 40.1 2.3 10681 

27 40 500 2392 88.5 399 22 45.1 3.5 10801 

28* 40 328 670 0.0 399 14 5.5 10525 

29 40 1040 8554 93.7 399 45 28.7 3.5 101666 

30* 40 16 50 16.0 169 10 27.1 6.1 1026 

31 80 346 3423 24.3 209 58 40.1 2.3 10658 

32 40 490 2834 87.3 399 27 45.1 3.5 10785 

33* 40 16 19 52.6 169 4 27.1 0.6 1026 

34 80 356 1880 29.0 209 32 40.1 2.3 10678 

35 40 472 1358 89.7 399 14 45.1 3.5 10756 

36* 40 422 1191 0.0 399 31 5.5 10676 

37* 40 448 1782 0.0 399 33 5.5 10717 
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Table 7. Group B Data 

Scen IFI N C %co- span (F) Largest L.co- L.far- Search 

ario site MHz V.Degree site Cij site Cij Space 

1 40 240 779 36.5 399 16 195.9 9.5 10384 

2 40 410 1578 39.6 399 24 195.9 9.5 10657 

3 80 740 11964 12.8 209 82 40.1 0.1 101408 

4 40 1100 8563 91.0 399 39 28.7 0.1 101762 

5 80 512 9916 8.7 209 97 40.1 8.1 10974 

6 40 170 5584 2.6 169 136 27.1 9.1 10272 

7 40 1090 9325 93.3 399 47 28.7 3.5 101746 

8 80 504 15025 5.7 209 163 40.1 8.1 10959 

9 80 436 11552 6.7 209 130 40.1 8.1 10830 

6.3.1 Input Format 

The test data are provided in 2 separate files 

• * .frq gives the range of the frequency band and the number of discrete frequencies 

to generate . 

• *.ctr describes the interference network; pairs oflinks (i,j) which have the poten­

tial to interfere are given along with the required frequency separation Cij which 

would guarantee zero interference. 

6.3.2 Objective Function 

The objective is to find an assignment which minimises the interference suffered by the 

whole network. The interference is measured by the sum of the positive discrepancies: 

i,j=N 

cost(A) = I: max(O, Cij -Iii - iii) 
i,j=1 
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6.3.3 Choice of Objective Function 

For the EUCLID and MATRIX data sets the sum of the constraint violations was an 

appropriate objective function. All of the constraints had relatively small Cij values 

compared to the TNET data and so any constraint violated would have had a similar 

effect on the interference suffered. However, for the realistic TNET scenarios the sum 

of constraint violations would not accurately represent the interference suffered. This is 

due to the significant difference between the largest and smallest frequency separation 

requirements and the larger frequency span available. An objective function using the 

sum of constraint violations would not indicate whether it was a far-site (small C ij ) 

or co-site (large Cij ) constraint which had been violated; these each have a different 

impact on the interference suffered. The sum of the positive discrepancies therefore 

gives a more accurate measure of the interference suffered when solving the TNET 

scenarios. 

6.3.4 Availability 

The TNET scenarios provided by D.E.R.A. are unclassified. Persons interested in ob­

taining these data sets are asked to contact Mr. Roger Edwards directly as distribution 

needs to be documented. The address is: Mr. Roger Edwards, Room PC309, St. 

Andrews Road, :vlalvern, Worcs, WR14 3PS. 

6.4 CELAR 

The CELAR data [CEL] was provided for the CALMA project which ran for 18 months 

and investigated the effectiveness of several metaheuristic techniques: tabu search, 

genetic algorithms, simulated annealing and local search. The results of the CALMA 

project [CAL95] would conceivably provide good benchmark results with which to 

compare the divide and conquer approach described here. 

The CELAR data were not used to obtain results for the divide and conquer approach 

because there were significant differences in the nature of the two data sets some of 

which would require an essentially new implementation. These fundamental differences 

are outlined below. 
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1. In the TNET data there is one frequency set, in the CELAR data there are 

several overlapping frequency domains : division of the search space by dividing 

the frequency set would be complex for the CELAR data as different links may 

belong to different, overlapping frequency domains. 

2. The TNET objective function measures the sum of the positive discrepancies 

whereas the CELAR objective function calculates a cost depending on a weighted 

function. 

3. There are two forms of constraint for the CELAR data I Ii - Ij I > Cij or I Ii - fj I = 

Cij whereas all the TNET constraints are of the form 11i- fjl ;::: Cij. After lengthy 

discussions with D.E.R.A. it was decided that there was no reason to have a fixed 

frequency separation for some constraints under the circumstances that were used 

to generate the TNET scenarios; this further implied that the scenarios were not 

of a similar nature. 

4. The TNET scenarios had no variables pre-assigned whereas the CELAR data 

required some variables to be pre-assigned and gave varying mobility penalties 

should they be assigned different frequencies. 

5. All of the TNET constraints were mandatory ('hard') whereas the CELAR data 

had some 'soft' and some 'hard' constraints. 

One of the findings of the CALMA project was that preprocessing of the data was vital 

to the success of all the heuristics investigated [THL95]. By using arc consistency, and 

exploiting the equality constraints, it was possible to reduce the size of the scenario 

considerably. Similar investigative preprocessing measures were applied to the TNET 

scenarios and it was found that the scenarios were not reducible in the same way. 

It would be possible to alter the existing divide and conquer program to accept the 

CELAR data. However, the difference in the type of frequency sets available means 

that a new investigation would be required to decide how to divide the problem into 

subproblems as the current method could not be employed. 
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Benchmarks 

The TNET test data were used for this investigation; these are non-trivial problems 

which require solution by heuristic, rather than exact, algorithms. A general description 

of the two heuristic algorithms, simulated annealing and tabu search, was given in 

Chapter 4. This chapter describes how the two algorithms have been implemented 

for the frequency assignment problem. In Chapter 8, a divide and conquer algorithm 

is described which incorporates these heuristics; results are also given. In order to 

compare fairly the divide and conquer implementation with the implementation of a 

single metaheuristic, program modules have been developed which enable the same 

code to be used in either implementation. 

All of the code was written in ANSI C using Borland C++ version 4.5 software. The 

results were obtained on a Pentium desktop computer (lOOMHz). 

This chapter is divided into six parts: part one describes the common decisions regard­

ing problem representation; part two describes the implementation of the simulated 

annealing method; part three describes the tabu search implementation; part four gives 

computational results; part five discusses the results; and finally part six gives some 

concluding remarks for the chapter. 

83 
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7.1 Common Decisions 
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When implementing the heuristics some decisions about data structures, the definition 

of a move and the choice of objective function were common to both implementations. 

These are described here. Once the algorithms had been implemented the various 

parameters were adjusted until a combination of parameters yielding good results was 

found. These parameters then remained constant when applied to new scenarios. 

7.1.1 Representing an Assignment 

A frequency assignment, A = (II, 12, .·.IN), is represented using an array of frequencies. 

The indices l..N refer to the link to which the frequency is assigned. The initial 

assignment was obtained using stages 1-3 described in Chapter 8 so that the results 

from the heuristics on their own and within the divide and conquer algorithm could be 

compared. 

7.1.2 Representing the Frequency Set 

A given number of distinct frequencies were randomly generated within a given range 

and placed in an array. The frequencies were then sorted into ascending order; the 

minimum separation of any two adjacent frequencies was O.5MHz. 

7.1.3 Definition of a Move and a Neighbourhood 

For this implementation a move was defined as the assignment of a new frequency to a 

chosen link. If an assignment A is (II, 12, ... 1 N) then a neighbour of A can be described 

as A' = (J{, 12, .··I':v), where for precisely one i, II # Ii- A neighbourhood of A is the 

set of all possible A' and has size (iFi - 1)N. 

7.1.4 Representing the Constraints 

For the real-life scenarios the total number of links N was much greater than the average 

vertex degree, so a matrix representation (described in Chapter 5 section 5.4.4) would 

have been very sparse. Instead an indexed linear linked list representation was used. 
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The index was an array l..N of pointers to nodes, initialised to NULL, each element 

of the array represented one of the links, numbered consecutively and accessed using 

the array subscript. Each node contained the other_link with which the given link has 

a constraint, the required frequency separation Cij and a pointer to the next node in 

the list. 

Method One 

One way to represent the constraints using an indexed linear linked list is to create one 

node per constraint, the lower number link is used for indexing. In this definition the 

final array index is unused since a link cannot have a constraint with itself. All the 

nodes for a given index (link) are sorted into ascending order of other link. 

Example : For the constraints given in table 8 the data structure shown in Fig 15 is 

created. 

Table 8. Constraints for data structure example 

Link i Link j C ij 

1 2 27.0 

2 3 10.5 

3 1 5.5 

3 4 12.0 

To evaluate the contribution to the solution cost of a given move, (link, frequency) pair, 

it is necessary to examine all constraints involving that link. Using this data structure 

all of the indexed lists from l..link need to be examined. The nodes in a list are in 

ascending order of other link and so it might not be necessary to traverse the entire 

linked list. The complexity of this objective function is O(C) where C is the total 

number of constraints. 
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Figure 15. Indexed Linear Linked List Data Structure _ method 1 

Indexed 
Arr ay 

1 

2 

3 

4 

Method Two 

--'" 
r 

,. 

.. 
r 

····--)Null 

r ············3Null 
2 3 

27.0 5.5 

"-'~ull 
3 

10.5 

-"---7Null 
4 

12.0 

86 

An alternative way to represent the constraints using an indexed linear linked list is 

to create two nodes per constraint - one for each link. This doubles the amount of 

memory required to create the data structure, but enables a faster incremental objective 

function to be used. The nodes in a list do not need to be sorted. 

To evaluate the contribution to the solution cost of a given (link, frequency) pair the 

linear linked list accessed via the index (subscript link) is traversed. All constraints 

involving this link are present in this list and so no further lists need to be examined. 

The complexity of this objective function is O(~). 

Example: For the constraints given in table 8 the data structure shown in Fig 16 is 

created. 
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Figure 16. Indexed Linear Linked List Data Structure _ method 2 
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The conclusions of preliminary experimentation described in chapter 5 suggested that 

the ordering of links and the selection of an objective function should be chosen to 

complement one another. For all algorithms presented in the remainder of this thesis 

the links were pre-ordered in descending co-site vertex degree order. 

vertex_degreei = I: Oij, where Oij = 
j=N-l { 1 if Cij > 10 

j=O,j#i 0 otherwise 

7.1.6 Objective Function 

The objective function used for this implementation was the sum of the positive dis­

crepancies described in Chapter 2 section 2.5. Recall that fi and fj are the frequencies 

assigned to links i and j respectively and that Cij is the required frequency separation 

to guarantee no interference. Then the cost of an assignment A is given by 

iJ=N 

Cost(A) = L max(O, Cij -Iii - fj/) 
i,j=l 
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The objective function must be evaluated every time an adjustment to the assignment 

is made, i.e. every iteration. Since there might be hundreds of thousands of iterations 

it is essential that the evaluation of the objective function is as efficient as possible. 

The incremental objective function does not need to examine each link pair, (which 

has complexity O(N2)), in order to evaluate the change in the objective function as a 

result of the proposed move - it is sufficient to examine only constraints containing the 

link in the proposed move. The linked list data structure described as method two in 

the previous section was used for this implementation and has average time complexity 

O(~). 

7.2 Simulated Annealing 

A general introduction to simulated annealing was given in Chapter 4. The aim of 

this section was to explore the effectiveness of the simulated annealing heuristic when 

applied to the frequency assignment problem. 

7.2.1 Implementation 

The pseudocode algorithm for the frequency assignment problem implementation of 

simulated annealing is given in Fig 17. 

7.2.2 Parameter settings 

The initial cooling schedule parameters were taken from an example in the literature 

[Dow96]: these were then altered to investigate their effect on the quality of the final 

solution. The maximum number of iterations was also adjusted until a combination 

of parameters yielding good quality assignments was found. Once suitable parameters 

had been found they were fixed whilst obtaining results for new scenarios. 

Tstart was found by experimentation as described in chapter 4 section 4.4.1. The pa­

rameters used throughout for the simulated annealing algorithm were: Tstart = 1.25. 

MinTemp = 0.11. ~IaxIters = 25N, Cool = 0.99, LocalOpt = 5000. 
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Figure 17. Simulated Annealing for the FAP 

initialise parameters, T = Tstart 

generate initial assignment 

evaluate initial assignment, C 

Cbest := C 

89 

While T > lJinTemp and C > 0 and LocalMin = FALSE and NOT(OutOITime) 

iteration := 0 

While iteration < MaxIters and C> 0 and LocalMin = FALSE and 

NOT(OutOITime) 

suggest a move 

evaluate the suggested move, C' 

calculate b"C := C' - C 

If b"C > 0 (inferior solutions) 
-f::..C 

p:=e~ 

guess := random(O,l) 

If guess < p Then AcceptMove = TRUE 

Else AcceptMove = TRUE 

If AcceptMove = TRUE 

EndIf 

update assignment 

C:=C' 

If C < Cbest Then Cbest := C 

Else If C = Cbest 

update NoEquivMoves 

If NoEquivMoves > LocalOpt Then LocalMin = TRUE 

EndIf 

CurrentCost:= C 

iteration := iteration + 1 

EndWhile 

T = T * cool 

EndWhile 
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7.3 Tabu Search 

7.3.1 Implementation 

QO 

The pseudocode algorithm for the frequency assignment problem implementation of 

tabu search is given in Fig 18. 

7.3.2 Tabu Lists 

Additional data structures were required to maintain the memory features of the tabu 

search algorithm. These features were described in Chapter 4 and consisted of: recency 

(short-term) and frequency (long-term). To reduce the amount of memory required and 

for ease of processing it is often desirable to record less than the full range of attributes 

required to characterise a move; partial range attributes are often stored instead. In 

this implementation the short and long-term memory data structures (recency and 

frequency) stored only the link involved in a move. 

The recency and frequency tabu lists were represented by two arrays, initialised to zero, 

each having N elements. The recency array contained the iteration number during 

which the given link (index of array) was last involved in a move. The frequency array 

values were incremented by one every time a given link (index of array) was involved 

in a move. Both of the data structures were updated after every iteration. 
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Figure 18. Tabu Search for the FAP 

Initialise parameters and tabu data structures 

Generate an initial solution s in S and set best solution so far Sb := S 

While Iteration < MaxIters and C> 0 and NOT(OutOITime) 

and LocalOpt = FALSE and NOT (AllTabu) 

For all possible neighbourhood moves (Candidate list has size N(F-1)) Do 

evaluate move and determine its tabu status 

If move = TABU 

If move better than current BestTabu 

Then update BestTabu 

Else if move = current BestTabu 
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accept move as new BestTabu according to probability PT 

Else 

EndIf 

If move better than current BestN ontabu 

Then update BestNontabu 

Else if move = current BestN ontabu 

accept move as new BestNontabu according to probability PNT 

EndFor 

IF BestTabu < BestNontabu and aspiration(BestTabu) 

Then ChosenMove = BestTabu 

Else ChosenMove = BestNontabu 

If all moves are tabu 

Then AllTabu = TRUE 

Else 

EndIf 

EndWhile 

update assignment according to chosen move 

update tabu memory structures 

update current value 

update BestSoFar if necessary 

PT = probability = NoEqUiviabuMoves 

PNT = probability = NoEquivNo;tabuJ'v[oves 
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The tabu lists were used to determine the tabu status of a given move. A move was 

tabu if one or more of the following criteria were true. 

L The link had been involved in a move in the last R moves. 

recency[link] > iteration - R 

2. The link had been involved in Q% of all moves done so far (Q is used in preference 

to F to avoid confusion with the frequency set F.) 

frequency[linkJ * 100 > Q 
zteratwn 

7.3.3 Parameter settings 

The following relationship exists between the number of links (N) and the parameters 

R (recency) and Q (frequency). This relationship must hold to avoid the algorithm 

terminating after N non-tabu moves. A more detailed explanation of this relationship 

is given in [Cas97]. 

The values of Rand lvlaxlters which yielded high quality assignments, were found by 

experimentation. The value of Q is calculated using 

After this initial experimentation the parameters remained constant whilst obtaining 

results for new scenarios. The values of Rand M axlters were 4 and 8000 respectively. 

7.3.4 Selection of a Move 

A move was selected according to the following rule: If a move is tabu and it is better 

than the best non-tabu move and it satisfies the aspiration criterion then accept it, else 

execute the best non-tabu move. 

At each iteration all the possible moves are evaluated and assigned a tabu status. The 

best tabu and non-tabu moves are noted. 
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Efficient Selection. 

When all the moves are evaluated, there might be more than one move that yields the 

same best-cost value. In this implementation one of the equivalent best-cost moves 

is selected at random. Rather than maintain a list of all the equivalently best-cost 

moves of either status it is possible to just store one move of each status whilst still 

maintaining the random selection strategy. To do this each move is considered against 

several acceptance criteria as it is generated. 

The following abbreviations have been used: Cost(A) provides a measure of the quality 

of the solution that would result if this move were chosen. T = Tabu, NT = Non-Tabu 

MoveTorNT = The suggested move (tabu or non-tabu) BestCostTorNT = The value 

of the best cost move evalutated. N oEquivM oveSTorNT = The number of equivalent 

best cost solutions that have been generated. random(a, b) is the name of the random 

number generator which returns a value between a and b. 

• if (move is the first tabu move to be generated) OR (cost(A) < BestCostT) 

then MoveT := move, BestCostT := cost(A) and NoEquivMovesT := 1 

• elseif (move is the first non-tabu move to be generated) OR (cost(A) < BestCostNT) 

then MoveNT := move, BestCostNT := cost(A) and NoEquivMovesNT := 1 

• elseif (move is tabu) AND (cost(A) = BestCostT) 

then N oEquiv]l;I oveST := N oEquivM ovesT + 1, 

if (random(O, 1) < NOEqUi;MovesT) 

then M oveT := move 

• else if (move is non-tabu) AND (cost(A) = BestCostNT) 

then NoEquiv]l;IovesNT := NoEquivMovesNT + 1 

if (random(O, 1) < NOEqUiV~IovesNT) 
then ]1;[ oveNT := move 

7.3.5 Aspiration Criterion 

An aspiration criterion defines the conditions under which a tabu move may be ac­

cepted. For this implementation the aspiration criterion stated that if the move under 

consideration was better than any assignment found so far then it should be accepted. 
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7.3.6 Termination Criteria 

The algorithm stopped when any of the following termination criteria were true. 

• A zero interference assignment had been found. 

• The maximum number of iterations had been executed. 

• A given number of consecutive iterations had resulted in an equivalent cost solu­

tion (suggesting that the algorithm was trapped in a local optimum). 

• All moves were tabu. 

• The algorithm had been running for a predefined maximum time. 

7.4 Results 

For the TNET scenarios provided by D.E.R.A. it is not known whether zero interference 

assignments are possible for all the data sets. The results provided in this thesis show 

that zero interference assignments have been found for 80% of the scenarios (Chapter 

8 results). For ease of comparison between the benchmark results (provided here) and 

the divide and conquer results (in Chapter 8) the graphs are divided into scenarios 

with/without known optimal solutions. 

The two classic implementations described above were tested using the 46 TNET sce­

narios. Both algorithms were given an upper time limit of approximately 780 seconds 

(13 minutes) but each had several termination criteria which meant that the full time 

allocation was not always required. Each scenario was solved using ten different seeds 

for the random number generator. For each scenario the frequency set and initial solu­

tion were constant over all runs. Since the standard deviation was small in most cases 

bar charts have been chosen to graph the results. 

Graphs are given to show the average cost of solutions obtained for the simulated 

annealing and tabu search algorithms (Figs 19 and 24). Graphs showing the average 

time taken are also given (Figs 20 and 25). 

Graphs comparing the cost of the best solution found by each of the algorithms are 

also given (Figs 21 and 26) along with the time taken to obtain that best solution (Figs 

22 and 27). 
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Finally, graphs showing the average percentage of frequencies used in the final solution 

is given (Figs 23 and 28). 
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Figure 23. Graph showing SA vs. TS Average % Frequencies Used (Group A) 
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figure 25. Graph showing SA vs. TS Average Time (Group B) 
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Figure 26. Graph showing SA vs. TS Best Cost (Group B) 
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Figure 27. Graph showing SA vs. TS Time to Best Cost (Group B) 
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Figure 28. Graph showing SA vs. TS Average % Frequencies Used (Group B) 
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7.4.1 Comparison Difficulties 

Run-Time 

Both simulated annealing and tabu search have various criteria which might cause the 

algorithm to terminate before the maximum run-time has elapsed. In addition the 

check for maximum run time is outside a loop and so the algorithm may complete 

another execution of the loop (beyond a time close to the termination time) before 

stopping and therefore take slightly longer than the maximum run time. Owing to the 

differing run times it is difficult to compare fairly the cost of the final solutions found by 

the two algorithms. The maximum time allowance (15 minutes) was given by D.E.R.A. 

when the data was provided. Owing to the nature of the data (soldiers in combat) the 

updating is so extensive that the bulk assignment method is often used. The ground 

covered by soldiers in 15 minutes dictates the frequency of re-running the assignment 

program. 

Multiple Performance Measures 

In addition to cost and time, other performance measures are used to evaluate the 

overall quality of a solution: span and order of frequencies used. It is advantageous if 

frequencies not used in a solution are able to be released for other uses thereby ensuring 

maximum utilisation of this scarce resource. A comparison of the two algorithms 

considers all four performance measures; as there is not a constant standard for any 

of these measures comparisons are difficult. The span and order of the assignment are 

used in the evaluation of a solution even though they do not appear in the objective 

function. 

7.5 Discussion 

This section is divided into two parts: part one compares the effectiveness of the simu­

lated annealing and tabu search algorithms on the scenarios for which there are known 

zero interference solutions (Group A data), while part two compares their effectiveness 

on the scenarios for which there are no known zero interference solutions (Group B 

data). The results spreadsheets used to create these graphs are given in Appendix A. 
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The following abbreviations have been used in this section: 

SA = simulated annealing, TS = tabu search. 

7.5.1 Group A Data 

Average Case 

On average SA obtained optimal solutions for 68% of scenarios, whereas TS obtained 

optimal solutions for 76% of scenarios. There were 21 scenarios solved optimally by 

both algorithms, and for the remaining 16 scenarios TS obtained marginally lower 

cost solutions than SA in 63% of cases, some of these scenarios were solved optimally. 

However, the graph of average cost (Fig 19) clearly shows that there are 6 scenarios (4, 

11, 18, 22, 23 and 29) for which SA obtained significantly lower cost solutions than TS 

on average. 

By looking at the graph of average time (Fig 20) it can clearly be seen that TS generally 

finds its solutions in considerably less time than SA. For the 6 scenarios for which TS 

obtained comparatively high cost solutions the time taken by SA was 3.5 times longer 

on average. For the 21 scenarios for which both algorithms obtained optimal solutions 

13 solutions were found by both algorithms in less than one second, for the 8 remaining 

scenarios TS found its solutions using on average just 5.6% of the time taken by SA. 

Tabu search obtained lower cost solutions than SA for 10 of the 16 non-optimally solved 

scenarios, for these scenarios the time taken by TS was approximately 7% of the time 

taken for SA to obtain its inferior solutions. 

Best Case 

In the best case SA obtained optimal solutions for 86% of scenarios, whereas TS ob­

tained optimal solutions for 89% of scenarios. Both algorithms obtained optimal solu­

tions for 28 of the scenarios. Of the remaining 9 scenarios TS obtained optimal solutions 

to 5 scenarios which were not solved optimally by SA, while for the other 4 scenarios SA 

obtained lower cost solutions than TS of which 3 were solved optimally. By looking at 

the graph (Fig 21) it can be clearly seen that for scenario 29 SA obtained a significantly 

lower cost solution than TS, but the other cost values were more comparable. 
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Looking at the graph showing the time taken to reach the best cost for each scenario (Fig 

22) it can again be seen that TS generally finds its solutions in considerably less time 

than SA. For the 28 scenarios for which both algorithms obtained optimal solutions, 

13 solutions were found by both algorithms in less than one second (as for the average 

case), which for the 15 remaining scenarios TS found 13 of its solutions using on average 

just 7.8% of the time taken by SA. For the other 2 scenarios (4 and 23) SA found its 

solutions significantly more quickly than TS although the times for both algorithms was 

smalL Tabu search obtained lower cost solutions than SA for 5 of the 9 non-optimally 

solved scenarios, for which the time taken by TS was approximately 5% of the time 

taken for SA to obtain its (inferior) solutions. Simulated annealing obtained lower cost 

solutions than TS for 4 scenarios, for 2 of which SA found its lower cost solution using 

25% more time than taken by TS, and for the other 2 TS took approximately 80% 

longer. The time taken by SA for scenario 29, for which TS obtained a comparatively 

high cost solution, was 20% longer than TS. 

Group A Summary 

• All of these scenarios have known zero cost solutions. 

• The general pattern of the average and best case graphs was the same. 

• For the average (best) cases TS solved 76% (89%) of the scenarios optimally, SA 

solved 68% (86%) optimally. 

• 13 scenarios were solved in less than one second by both algorithms, for these 

scenarios only 68% of the available range and less than 50% of the available fre­

quencies were used (Fig 23). For the remaining scenarios 80-90% of the available 

range was used; the values were comparable for TS and SA. 

• There were 10 scenarios for which TS obtained a lower cost than SA. These 

solutions were obtained in approximately 7% of the time taken by SA to obtain 

its inferior solutions. 

• There were 6 scenarios for which SA obtained significantly lower cost solutions 

than TS. However, SA ran for approximately 3.5 times longer than TS. 

• For the majority (59%) of scenarios TS used a much smaller percentage of the 

available frequencies in its solutions (and also obtained lower cost solutions) than 
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SA. For the remaining scenarios the results were comparable. 

• Whilst TS outperformed SA for the majority of scenarios it is clear that for those 

scenarios for which TS did not perform well on average the SA algorithm WM far 

superior. 

• TS generally took less time than SA. 

7.5.2 Group B Data 

There are 9 scenarios in Group B, and it is not known whether zero-cost solutions exist 

for these scenarios. 

Average Case 

By looking at the graphs of average cost and time (Figs 24 and 25) it can be seen that 

TS obtained lower cost solutions than SA for 4 scenarios, while for the remaining 5 

scenarios SA obtained lower cost solutions than TS. 

For the 4 scenarios for which TS obtained lower cost solutions: in each case SA used 

the full time allowance, TS used the full time allowance for 3 scenarios, and for scenario 

6 TS found its lower cost solution in approximately 40% of the available time. 

For the 5 scenarios for which SA obtained lower cost solutions: for 2 of the scenarios 

both algorithms used the full time available, and for the 3 remaining scenarios SA ran 

for considerably longer than TS on average. 

Best Case 

The graphs showing the best cost and time to best cost (Figs 26 and 27) exhibit the 

same pattern as those for the average case. The most improvement in cost from the 

average to best cases for TS was for scenarios 1 and 2. The most improvement in cost 

from the average to best cases for SA was for scenarios 2 and 4. For all other scenarios 

the best cost values were only slightly less than the average cost values. For scenario 

1 both algorithms obtained the same best cost, TS algorithm stopped sooner. For all 

the other scenarios it can be seen that the best cost for SA was arrived at using the 
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full time available and similarly for TS in 3/4 cases. This implies that the group B 

scenarios are considerably more difficult than those in Group A. 

Group B Summary 

• These scenarios are typically solved well when the full time allowance is used 

• For scenario 6 (for which low cost solutions were obtained by both algorithms). 

TS used approximately half of the available time to obtain a very good solution. 

• SA generally used the full time available whereas TS stopped early on several 

occasions. When TS stopped prematurely the solutions were of higher cost than 

the corresponding SA solution. 

• For Group B the entire range was used for all scenarios. 

• For scenario 6 both algorithms used 100% of the available frequencies. 

• TS obtained lower cost solutions using a smaller percentage of the available fre­

quencies than SA for 3 of the 9 scenarios (Fig 28). For the remaining 5 scenarios 

SA obtained lower cost solutions and used a higher percentage of frequencies. 

• Both algorithms obtained best solutions with the same cost for scenario 1. 

7.5.3 What makes a Scenario 'Hard'? 

The TNET data has been split into two groups, A and B. The group A scenarios 

have known optimal ( zero-interference) solutions, many of the scenarios were solved 

optimally by both TS and SA. The solutions for the group A scenarios frequently used 

less than the full resources available with respect to time, span and order. In contrast 

the solutions for the group B scenarios regularly used all of the available resources and 

all of the solutions had some measure of interference. This empirical evidence suggests 

that the group B scenarios are in some way 'harder' than those in group A. What makes 

a scenario 'hard'? The results also show that 13 of the group A scenarios were solved 

optimally in less than 1 second, using few resources, by both algorithms. What makes 

a scenario 'easy'? 

Determining in advance how difficult a scenario (particular instance of a problem) will 

be is non-trivial, and often not possible. Test data metrics can provide an indication 
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of the size and complexity of the search space. However, a scenario with a large search 

space is not necessarily a more difficult one. The interplay of the various factors which 

could influence the difficulty of a scenario mean that categorising scenarios using a 

single metric is unlikely to prove successful. 

For the frequency assignment problem some factors which could influence the difficulty 

of a problem instance are given below: 

• The percentage of co-site constraints 

The Cij values for co-site constraints are large and consequently those scenarios 

are more difficult to solve given a fixed span of available frequencies. 

• The largest vertex degree 

If one or more vertices are highly connected then there will be a large number 

of constraints which must be mutually satisfied to enable a solution with zero 

interference to be found. The difficulty is increased if one or more vertices with 

large vertex degree are themselves connected. In particular, if there is a clique 

(a complete subgraph) of large size then the difficulty can be no better than the 

problem of finding a frequency assignment for the clique. 

• Size of the search space (IFIN) 

A larger value of IFI would increase the search space. If the problem has a unique 

solution, then even if IFI is increased (within a fixed span) then that solution is 

harder to find because the search space is larger. 

• Span(F) 

If the span of available frequencies is increased, and the difference between fre­

quencies is maintained, then there is an increased likelihood of being able to 

satisfy the constraints and so the scenario becomes easier. 

• The (approximate) value -£ * 100. 
T 

Average connectivity of a vertex. If this value is high then there will be many 

constraints which must be mutually satisfied to enable a solution with zero inter­

ference to be found. 

• L.co-site Cij 

If the largest required co-site frequency separation is close in value to the span of 

the available frequencies then the scenario will be more difficult. This is because 
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the links involved in those co-site constraints will be limited to taking values from 

a very small number of frequencies at either end of the range . 

• The number of global optima 

This would only be known if complete enumeration were possible! It is reasonable 

to suppose that in general a scenario with a large number of optima is easier than 

a scenario with one. 

The results presented show that 13 of the group A scenarios were solved optimally in 

less than 1 second. By looking at tables 5 and 6 in chapter 6 it can be seen that all of 

the 13 scenarios had either a very small search space or had a low percentage of co-site 

constraints. The values for these two metrics were significantly smaller than for the 

remaining scenarios. This observation leads to a tentative conclusion that scenarios 

with a low percentage of co-site constraints or small search space are easier to solve 

(on average). The idea of reducing the search space size provided the initial motivation 

for investigating the divide and conquer technique described in the next chapter. The 

greedy algorithm in stage 2 of the divide and conquer algorithm aims to spread evenly 

those links involved in large numbers of co-site constraints. 
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For ease of reference the metrics for the 13 'easy' scenarios are reproduced here. 

Table 9. Group A Data - 'Easy' Scenarios 

Scen IFI N C %co- span(F) Largest L.co- L.far- Search 

aria site MHz V.degree site Cij site Cij Space 

2* 40 60 244 16.4 169 25 27.1 6.1 1096 

3* 80 98 193 35.8 209 18 40.1 8.1 10187 

6* 40 12 20 0.3 169 6 27.1 0.6 1019 

9* 40 16 30 26.67 169 5 27.1 0.6 1026 

13* 40 4 4 50.00 169 2 27.1 6.1 106 

16* 40 4 2 100.0 169 1 27.1 0.0 106 

20* 40 12 27 22.2 169 7 27.1 0.3 1019 

25* 40 12 16 37.5 169 6 27.1 6.1 1019 

28* 40 328 670 0.0 399 14 5.5 10525 

30* 40 16 50 16.0 169 10 27.1 6.1 1026 

33* 40 16 19 52.6 169 4 27.1 0.6 1026 

36* 40 422 1191 0.0 399 31 5.5 10676 

37* 40 448 1782 0.0 399 33 5.5 10717 
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7.5.4 Parameters 

Some improvement to the results could be expected by altering the parameters. How­

ever a sample of scenarios was originally used to set the parameters and then· they 

remained constant throughout. One of the aims of this research was to find a robust, 

general method for solving the frequency assignment problem and so using a method 

which requires fine tuning for each scenario is undesirable. 

7.6 Conclusions 

Both algorithms solved the 13 'easy' scenarios quickly and using few resources. 

For group A. TS outperformed SA for the majority of scenarios but for those scenarios 

for which TS did not perform well on average the SA algorithm was far superior. The 

poor achievement of TS for six of the scenarios can be attributed to the premature 

termination of the algorithm (SA ran for approximately 3.5 times longer on average). 

At the time when the computations for this comparison were executed it was not known 

which of the termination criteria for TS was satisfied. 

For the group B scenarios the best solutions were found when the full run-time allowance 

was used. Both algorithms obtained the same cost solution for scenario 1 and each 

obtained the lowest cost for half of the remaining scenarios. Once again SA obtained 

lower cost (better) solutions than TS when TS stopped before the maximum run time 

had elapsed. 

In view of the general difficulty in getting heuristic algorithms to run the full allocated 

time and the particular problems encountered with TS described in this section, it was 

decided to re-run TS with different parameters for a selected subset of the scenarios 

with a view to discovering if the early termination was a significant factor in the poorer 

results. This work is described in section 7.7. 

In conclusion: both algorithms are able to obtain good quality solutions for the fre­

quency assignment problem. Tabu search obtains lower cost solutions using fewer 

resources for most scenarios. However, TS terminated early on a number of occasions 

and so SA has proven to be the more predictable of the two algorithms. 
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7.7 Termination Criteria Investigation 

This section describes the further investigation into the premature termination of TS 

for a selected subset of scenarios. Group A (4, 11, 18, 22, 23 and 29) and all scenarios 

in Group B. 

7.7.1 Early Termination of TS 

After investigation it was discovered that for some scenarios TS terminated early, the 

possible termination criteria are given in section 7.3.6. For each of the scenarios inves­

tigated the TS algorithm terminated because a given gumber of iterations had yielded 

solutions of identical cost. The allowable number of iterations yielding identical cost 

is variable and determined by the user; by altering this value it was possible to enable 

TS to run for a longer period of time. The final solution cost of these longer runs was 

considerably reduced for some scenarios. This indicates that TS is capable of obtaining 

lower cost solutions than the original results suggested. For ease of reference the longer 

run TS shall be referred to as LRTS. The results of this latest test run are given against 

the previous SA and TS results for comparison (Figs 29, 30, 31 and 32). 
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Figure 29. Graph showing SA & TS vs. LRTS Average Cost (Group A subset) 
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Figure 30. Graph showing SA & TS vs. LRTS Average Time (Group A subset) 
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Figure 31. Graph showing SA & TS vs. LRTS Average Cost (Group B) 
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Figure 32. Graph showing SA & TS vs. LRTS Average Time (Group B) 
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Group A 

For the group A scenarios there were only six scenarios which TS did not solve optimally 

on average originally and so the graphs given show only these six scenarios. When tabu 

search was able to run for longer the same results were obtained for the remaining 31 

scenarios as for the original (shorter) run time. 

Fig 29 clearly shows that the LRTS obtained lower cost solutions on average than the 

TS algorithm. For two of the scenarios (4 and 23) LRTS obtained optimal solutions 

previously unobtained by TS - only slightly more time was taken to reduce the low cost 

solution to an optimal one. For three of the remaining four scenarios the time taken 

was approximately 1.5 times that originally used and the solution cost using LRTS 

was markedly reduced (although still higher than the corresponding SA solution). For 

the final scenario the LRTS algorithm ran for considerably longer, approximately 16 

minutes (2.5 times) longer. For this scenario the cost was reduced although only slightly 

- and still did not approach the low cost solution found by SA in approximately half 

the time. 

Group B 

For all scenarios LRTS obtained lower cost solutions than TS. For the first two scenarios 

in this group the LRTS ran for approximately 2.5 times longer than TS and obtained 

solutions with costs approximately 60% of those obtained previously (and still greater 

than the corresponding SA solutions). Simulated annealing ran for longer than LRTS 

for the first scenario. For the final seven scenarios LRTS used twice the length of 

time used by SA and TS (for scenarios 4 and 6 this margin was greater). For five 

of the scenarios the LRTS algorithm obtained very low cost solutions (near-optimal) 

and considerably lower than either of the SA or TS solutions. For the remaining two 

scenarios LRTS obtained lower cost than TS but this value was still higher than the 

corresponding SA solution. 

Conclusions 

For the group A scenarios there was improvement in solution cost from TS to LRTS 

although the SA algorithm still obtained the better solutions (scenarios 4 and 23 were 
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comparable). For the group B scenarios the improvement in solution cost obtained by 

the longer run times was significant for all scenarios, for five scenarios the LRTS results 

were much improved on the TS and SA algorithms, for the remaining four scenarios 

LRTS was still unable to obtain solutions to rival SA. 

To conclude: greater run times for the group A scenarios yielded little improvement 

whilst for over half of the harder scenarios the improvement was significant. There 

were still four scenarios for which SA obtained lower cost solutions than LRTS (Group 

B scenarios 1, 2, 4, 7). 

The only parameter which was changed for this investigation was the variable indicating 

entrapment in a local optimum. However, this had a significant impact on the length 

of time for which the algorithm ran. This is due to the timing parameter being checked 

outside of a loop. It is possible that the parameters originally set for the algorithms are 

not optimal and that tweaking the TS parameters may yield better results. However, 

it was the intention of this study to try and find a robust technique which is why this 

has not been investigated. 

7.7.2 Lower Bound for Group B Scenario I? 

The results from both algorithms provide a list of all constraints that were violated 

along with the required and actual frequency separation values. By investigating the 

violations of the group B scenario (no. 1) for which both algorithms obtained the same 

best-cost it was anticipated that a lowerbound might be observed. A lowerbound, in 

this case, might be a triangle of constraints which have a combined separation require­

ment greater than the available frequency span. Such a triangle would therefore be 

unsatisfiable with the available resources. 

The constraint violations for both SA and TS were similar in nature, but did not 

confirm the expectations of an unsatisfiable trio of constraints as previously described. 

7.8 Further Research 

It would be interesting to run the algorithms for longer on the Group B data to see 

if any further improvement to the best cost values could be obtained. The practical 
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application of this data set would prevent run-times in excess of 15 minutes. However, 

from an investigative view it would be interesting to gauge the algorithms' performance 

over a longer time span. 



Chapter 8 

Divide and Conquer 

The divide and conquer technique was described briefly in Chapter 4. In this chapter 

more specific implementation details are given. The divide and conquer technique de­

scribed here has a number of improvement phases which use a metaheuristic algorithm. 

Simulated annealing and tabu search have been used and the results are given and 

some conclusions drawn. This chapter is divided into six parts: part one is an intro­

duction to the divide and conquer technique, part two discusses ways of dividing the 

frequency assignment problem, part three suggests ways of overcoming non-independent 

subproblems, part four gives the implementation detail of the technique, part five gives 

the results, and finally, part six gives some conclusions for the chapter. 

8.1 Introduction 

The divide and conquer technique was investigated to try and reduce the search space of 

the problem without the use of problem specific knowledge. The literature cites many 

examples of successful applications of heuristics to the frequency assignment problem 

(see Chapter 3 section 3.1.8), many of which have extensive preprocessing elements 

that reduce the size of the problem or build up stores of problem-specific data that is 

used later in the algorithm [Aar et al 95] [BB95b] [SH97] [THL95]. 

The nature of the scenarios provided for military applications is more random than 

interference networks for mobile telephones, for example. The well-known Philadelphia 

123 
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problems (see Chapter 3 section 3.2.2) for mobile telephone applications have graphs 

based on a regular hexagonal pattern and this knowledge of the graph can be exploited 

in solving the frequency assignment problem. In contrast the antennae and locations 

of the soldiers in a military scenario are far from regular (and constantly changing for 

the incremental assignment problem). Although the bulk assignment problem has been 

studied here, a general approach to the problem has been used to allow for extension 

of the program into the update assignment problem in future. 

The only preprocessing of the scenario in this implementation is the ordering of the 

links into descending co-site vertex degree order prior to the initial greedy assignment 

in stage three. This ordering was suggested by earlier results outlined in Chapter 5. 

8.2 Dividing the Problem 

The divide and conquer strategy is simple to understand; the difficulty is finding a 

way to divide the initial problem into subproblems. The subproblems should ideally be 

independently solvable and their recombination should provide a solution to the initial 

problem. 

Two possible division criteria were considered for the frequency assignment problem; 

dividing the frequency set into separate bands or dividing the links to be assigned. 

To divide the links successfully the graph representing the problem would need to be 

divided into one or more disjoint subgraphs of approximately equal difficulty. Detailed 

knowledge of the constraint network would need to be exploited to work out how best 

to divide the graph. In the event that the constraint graph could not be separated into 

disjoint graphs an approximation could be obtained using a min-cut algorithm. Division 

of the problem by dividing the links depends on the fact that the constraint graph can 

be decomposed into one or more smaller graphs. One way to divide the links is to split 

the graph using arc consistency. The arc consistency preprocessing was one of the key 

factors in the success of heuristic approaches explored in the CALMA project [CAL95]. 

An arc consistency algorithm was applied to the TNET scenarios. The results indicated 

that the graph could rarely be simplified owing to the high connectivity. The constraint 

graphs representing a tactical communications FAP are typically highly interconnected 

and rarely reducible and so division of the problem by dividing the frequencies is more 
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appropriate. 

Division of the problem into subproblems by dividing the frequencies does not require 

knowledge of the constraint graph, is simple to execute and applicable to all types 

of graph. The implementation described here divides the frequency set to provide 

subproblems. 

Having decided to divide the frequency set a further decision needs to be made; whether 

to divide F into bands having approximately the same order (same number of frequen­

cies) or range. The links are first placed in descending order of co-site vertex degree 

as described in chapter 7 section 7.1.5. Then they are evenly distributed between the 

subproblems as described in section 8.4.3 stages 1 and 2. The set F closely resembles 

a set of random discrete frequencies from a given range. 

Dividing the frequency set into bands of approximately the same order ensures that 

the search space of each of the subproblems is comparable. However, the range of 

frequencies in each band may vary. Selecting the number of bands would depend on 

the desired search space size. 

Dividing the frequency set into bands of approximately the same range creates subprob­

lems having varying search space sizes although it potentially facilitates the efficient 

assignment of links involved in co-site constraints. Selecting the number of bands is 

related to the average co-site channel separation and the range of frequencies available. 

Early experimentation showed the division of the frequency set F into bands having 

approximately the same order gave assignments with less interference than division of 

F into bands having a similar range. 

In stage one of the algorithm the band of frequencies, F, is partitioned into approx­

imately the same order, non-overlapping bands F I , F2 , ... , Fk , for some k which was 

found by experimentation. Kauffman, Macready and Dickinson [KMD95] used a simi­

lar technique for the spin glass problem and found that the value for k had a significant 

effect on the quality of the final solutions. 
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8.3 Overcoming Non-Independent Subproblems 

Dividing the frequency set introduces artificial boundaries. In the initial problem the 

links could take any value from the entire frequency range. Since the graph is highly 

interconnected, it is unlikely that restricting links to a limited range of frequencies 

will yield optimum assignments. However, it does enable solutions of the resulting 

subproblems to be found quickly. The implementation described here follows the band 

improvement stage with a global improvement stage which allows the links to take 

frequencies outside of their allocated band. This enables the algorithm to overcome any 

initial decisions, made with incomplete knowledge, that later prove to be prohibitive 

to finding good solutions. 

8.3.1 Solving Subproblems 

Once the problem has been suitably divided it is necessary to obtain an initial solution 

for each of the subproblems and also to improve these solutions further. The tabu 

search and simulated annealing metaheuristics, described in Chapter 7, proved relevant 

to the solution of the frequency assignment problem and so they have been used within 

the divide and conquer technique to improve the subproblems once an initial solution 

has been obtained. The parameter values used in chapter 7 (section 7.2.2 and section 

7.3.3) were also used for the global stages of the divide and conquer implementation, 

the only change to the parameters for the local stages was that MaxIters was divided 

by k (k = 4). the number of bands. 

8.3.2 Combining Partial Solutions 

The solution of each of the subproblems is an assignment of links to frequencies. Each 

link belongs to one and only one subproblem and so the combination of the subproblem 

solutions to form an assignment for the initial problem is trivial, representationally, in 

this case. Of course, there may still be unsatisfied constraints which exist between links 

in different bands. 
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8.3.3 Alternating Local and Global Phases 

During early experimentation the subproblems were solved using the chosen metaheuris­

tic, the subproblem solutions were combined and then the metaheuristic was applied 

to the whole assignment as a final improvement phase. This idea was extended: local 

and global improvement phases were applied alternately until no further improvement 

was found. 

8.4 Implementation 

All of the code was written in ANSI C using Borland C++ version 4.5 software. The 

results were obtained on a Pentium desktop computer (lOOMHz). 

In this section, a more detailed description of the divide and conquer implementation 

is given. There are eight stages: 

1. Division of the set of frequencies into bands. 

2. Allocation of a band to each link. 

3. An initial assignment of a frequency within its allocated band to each link. 

4. An application of a steepest descent algorithm. 

5. A sequence of local changes to the frequencies. 

6. A sequence of global changes to the frequencies. 

7. If an improved solution was found in stage 5 or 6 then update data structures 

and return to step 5, otherwise continue with step 8. 

8. A further application of the steepest descent algorithm to enhance the overall 

quality of the solution. 

8.4.1 Pseudocode Algorithm 

The pseudocode for the algorithm is given in Fig 33. 
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Figure 33. Divide and Conquer Pseudocode 

Initialise data structures 

Generate frequencies (given number and range) 

Sort links into descending co-site vertex degree order 

Chosen heuristic := simulated annealing OR tabu search 

step 1 Divide the problem into k bands according to division criteria 

step 2 Greedy algorithm: allocate each link to a band 

For each link (in desc order of difficulty) Do 

For each band Do 

Evaluate stage2_cost 

If stage2_cost := 0 Then allocate link to band 

EndFor 

If link unallocated Then allocate to band with fewest links 

EndFor 

step 3 Greedy algorithm: allocate each link to a frequency from band 

For each band Do 

For each link in band Do 

For each frequency in band Do 

128 

Evaluate cost of assigning this frequency to this link 

Assuming the WORST of any unassigned links 

Note frequency with minimum cost 

EndFor 

Assign frequency with minimum cost 

EndFor 

EndFor 

step 4 Local Steepest descent 

step 5 Local improvement (chosen heuristic) 

step 6 Global improvement (chosen heuristic) 

step 7 Local improvement (chosen heuristic) 

step 8 Global Steepest descent 

Report the results to file and close the results file 
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8.4.2 Rationale 

The results given in Chapter 7 showed that the scenarios with a smaller search space 

or with a low percentage of co-site (larger required frequency separation) constraints 

were more quickly solved by both tabu search and simulated annealing heuristics. The 

rationale for using a divide and conquer technique was to reduce the scenarios to sub­

problems that had a smaller search space. The links involved in co-site constraints 

were initially divided between the subproblems to distribute the more difficult con­

straints evenly. The idea of solving the subproblems in a number of different stages 

was based on a multi-phase approach described by Thompson and Dowsland [TD96] 

whereby decisions made in earlier phases could be undone later. 

Example (data from TNET scenario 1) 

N = number of links, IFI = number of frequencies, search space = IFIN 

For example, N = 158, IFI = 40, k = 4 

• original search space size = IFIN = 40158 = 10250 

• stage two search space = kN = 4158 = 1095 

• local stages search space = (1ft) ~ = 1040 

8.4.3 Detailed Explanation 

Stage 1 

In stage one of the algorithm the band of frequencies, F, is partitioned into approx­

imately the same order, non-overlapping bands F1, F2 , ... , Fb for some k which was 

found by experimentation. 

F = Fl U F2 U F3 ... U Fk where Fi n Fj = n, 1 ::; i < j ::; k and also 

ai E Fi , ai+l E Fi+l =} ai < ai+l for i = 1,2, ... k - 1 

Early experimentation suggested that k = 4 would yield good quality solutions. The 

maximum range of frequencies available for any of the scenarios was approximately 

400 MHz and the maximum co-site frequency separation was approximately 200 MHz. 

Thus, by dividing the range into 4 bands the largest co-site constraints could be guar-
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anteed to be solved if one link involved in that constraint was placed in band 1 and the 

other in band 4. There is clearly a trade-off between the overhead required to maintain 

a number of bands and the benefit gained by having subproblems with smaller search 

spaces. 

Stage 2 

In stage two each link was allocated to one of the bands. In allocating a link to a band, 

consideration was given to the satisfaction of two types of constraints; the external 

constraints between that link and other links which have been allocated other bands 

and internal constraints between that link and other links allocated the same band. A 

constraint is feasible if it is possible for the links to be assigned frequencies within the 

appropriate bands which satisfy the constraint. Allocation of the links to the bands 

uses a greedy algorithm based on an estimate of the number of unsatisfiable constraints 

which is given below. For any particular link, the band allocated the fewest links is 

considered first. If all constraints, external and internal are feasible, that band is 

chosen. Otherwise, the next band is considered. If no band is suitable, the band with 

the fewest links is chosen. 

To determine whether a constraint is feasible the following equations were devised. 

Recall that the constraints are of the form Iii - fjl ~ Cij, note that if fi E Fp 

and /j E Fq and p < q, the constraint simplifies to /j - Ii > Cij Consider Fig 34. 

xp = min(f E Fp), zp = max(f E Fp). 

Figure 34. Stage 2 Representation of Bands 

Stage 2 
~ Fp 

~ 
Fq 

I 

fi 
I [; I J 
! 

Zp Xq 

If Cij ::; Xq - zp then /j - Ii ~ Xq - zp ~ Cij the constraint was satisfied 

If Cij > Zq - xp then /j - fi ::; Zq - xp < Cij the constraint was not satisfiable 

If Xq - zp < Cij :$ Zq - xp then the constraint may have been satisfied. 
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The 'objective function' for the greedy algorithm used in this stage simply counted the 

number of unsatisfiable constraints using the equations above. 

N N 
Stage2_Cost(A) = L L Oij 

i=l j=i+l 

1 
0 if Cij ::; Xq - zp 

Oij = 1 if Gij > Zq - xp 

>.. if Xq - zp < Cij < Zq - xp 

and>" is such that (this is an approximate>.. found by linear interpolation). 

Gij = (1 - >")(xq - zp) + >"(Zq - xp) 

>.. 
Cij + (zp - Xq) 

-
(Zq - xp) + (zp - Xq) 

0 < >":S;1 

At this stage the links are being allocated to bands rather than to specific frequencies 

and so the search space is k N , where k is the number of bands and N is the number 

of links. However, since the algorithm used to allocate links to the bands is greedy, 

the time complexity for this stage is bounded by O(Nk * ~) = O(kG) and in practice 

requires negligible time. 

Stage 3 

For this stage the links were assigned a frequency from within their allocated band. The 

aim of this stage was to obtain a good assignment based on the partitions F I , F2, ... , Fk 

that could be used as an initial assignment for the metaheuristic improvement stages. A 

greedy algorithm was used. The strategy was to place a link in the band in such a way 

that, whenever possible. a constraint with a link outside the band was guaranteed to b~ 

satisfied. Only after this step had been completed were links with no outside commit­

ments considered. The links with commitments outside the band were considered first 

as these were more likely to be links involved in co-site constraints. Co-site constraints 

are more difficult to solve because of the larger frequency separations required. The 
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greedy approach lacks any look ahead facility and so large costs are incurred towards 

the end of the search. As only one pass is made the links that are assigned frequencies 

last are more likely to cause constraint violations owing to the highly connected na­

ture of the graph. The greedy algorithm rarely provides low-interference assignments. 

However the assignment will, in the majority of cases, be better than a random initial 

assignment(see Chapter 5 section 5.5). 

Stage 4 

There are now k frequency assignment subproblems - each subproblem has approxi­

mately f. links to be assigned frequencies from a band of size approximately lfl. This 

gives a search space of size (lfl) It. A steepest descent algorithm, described in Chapter 

4 section 4.3.2, is applied to each band in turn to improve on the initial assignment. 

Since the initial solution is likely to be far from optimal a steepest descent algorithm 

is used to improve the solution rapidly. In the early stages of optimising, it is wasteful 

to use an algorithm which is 'expensive' in terms of the amount of calculations done 

per iteration. Improvements are easily found and by using the incremental objective 

function the total time spent in steepest descent is very small (approximately 1 second) 

whilst still yielding high improvement. 

Stage 5 

The strategy now uses a local improvement stage trying to solve each subproblem 

in turn using the chosen metaheuristic: simulated annealing or tabu search. When 

generating a move only links and frequencies allocated to the band under consideration 

may be used. The implementation modules developed previously (described in Chapter 

7) were used for both the local (stage 5) and global (stage 6) improvement stages. 

Stage 6 

The links were originally assigned to bands using a greedy algorithm in stage 3. It is 

possible that links were placed in bands where constraint violations were unavoidable 

in order to even out the number of links in each subproblem. Achieving subproblems 

with similar search space sizes was the primary aim of stage 3. Now that the links have 
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been assigned frequencies and a more accurate objective function is being used, it is 

important not to limit the search by decisions made in the earlier stages with incomplete 

knowledge. For this reason a second application of the chosen metaheuristic is used, 

where this time the whole scenario is acted on thereby allowing a candidate frequency 

to be any value in the whole set F. 

Stage 7 

If either of stages 5 or 6 improved the quality of the best solution found so far then 

the algorithm is repeated from stage 5. During the global improvement stage (stage 6) 

links could be assigned any frequency from the whole set F. Therefore a link originally 

allocated to band X may no longer be assigned a frequency falling in that range. It 

is necessary to update the data structures holding information about which links are 

allocated to which bands. Also as a consequence of the global stage, the number of 

links allocated to each of the bands may not be approximately equal. Some further 

adjustment is necessary: the band boundaries are altered so that there are approxi­

mately equal numbers of links allocated to each band. Once the data structures have 

been updated the local-global improvement stages (stages 5 and 6) are repeated. 

When stages 5 and 6 no longer provide any improvement on the best solution found 

the loop is terminated and execution continues from stage 8. 

Stage 8 

Finally a global improvement phase is executed: a steepest descent algorithm is used to 

improve the final assignment. Candidate links and frequencies were randomly selected 

from all those available to generate suggested moves. 

A diagram representing the stages of the algorithm is given in Fig 35. 
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Stage 1 

Stage 2 

Stage 3 

Stage 4 

Stage 5 

Stage 6 

Stage 7 

Stage 8 

Figure 35. Diagram showing DC stages 

Divide Frequency Set 

Allocate Links to bands 

Greedy Initial Solution 

Steepest Descent 

OR 

i----..No 

I UpdateDS 

Steepest Descent 

I Local TS 

Global TS 

Improve­
m nt? 

Yes 

I UpdateDS 
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8.4.4 Alternating Local and Global Phases 

The following abbreviations have been used in this, and later, sections: 

DCTS=Divide and Conquer algorithm with tabu search in improvement stages 

DCSA=Divide and Conquer algorithm with simulated annealing improvement stages 

Preliminary results showed that the local-global improvement phases were rarely re­

peated more than once. On closer inspection it was discovered that no improvement 

was made after the second application of the local improvement phase and so the loop 

was removed and a further application of the local-improvement was added to the end 

of stage 7. 

By looking at the graph (Fig 45 page 151) showing the average cost of solutions at the 

end of each stage averaged over ten runs it can be seen that both DCSA and DCTS 

obtained almost identical solution costs at each stage. The graph also shows that the 

average cost of a solution after stage 6 (global improvement stage) is very close to the 

(optimal) final solution cost. It is well known that algorithms plateau as they approach 

the optimal solution. Fig 45 shows that, in this case, DCSA obtained the lower cost 

solutions - there was no improvement during the second local improvement stage 

(Stage 7) as the optimal solution was obtained at the end of stage 6. Conversely, there 

was a slight improvement during stage 7 for the DCTS algorithm although this had 

a noticeably more shallow gradient than the first local improvement stage (Stage 5). 

A possible reason for the drop in improvement during the second local improvement 

stage is that the co-site constraints have been satisfied (hence the low cost) by the end 

of stage 6 (global improvement stage). Both TS and SA are less likely to accept moves 

which are significantly worse than the current solution towards the end of the search 

and so the final local stage is used to fine tune the far-site constraints which have a 

relatively small impact on the total solution cost. 

Possible reasons for the ineffectiveness of a second global improvement stage: 

A further S.-\. global improvement stage after stage 7 could potentially destroy the 

current solution unless the starting temperature was sufficiently low to prevent any 

major deviations from the current cost. Reducing the temperature and restricting 

the algorithm to moves whose solution cost is similar to the current cost prevents the 

algorithm from escaping a local minima. 

A further TS global improvement stage after stage 7 would consider all possible moves, 
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assigning a tabu or non-tabu status accordingly and accepting the best move. When the 

current cost is close to optimal (as it is by this stage), moves are likely to concentrate 

on eliminating the remaining far-site constraint violations. 

Owing to the observed behaviour of the two metaheuristics when a further global stage 

was applied, it was decided that a steepest descent algorithm would behave similarly 

and take less time. 

The reSUlting change to the figure previously presented is given in Fig 36. 

Figure 36. Diagram showing DC stages - revised 

Stage 1 Divide Frequency Set 

Stage 2 Allocate Links to bands 

Stage 3 Greedy Initial Solution 

Stage 4 Steepest Descent 

Stage 5 I Local SA I Local TS 

Stage 6 I G'odiSA I OR I G10~TS I 
Stage 7 I Lo3sA I I LoC~TS I 

Stage 8 Steepest Descent 
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8.5 Results 

137 

The TNET scenarios were provided by D.E.R.A., but it is not known whether zero 

interference assignments are possible for all of the data sets. The results provided in 

this thesis show that zero interference assignments have been found for 80% of the 

scenarios. For ease of comparison between the benchmark results (in Chapter 7) and 

the divide and conquer results (given here) the graphs are again divided into Group A 

(known zero-cost solutions) and Group B (no known zero-cost solutions). 

The two implementations described above were tested using the 46 TNET scenarios. 

Both algorithms were given an upper time limit of approximately 780 seconds (13 

minutes) but each had several termination criteria which meant that the full time 

allocation was not always required. Each scenario was solved using 10 different seeds 

for the random number generator. For each scenario the frequency set and initial 

solution were constant over all runs. 

Graphs are given to show the average cost of solutions obtained for the simulated an­

nealing and tabu search implementations of the divide and conquer algorithm (Graphs 

37 and 41). Graphs showing the average time taken are also given (Graphs 38 and 42). 

Graphs comparing the cost of the best solution found by each of the divide and conquer 

algorithms is also given (Graphs 39 and 43) along with the time taken to obtain that 

best solution (Graphs 40 and 44). 

The results used to create these graphs are given in Appendix b. 
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Figure 42. Graph showing nCSA vs. nCTS Average Time (Group B) 
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Figure 44. Graph showing nCSA vs. nCTS Time to Best Cost (Group B) 
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8.6 Discussion 

8.6.1 Group A Data 

146 

By looking at the average cost graph for these scenarios (Fig 37) it can clearly be seen 

that the DCSA algorithm obtained lower cost solutions than the DCTS algorithm for 

6 scenarios (4, 11, 18, 22, 23 and 29). These were the same six scenarios which TS also 

found difficult (Chapter 7 section 7.5.1). For the remaining scenarios the costs were 

zero (or negligible hence not showing on the graph). DCSA obtained optimal solutions 

to 81 % of the scenarios and DCTS obtained optimal solutions to 78% of the scenarios 

in the average case. 

By looking at the average time graph (Fig 38) for the scenarios for which DCTS did 

not obtain an optimal solution it can be seen that the DCSA algorithm obtained its 

superior solutions in less time than DCTS obtained its inferior solutions. The DCTS 

algorithm obtained lower cost solutions more quickly than DCSA for all other scenarios 

except scenario 32 for which both implementations obtained near-optimal solutions. 

The best cost solutions (Fig 39) for these scenarios saw a marked reduction in the cost 

of the solutions. DCSA optimally solved 100% of the scenarios whereas DCTS obtained 

zero cost solutions for 34/37 of the scenarios (18, 22 and 29 not solved optimally). For 

those scenarios which DCTS did not solve optimally the time taken was longer than 

that for DCSA to find an optimal solution. 

The graph showing the time to reach these best cost solutions (Fig 40) had the same 

trend as the average times; the scenarios solved optimally on average by DCTS were 

generally solved more quickly than the corresponding DCSA attempts. The scenarios 

not solved optimally on average by DCTS had optimal solutions found more quickly 

by DCSA. 

The percentage range and percentage frequency values were comparable for both al­

gorithms. The solutions for 24 of the 37 scenarios used 100% range, the remaining 

scenarios used 80-91% of the available range. The six scenarios which DCTS did not 

solve optimally on average also had solutions using 100% range for both algorithms. 

Sixteen scenarios used approximately 100% of available frequencies, the remaining sce­

narios varied in the percentage of the available frequencies used, from 10-90%. For 
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those scenarios not solved optimally by DCTS on average the lower cost solutions were 

found using marginally fewer frequencies by DCSA. 

Summary 

• DCSA obtained optimal solutions to 81% of the scenarios on average and 100% 

in the best case. 

• DCTS obtained optimal solutions to 78% of the scenarios in the average case, 

for all of these scenarios DCTS obtained its solutions far quicker than the corre­

sponding DCSA attempt. 

• DCTS obtained solutions for 92% of the scenarios in the best case. For the 3 

remaining scenarios DCSA obtained lower cost solutions in less time than DCTS. 

• On average the DCSA algorithm obtained lower cost solutions than the DCTS 

algorithm for 6 scenarios (4, 11, 18, 22, 23 and 29) and these solutions were also 

obtained in less time and using marginally fewer frequencies than the correspond­

ing DCTS attempt. 

• The average and best time graphs exhibited the same pattern. 

• The percentage range and percentage frequency values were comparable for both 

algorithms. 

• 24 of the 37 scenarios used 100% range, the remaining scenarios used 80-91% of 

the available range. 

• Sixteen scenarios used approximately 100% of available frequencies. 

8.6.2 Group B Data 

By looking at the graph of average cost (Fig 41) it can be seen that the DCSA algorithm 

obtained lower cost solutions than DCTS for 5 of the 9 scenarios (scenario 6 has a 

comparable cost solution for both algorithms but is marginally less for DCTS). If these 

five scenarios are cross-referenced with the average time graph (Fig 42) it can be seen 

that DCSA obtains these lower cost solutions in less time than DCTS obtains its inferior 

solutions. 
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For scenario 6 both algorithms obtained similar average cost solutions; DCTS arrived at 

its marginally lower cost solutions more quickly than the solutions found by DCSA. For 

the remaining scenarios DCTS obtained lower cost solutions on average than DCSA. 

lt can be seen that DCTS also ran for approximately five minutes longer on average. 

DCSA stopped after approximately the same time for all three scenarios. This may im­

ply that the DCSA algorithm had finished its cooling schedule and therefore terminated 

prematurely. lt would be interesting to see if altering the parameters of the cooling 

schedule enabled the algorithm to continue for longer and obtain lower cost solutions. 

However, because of the time limitations (maximum run-time of 15 minutes) imposed 

by the D.E.R.A this was not investigated. DCSA also stopped at approximately the 

same time for scenario 6. 

The trends described above for the average cost and average time graphs also hold 

for the best cost and time to best cost graphs (Figs 43 and 44) without exception. 

The values for best cost are smaller and the time taken to reach the best solutions is 

comparable to the average time taken. The scenarios for which DCSA obtained higher 

cost solutions than DCTS had a consistent run-time, less than the time used for DCTS 

to obtain its superior solutions. 

All scenarios used 100% range available for both algorithms. Scenarios 1 and 2 used 85-

90% of the available frequencies and the remaining scenarios used approximatelyl00% 

of frequencies. Since these scenarios are more difficult to solve it is expected that all 

available resources would be used. 

8.6.3 Summary 

• DCSA obtained lower cost solutions in less time than DCTS for 5 of the 9 sce-

narios. 

• For scenario 6 both algorithms obtained similar average cost solutions; DCTS 

arrived at its marginally lower cost solutions more quickly than the solutions 

found by DCSA. 

• For the remaining scenarios DCTS obtained lower cost solutions (taking approx 5 

minutes longer) on average than DCSA. DCSA stopped after approximately the 

same time for all three scenarios. DCTS exceeded the 13 minute allowance for 

several scenarios. 
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• All scenarios used 100% range available for both algorithms. 

• Scenarios 1 and 2 used 85-90% of the available frequencies the other scenarios 

used approximately100% of frequencies. 

8.7 Conclusions 

For the group A scenarios there were 6 scenarios which TS did not solve optimally on 

average. For these scenarios lower cost solutions were found by DCSA more quickly 

than the corresponding DCTS attempt. DCSA solved all of the group A scenarios 

optimally in the best case, DCTS optimally solved 92% of scenarios in the best case. 

For the remaining 27 scenarios DCTS obtained lower cost solutions more quickly than 

DCSA on average. 

For Group A : Both DCSA and DCTS used comparable resources in obtaining the 

solutions, for the majority of scenarios almost the full range and number of frequencies 

were used. There were 13 scenarios which were solved in less than one second by both 

algorithms and the solutions for these scenarios used fewer resources. 

For the group B scenarios almost all resources were used in the solution of all scenarios, 

the algorithms also ran for longer than the group A scenarios, this was expected as the 

group B scenarios are harder to solve. DCSA and DCTS each obtained the lowest 

cost solutions for half of the scenarios. However, DCSA appeared to stop consistently 

prematurely for those scenarios for which DCTS obtained a lower cost. This could imply 

that the DCSA algorithm had finished its cooling schedule and therefore terminated 

before the maximum run time. 

Considering those scenarios for which both implementations obtain zero cost solutions: 

DCTS converges very quickly to an optimal solution and finds its solutions in signifi­

cantly less time than DCSA. A possible explanation for this observation is as follows: 

once in a fruitful area of the search space the tabu search algorithm will move effi­

ciently towards the local minimum whereas simulated annealing may make a move to 

a different area if the temperature is sufficiently high. 

There are six scenarios in group A which are solved optimally by DCSA on average 

but for which DCTS struggles to obtain low cost solutions. DCTS optimally solves 

three of these scenarios in the best case. Fig 45 shows the improvements made at 
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each stage for both implementations averaged over the six scenarios (4, 11, 18, 22, 23 

and 29). Clearly the paths are identical to the end of stage 4 (same initial solution 

followed by deterministic steepest descent algorithm). For each of the improving stages 

DCSA obtains a slightly better solution than DCTS ultimately leading to the difference 

between obtaining an optimal or non-optimal solution. 
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The short time available for solving the group B scenarios appears to be the most 

limiting factor in the search for good solutions. This is further aggravated by the early 

termination of the DCSA algorithm. Unless both algorithms run for the same amount 

of time it is difficult to assess their relative success on this subset of the data. 

8.8 Further Work 

DCTS obtained lower cost solutions than DCSA for some of the Group B scenarios. 

However, the run time for DCSA for these scenarios appears 'capped'. It is possible 

that DCSA would obtain similar cost solutions to DCTS if the algorithms ran for 

comparable times. This could be investigated by altering the parameters of the cooling 

schedule to enable the algorithm to continue for longer. 

Another possible investigation would combine the advantages of DCTS with those of 

DCSA. DCTS generally obtained lower cost solutions more quickly than DCSA for 

the smaller group A scenarios. DCSA obtained lower cost solutions than DCTS for 

the harder (and larger) group B scenarios. A potential hybrid would therefore use 

the divide and conquer framework but use tabu search during the local improvement 

stages and simulated annealing during the global improvement stage. This is shown 

diagrammatically in Fig 46. 
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Chapter 9 

Effectiveness of Using. Divide & 

Conquer 

The simulated annealing (SA) and tabu search (TS) algorithms were fully described 

in Chapter 7 and the results discussed. The divide and conquer (DC) algorithm was 

explained in Chapter 8. Results were given for the two implementations: divide and 

conquer with simulated annealing (DCSA) and divide and conquer with tabu search 

(DCTS). This chapter is divided into five parts: part one gives the implementation 

details, part two compares the results for SA with the results obtained by DCSA, part 

three compares the results for TS with the results obtained by DCTS, and finally, some 

conclusions are drawn and ideas for further work given. 

The following abbreviations have been used in this chapter: SA = Simulated annealing 

algorithm, TS = Tabu search algorithm, DCSA = Divide and Conquer algorithm with 

simulated annealing in improvement stages, DCTS = Divide and Conquer algorithm 

with tabu search in improvement stages. 

9.1 Implementation 

The full implementation details are given in Chapters 7 and 8 as previously mentioned. 

For each scenario, all of the algorithms used the same frequency set and the same initial 

154 
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solution over all runs. The parameters (chapter 8 section 8.3.1) for each algorithm were 

constant for all 46 TNET scenarios on which the programs acted. The programs were 

run 10 times each, they all used the same seeds to prime the random number generator. 

All of the results were obtained on a desktop PC, 100MHz. As many of the variables as 

possible were the same for all algorithms to enable a fair comparison of the algorithms 

[Bar et a1.95]. Despite these measures there remains some difficulty in comparing the 

results obtained, these difficulties were given in Chapter 7 section 7.4.l. 

The results used to create these graphs are given in Appendix c. 

9.2 DCSA vs SA Results 

9.2.1 Group A Data 

By looking at the graphs showing average cost and time (Figs 47 and 48) it can clearly 

be seen that the DCSA algorithm obtained lower cost solutions than the SA algorithm 

for 12 of the 37 scenarios. For the remaining scenarios both algorithms obtained a 

zero cost solution. It can also be seen that DCSA obtained its superior solutions in 

significantly less time than SA obtained its inferior solutions. 

The graphs of best cost and time to best cost (Figs 49 and 50) exhibit a similar pattern. 

It is significant that in the best case DCSA obtained zero cost solutions for all of the 

scenarios whereas SA obtained zero cost solutions for just 31 of the 37. Again it can 

be clearly seen that DCSA consistently arrived at its solutions more quickly than SA. 

The average percentage of range used by both DCSA and SA were identical, again 

100% range was used for all scenarios, except the 13 scenarios which were solved in less 

than one second by both algorithms. 

The average percentage of frequencies used by both algorithms was comparable in 

most cases, for 6 scenarios DCSA used a smaller percentage than SA, for scenario 4 

the reverse was true. Smaller percentage frequency values were found for the 13 easiest 

scenanos. 
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Figure 47. Graph showing DCSA vs. SA Average Cost (Group A) 
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Figure 48. Graph showing DCSA vs. SA Average Time (Group A) 
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Figure 49. Graph showing DCSA vs. SA Best Cost (Group A) 
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9.2.2 Group B Data 

The graphs of average cost and time (Figs 51 and 52) show clearly that for all scenarios 

DCSA obtains lower cost solutions than SA, it also obtains these superior solutions in 

less time. 

The graphs of best cost and time to best cost (Figs 53 and 54) reinforce the evidence 

that DCSA obtains lower cost solutions than SA for all scenarios (the best cost is 

identical for scenario 1). For all scenarios DCSA uses significantly less time than SA. 

All scenarios were solved by both algorithms using 100% range. Sixty-six percent of 

scenarios used 100% of the available frequencies with the remaining scenarios (1 and 

2) using 85-90% frequencies. 

To summarise: despite the additional overhead of the DCSA algorithm it obtains supe­

rior solutions in less time than SA. This is true for all scenarios (Group A and Group 

B) in both the average and best case. Both algorithms used comparable resources in 

reaching their solutions (except DCSA using a lower percent frequencies for Group A 

for a small number of scenarios). These results are significant and consistent. The 

DCSA algorithm has been shown to be robust and efficient in its solution of the fre­

quency assignment scenarios presented, furthermore the results are significantly better 

than those obtained by the sole metaheuristic, SA. 
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Figure 54. Graph showing DCSA vs. SA Time to Best Cost (Group B) 
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9.3 DCTS vs TS Results 

9.3.1 Group A Data 

165 

Fig 55 showing the average cost of the DCTS and TS algorithms clearly shows that 

DCTS obtains lower cost solutions than TS for the 6 scenarios not solved optimally. 

In fact there are a further 3 scenarios which DCTS obtained lower cost solutions than 

TS, although both yielded solutions of low cost. Conversely TS obtained a lower cost 

solution than DCTS for one scenario, again the difference in cost was negligible. For 

the remaining 27 scenarios both algorithms obtained optimal solutions on average. 

Fig 56 shows the average time taken by both algorithms and it can clearly be seen 

that DCTS takes longer than TS for all but 2 scenarios. It should also be noted that 

neither algorithm used the full time available for those scenarios which were not solved 

optimally by either algorithm. It would appear that using TS within the divide and 

conquer framework enables TS to overcome the premature termination experienced 

by the solo metaheuristic. However, the DCTS algorithm still terminates before the 

maximum run time for those algorithms not solved optimally. For those scenarios 

which were solved optimally and very quickly (less than one minute) by TS optimal 

solutions were also found by DCTS although it took slightly longer due to the additional 

overhead. 

Figs 57 and 58 show the best cost and time to best cost for Group A scenarios. It can 

clearly be seen that DCTS optimally solves 3 of the 6 scenarios which were not solved 

optimally on average and TS solves 2 optimally. For these 6 scenarios the best cost is 

significantly reduced from the average. Scenario 22 has a lower best cost for TS than 

DCTS, the time taken was significantly longer. 

The average percentage range used by both algorithms was identical. The average 

percentage of frequencies was identical for the easiest 13 scenarios. For the majority of 

the remaining scenarios DCTS used a higher percentage frequencies than TS. Some of 

the differences in values were significant. 

To summarise, DCTS obtained lower cost solutions than TS for the six tricky scenarios. 

The time taken was comparable in most cases; the percentage range used and the 

percentage frequencies used was slightly higher. For the remaining scenarios DCTS 

and TS obtained optimal solutions on average although TS obtained its solutions more 
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quickly, using the same or fewer frequencies and the same range as DCTS. The divide 
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Figure 57. Graph showing nCTS vs. TS Best Cost (Group A) 
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Figure 58. Graph showing neTS vs. TS Time to Best Cost (Group A) 
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and conquer framework assisted TS in finding lower cost solutions than the sole meta­

heuristic for the six tricky scenarios but the overhead meant that worse solutions (time, 

% Frequencies) were obtained by DCTS than TS on its own for those scenarios which 

were readily solved by TS. 

9.3.2 Group B Data 

By looking at Figs 59 and 60 showing average cost and time for the two algorithms 

it can clearly be seen that DCTS obtains lower cost solutions than TS for 7 of the 9 

scenarios and obtains them using slightly more time. For scenario 7 TS obtains a lower 

cost solution than DCTS and it also runs for longer. Scenario 5 has a marginally lower 

cost for the TS algorithm and it also runs for slightly less time on average. 

Figs 61 and 62 show the best cost and time to best cost. Scenario 1 has an identical best 

cost for both DCTS and TS; TS obtains its solution more quickly. For the remaining 

8 scenarios DCTS obtains lower cost solutions than TS. It also takes marginally longer 

in 7 out of 8 cases. 

The percentage range used for all scenarios and both algorithms was 100%. On average 

TS used fewer frequencies than DCTS. DCTS used 100% frequencies for 6 of the 9 

scenarios (and obtained lower cost solutions than TS) 

To summarise DCTS generally solves all of the group B scenarios using slightly more 

time and a higher percentage of frequencies than TS but obtains lower cost solutions. 

For these harder problems DCTS enables TS to overcome premature termination and 

go on to obtain better solutions. 



CHAPTER 9. EFFECTIVENESS OF USING DIVIDE & CONQUER 

en ... 
II) 
> 
~ 
0 c ... 
II) 
0 
0 
CD 
0) 
C'G 
"-
CD 
> < 

Figure 59. Graph showing neTS vs. TS Average Cost (Group B) 
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Figure 60. Graph showing neTS vs. TS Average Time (Group B) 
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Figure 61. Graph showing nCTS vs. TS Best Cost (Group B) 
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Figure 62. Graph showing nCTS vs. TS Time to Best Cost (Group B) 
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9.4 Summary 

9.4.1 Group A 

176 

• DCSA obtained optimal solutions for 100% of scenarios in the best case and also 

obtained lower cost solutions than SA on average. These lower cost solutions 

were obtained in less time, using the same percentage range and comparable (or 

slightly fewer) frequencies than SA obtained its inferior solutions. 

• DCTS improved on TS for the 6 scenarios which TS did not solve optimally. The 

solutions obtained had lower cost, used the same percentage range but were found 

in slightly longer time and using a slightly higher percentage of frequencies. 

• For the scenarios solved optimally by TS on average the corresponding DCTS 

solutions were also solved optimally but took longer and used more frequencies. 

9.4.2 Group B 

• DCSA obtains lower cost solutions than SA in less time and using comparable 

percent range and frequencies for all scenarios. 

• DCTS generally solves all of the group B scenarios using slightly more time and 

a higher percentage of frequencies than TS but obtains lower cost solutions. 

9.5 Conclusions 

Both the divide and conquer implementations obtained superior solutions to their solo 

heuristic counterparts for the majority of scenarios. The exception was that TS ob­

tained optimal solutions more quickly and using fewer resources than DCTS for the 

most easily solved scenarios in Group A. This was due to the additional overhead 

involved in the divide and conquer framework. 

The Group A scenarios were generally solved best by TS (with the exception of the 

six scenarios in the average case and 3 scenarios in the best case). The solutions to 

these exceptional cases was improved by using DCTS, although there was a slight time 

overhead incurred. The Group B scenarios were generally solved better by DCSA and 
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100% range was required throughout. A range of 80-100% of frequencies were also used 

when solving these scenarios. 

The superiority of the divide and conquer technique (for non-trivial problems) over 

both metaheuristics when used alone is significant. The divide and conquer technique 

consistently produced solutions of higher quality than either TS or SA. The parameters 

were not fine-tuned for any of these algorithms and so the advantages in terms of 

cost are due to the methods employed by the divide and conquer technique. The 

divide and conquer algorithms have been tested on a wide range of scenarios and 

have demonstrated that they are robust and efficient in their solution of the frequency 

assignment scenarios presented. 

For those non-trivial scenarios having comparable cost, the resources, span and order, 

used by the divide and conquer algorithms were less than the solo metaheuristic coun­

terparts. The superiority of the divide and conquer method with respect to the span 

and order has very important practical applications. The frequencies that are not used 

for the assignment can be freed for use by other users of the electromagnetic spectrum. 

Since demand on the spectrum is increasing rapidly this advantage will become essential 

in the future. 



Chapter 10 

DC vs. DERA Results 

In this chapter the results obtained using the divide and conquer algorithm are com­

pared with those provided by the Defence, Evaluation and Research Agency (D.E.R.A). 

The results are not directly comparable and the reasons for this are explained. Despite 

the potential inconsistencies in the comparisons, the DC algorithm appears to obtain 

lower cost solutions in less time than methods currently in use at D.E.R.A. Some in­

formation which is needed to aid comparisons is unobtainable due to confidentiality 

constraints and these areas are highlighted in the relevant discussions. 

The following abbreviations have been used in this chapter: 

DCSA = Divide and Conquer algorithm with simulated annealing 

DCTS = Divide and Conquer algorithm with tabu search 

DERA = program used by D.E.R.A. 

10.1 Reforming the Data Sets 

The 46 TNET scenarios were provided by D.E.R.A. In the original format of the data 

there were 16 tactical communications problems. However, these were composed of 

one or more independent problems. The independent problems described constraint 

networks to which different frequency ranges were available. The frequency ranges 

were sufficiently separated that it was impossible for the constraint networks assigned 

to each of the ranges to cause inter-network interference. Each of the original 16 tactical 

178 
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communications problems described one or more such networks and gave 46 separate 

scenarios in total. The results given throughout this thesis use the 46 scenarios format. 

This was agreed with D.E.R.A. 

To compare the results obtained using the divide and conquer algorithm with those 

provided by D.E.R.A. it was necessary to recombine the individual scenario results to 

obtain solutions to the 16 tactical communications problems provided. 

10.2 Comparison Difficulties 

The programs being compared are DC (SA and TS versions) and DERA. The implemen­

tation of the divide and conquer program is given in Chapter 8, the DERA algorithm 

is completely unknown 1 but is thought to be based on a simulated annealing approach. 

To compare the two programs fairly each scenario should have used the same frequency 

set and initial solution over all runs. This was not possible, as indicated below. 

10.2.1 Frequency Set 

The number of frequencies to be generated randomly from a given frequency range 

was provided as part of the data set. The frequency range was selected by D.E.R.A. 

to maintain confidentiality but the range of frequencies and the number of distinct 

frequencies to generate was realistic. The objective function measured the deviation 

from the required separation and so the use of a different frequency range did not affect 

the credibility of the results obtained. To enable a fair comparison of the programs the 

DERA program used the same frequency set as that generated by the DC program. 

For each scenario, the frequency set was constant over all runs. 

10.2.2 Initial Solution 

The same initial solution was used over all runs and all four algorithms discussed in 

this thesis (TS, SA, DCSA and DCTS). The method used to obtain this initial solution 

is described in Chapter 8 section 8.4.3. Unfortunately the DERA program did not use 

the same initial solution and so this limits the direct comparison of the two programs. 

1 Confidentiality reasons 
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It is not known how the DERA program arrived at its initial solution except that it 

used a ' very clever' algorithm taking' several minutes at least' 2 to arrive at the initial 

solution. D.E.R.A. were unable to provide their initial solution for me to use 3. In 

addition a change of supervisor at D.E.R.A. made it impossible for them to run their 

program again using my initial solution. 

10.2.3 Machine 

The results in this thesis were obtained on a desktop PC, 100MHz; the code was written 

in ANSI C using Borland C++ software, version 4.5. The DERA results were obtained 

on a VAX 4000; the code was written in ADA and ran on a UNIX platform. There are 

obvious difficulties in comparing the run-times of the programs due to the very different 

platforms on which the results were obtained. 

10.2.4 Maximum Run Time 

During the investigations leading to the results obtained in this thesis the maximum run 

time was set (by D.E.R.A.) at 15 minutes. However, the results recently obtained from 

D.E.R.A. were obtained by program runs of up to 40 minutes. Since only the average 

time taken has been provided in the DERA results comparison of the run-times of the 

two programs has limited value. In addition to this, the times provided for the DERA 

program do not include any preprocessing time (creation of data structures) or the 

time taken to arrive at the initial solution (which takes 'several minutes at least'). The 

run-times for the DC program include the time to create all the data structures and 

the time to obtain the initial solution. 

10.2.5 Objective Function 

The agreed objective function for this investigation was the sum of the positive dis­

crepancies (explained in Chapter 2 section 2.5). Both parties have exchanged solutions 

for all of the 16 problems in order to confirm that the solution evaluation proceedures 

for both programs are in agreement. The constraint networks provided by D.E.R.A. 

2comments from Roger Edwards at D.E.R.A. 

3 t his was due to the risk of confidential information being derivable from the solution provided. 



CHAPTER 10. DC VS. DERA RESULTS 181 

in the 16 data sets are a worst-case description of the constraints that they use and 

as such are harder to satisfy. This means that the DC evaluation of the DERA solu­

tions tends to highlight several additional constraint violations than those declared by 

D.E.R.A. These additional constraint violations show only minor discrepancies in the 

objective function (typically < 5), which are thought to be due to 'harmonics'. Since 

these discrepancies are small the results of the two programs can still reasonably be 

compared. For problems where the cost is less than or equal to five the discrepancies 

make it difficult to compare the results realistically. 

Table 11 shows the cost of the final solutions obtained for all 16 scenarios by each of 

the DC and DERA programs. The cost calculated for the DC program satisfies harder 

constraints than those used to calculate the final solution cost results obtained by the 

DERA program and so will often produce a marginally higher cost when evaluating the 

same solution. 

10.3 Results 

Table 10 gives the average run-time of the DC and DERA programs. Table 11 compares 

the cost of the final solution obtained by the DC and DERA programs. 

Table 10. Comparison of DC and DERA : Average Time (s) 

TNET DCSA DCTS DERA TNET DCSA DCTS DERA 

1 325 111 365 9 719 408 453 

2 555 362 575 10 551 842 335 

3 281 362 514 11 333 586 665 

4 703 581 622 12 1067 824 649 

5 692 611 625 13 344 611 677 

6 791 568 630 14 218 122 100 

7 536 943 633 15 534 875 475 

8 335 577 639 16 519 858 462 
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Table 11. Comparison of DC and DERA : Cost 

TNET DCSA DCTS DERA 

Problem Best Worst Average Best Worst Average Best Worst Average 

1 0.0 0.1 0.0 0.0 8.0 0.8 0.0 27.8 2.8 

2 13.0 13.3 13.1 13.0 21.0 13.8 0.0 53.9 18.0 

3 0.0 0.0 0.0 0.0 7.9 2.7 0.0 90.6 30.3 

4 28.8 57.2 35.9 37.6 96.5 51.8 1.6 275.3 144.7 

5 0.0 0.0 0.0 0.4 48.4 17.4 0.2 182.1 63.2 

6 0.0 0.2 0.1 6.3 60.4 34.2 8.7 191.2 64.1 

7 5.7 10.0 8.0 4.4 15.6 7.1 0.6 16.8 6.6 

8 5.9 14.1 8.5 19.4 43.8 33.0 25.5 69.2 48.9 

9 0.0 0.3 0.1 0.0 0.2 0.0 0.0 7.8 1.5 

10 1.0 3.0 1.9 0.6 5.3 2.3 0.0 1.2 0.3 

11 0.0 23.0 8.7 23.7 96.2 52.8 20.6 76.4 45.3 

12 1.0 2.0 1.6 0.8 1.9 1.3 2.1 10.7 6.3 

13 8.7 47.7 17.1 66.2 135.1 108.9 48.6 123.4 95.0 

14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.1 

15 14.2 19.3 16.7 2.5 10.2 4.7 0.0 3.8 1.7 

16 1.9 6.8 4.0 0.8 5.0 2.7 0.0 2.3 1.0 
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Figure 63. Graph showing DeTS, DCSA and DERA Best cost 
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Figure 64. Graph showing nCTS, DCSA and DERA Average cost 
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Figure 65. Graph showing neTS, DCSA and DERA Average Time(s) 
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Figure 66. Graph showing DeTS, DCSA and DERA Worst cost 
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10.4 Discussion 

10.4.1 Cost 

Best Case (Fig 63) 

187 

If the DC results with cost < 5 are treated as zero then there are 6 problems for which 

all three algorithms obtain zero-cost solutions. For the remaining 10 problems the 

following observations can be made: 

• DERA obtains lower cost solutions than DCSA and DCTS for 40% of problems 

• DCSA obtains lower cost solutions than DERA for 60% of problems, 30% have 

zero-cost solutions. 

• DCTS obtains lower cost solutions than DERA for 30% of problems 

• DCTS obtains comparable cost solutions « 5) with DERA for a further 30% of 

problems. 

• DERA obtains a zero-cost solution for TNET2 , neither of the DC programs obtain 

optimal solutions. 

• DERA obtains a significantly better solution for TNET4 than DC. 

A verage Case (Fig 64) 

• DERA obtains significantly higher cost (worse) solutions for 75% of problems 

than DC. 

• DCSA generally obtains lower cost solutions than DCTS (except for 3 comparable, 

low cost problems) 

Worst Case (Fig 66) 

• DERA obtains the highest cost solutions for 81% of problems 

• DERA obtains comparable (with DC), low cost solutions for the remaining 19% 

of problems. 
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• DCSA generally obtains lower cost solutions than DCTS (except for 2 comparable, 

low cost problems) 

10.4.2 Time (Fig 65) 

When comparing the average times of the programs the comparison difficulties discussed 

in Chapter 7 section 7.4.1 should be borne in mind. The average run-times are compared 

alongside the average cost results: 

• There were 9 problems which had comparable low cost solutions for all three 

algorithms; the times for DERA and DCSA were comparable for 4 problems and 

for the other 5 DERA took less time . 

• For 7 problems DERA obtained significantly higher cost solutions than DCSA; 

for 3 of these problems the times were comparable, for the remaining 4 DERA 

took much longer. 

10.5 Conclusions 

To reiterate: The cost values given in table 10 represent the values obtained by two 

different objective functions, the constraints used for the DC program were harder to 

satisfy and therefore may show a marginally higher « 5) cost than an identical solution 

evaluated by the DERA program. Therefore, comparison of solutions where the DC 

cost is < 5 has limited value. 

There were 6 problems solved optimally (zero-cost solutions) by both DC and DERA. 

For the remaining 10 problems: the DERA program obtains better solutions than DC 

for 3 problems in the best case, TNET2, TNET4 and TNET15. It is not known how 

long the DERA program ran to obtain these solutions, but may have been up to 40 

minutes. The best case is interesting because it highlights two problems for which 

DERA obtained zero-cost solutions where DC did not. 

The average and worst case results are the most useful when comparing algorithms. 

For the average case DC obtained lower cost (better) solutions than DERA for (75%) of 

problems, in the worst case this rose to (81 %). The DCSA algorithm generally obtained 

better solutions than DCTS. 
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DCSA obtained the lowest cost solutions of the three algorithms, obtaining zero-cost 

solutions for 4 problems where DERA did not. Conversely DERA obtained zero-cost 

solutions for 2 problems where DCSA did not. For the 9 low-cost problems the DERA 

program took comparable or less time than DCSA. For the 7 higher cost problems the 

DERA program took comparable or significantly more time than DCSA 

For the nine low cost problems DCSA and DERA obtained comparable cost solutions 

(DERA used less time on average). For the seven higher cost problems DCSA obtained 

significantly lower cost solutions than DERA and also found these superior solutions 

in less time on average. For harder problems DCSA seems to obtain the better results. 

For easier problems the results are comparable. 

The differences between the cost values of the best/average/worst solutions obtained 

by the DERA algorithm are quite significant. This shows that the DERA program 

has a higher probability of providing a poor solution compared to the relatively less 

variable solution costs obtained by the divide and conquer algorithms. The divide and 

conquer algorithm is more reliable than the DERA algorithm. 

10.6 Further Work 

For the two problems (TNET2 and TNET15 ) for which DERA obtained zero-cost so­

lutions and DC did not it would be interesting to allow DC to run for a longer time 

period to see if a zero-cost solution could be obtained. 

Result: the above problems were solved to optimality by DCSA in 16 and 20 minutes 

respectively. 



Chapter 11 

Conclusions 

11.1 Introduction 

The main objective of this research was to investigate how to split the frequency assign­

ment problem into subproblems for more rapid solution, and to establish a software 

library of techniques based on existing and novel algorithms (comparing the perfor­

mance of the alternative techniques). 

This chapter is divided into three parts : part one provides a summary of the main 

findings of the research, part two states some conclusions which can be drawn from this 

work, and finally, part three gives some concluding remarks. This chapter shows that 

all the objectives that were stated at the outset of the research have been achieved, and 

that all the metaheuristic algorithms which have been developed prove to be efficient 

and effective solution techniques for the FAP. In particular, the divide and conquer 

technique has been shown to obtain superior solutions when compared with classic im­

plementations of TS and SA, and when compared with results obtained by the program 

currently in use at D.E.R.A. 

11.2 Summary of the Research 

The main contribution of this research is the detailed design, development, implemen­

tation and empirical analysis of four metaheuristics based on SA, TS and divide and 

190 
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conquer strategies for solving the FAP. 

In addition to fulfilling the research objectives an up-to-date literature review of the 

frequency assignment problem and its variants was given (Chapter 3). This review 

(and discussions in Chapter 2) established why the FAP is important at the current 

time and outlined its practical applications. This was followed by an overview of recent 

developments in the field of metaheuristics (Chapter 3) with particular attention being 

paid to techniques used to solve the frequency assignment problem. The aim of this 

review was to highlight both the significance and relevance of the heuristics used in this 

research. 

Chapter 4 gave a brief introduction to heuristics, explained why exact algorithms are 

insufficient for large-scale commercial problems and defined some general terms. Neigh­

bourhood search was then explained with the relevant terminology. These ideas were 

used later in the introduction to the various algorithms used in this research. 

For ease of reference the original research objectives are repeated here. The research 

contributions are given with references to the sections of the thesis in which the results 

were first presented. 

1 To establish a software library of techniques based on existing and novel algorithms 

and to compare the performance of the alternative techniques. 

A suite of programs have been developed using Borland C. The following 

(existing) algorithms have been implemented for solving the MATRIX test 

data: random descent, steepest descent, greedy and backtracking. The 

results of these preliminary investigations, on a small data set, is described 

in Chapter 5. 

For the realistic (TNET) data set a suite of heuristic and metaheuristic algo­

rithms was developed. The available algorithms are steepest descent, greedy 

algorithm, simulated annealing and tabu search. In addition a (novel) di­

vide and conquer algorithm was developed which is able to utilise either 

simulated annealing or tabu search in the improvement stages. The imple­

mentation details and results for the simulated annealing and tabu search 

algorithms were given in Chapter 7. These two metaheuristics were devel­

oped as benchmarks for later comparison with the novel divide and conquer 
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approach. The divide and conquer framework was described fully in Chap­

ter 8 and results were presented. In Chapter 9 the results from the solo 

metaheuristics were compared with the divide and conquer algorithm. The 

divide and conquer algorithm was found to obtain significantly better so­

lutions than either of the solo metaheuristics when acting on non-trivial 

scenarios. The DCSA algorithm in particular was shown to be robust and 

efficient in its solution of the FAPs presented. 

2 To develop metrics for measuring the goodness of assignments. 

The initial suggestion of counting the number of constraint violations has 

been superceded by a new objective function which calculates the sum of the 

positive discrepancies of the violated constraints. This evaluation function 

is thought to more accurately represent the interference suffered by a com­

munications network. In addition, preliminary investigations (described in 

Chapter 5) indicated that there was a close association between the vertex 

ordering criterion used and success of the algorithm when using a particular 

evaluation function. Ideally the ordering criterion and evaluation function 

should be chosen to complement one another. 
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3 To investigate how to split the problem into subproblems for more rapid solution. 

The divide and conquer program (Chapter 8) divides the problem by di­

viding the frequencies available into disjoint bands. The smaller versions of 

the problem are then solved before their solutions are recombined to obtain 

a solution to the whole problem. Several division criteria were investigated 

and division of the frequency set (into approximately equal order bands) 

yielded the higher quality results. A particular advantage of this division 

method is that it does not depend on knowledge of the constraint graph. 

This method has proven to yield high quality solutions even with rich con­

nectivity between the subproblems. 

4 Investigate the benefits of hybrid techniques compared with the application of a 

single type of algorithm. 
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The divide and conquer program using either metaheuristic in the improve­

ment stages outperforms the corresponding solo metaheuristic (Chapter 9). 

The divide and conquer algorithm obtains solutions with less interference, in 

less time and often using fewer spectral resources than the solo metaheuristic 

program for realistic non-trivial data sets. The divide and conquer method 

has proven to be robust and efficient in solving the frequency assignment 

problem. 
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5 To study the significant factors which influence performance, e.g. frequency allot­

ment, frequency selection and the provision of an incremental objective function. 

Early experimentation (Chapter 5) showed that the best results were ob­

tained by pre-ordering the links in descending order of co-site vertex degree 

when used in conjunction with the objective function summing the positive 

discrepancies. 

The results in this chapter also suggested that the selection of an equivalent 

best-cost frequency at random from those available reduced the amount of 

spectral resources used in the final solution. 

Finally, the provision of an incremental objective function was shown to 

improve solution quality. Data structures were described (Chapter 5 for 

MAT RlX , Chapter 7 for TNET data) which enabled a very fast incremental 

objective function to be employed. This was found to give a significant 

reduction in the computation time for the algorithms, enabling them to 

evaluate more solutions in the time allocated. The average time complexity 

of the objective function (Chapter 7) was reduced from O(N2) to O( ~). 

The findings of the preliminary investigation were considered when devel­

oping the metaheuristic algorithms. 

6 To devise suitable experiments to assess the performance of each algorithm in 

isolation, and with other available techniques for solving a class of simulated but 

realistic problems. 

Extensive computational results are provided (Chapters 7-9) to compare 

the effectiveness of each of the algorithms developed. All of the programs 
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were developed and executed on the same machine. In addition program 

modules were developed which enabled the metaheuristics implemented in 

Chapter 7 to be used directly within the divide and conquer framework. For 

each scenario, all of the algorithms used the same initial solution and the 

same frequency set. By controlling as many environment factors as possible, 

a realistic comparison of the algorithms was facilitated. 

Chapter 10 compared the solutions found by the divide and conquer tech­

nique with results obtained from the program currently in use at D.E.R.A. 

Some comparison difficulties were highlighted and some reasons for these 

offered. Despite the various caveats (including that the divide and conquer 

results were obtained on a far slower machine) the divide and conquer algo­

rithms were found to obtain far superior solutions to the existing program. 

In addition the divide and conquer algorithm performed more consistently 

(variations between best, worst and average values was much smaller). 

Chapter 6 described the data sets used in the course of this research. The 

primary data set. on which most of the metaheuristics acted, comprised 

of 46 realistic networks generated to simulate real-life tactical communica­

tions scenarios, the largest of these had 1090 links, 40 frequencies and 9325 

constraints giving a search space of 101746 . The test data was provided by 

Roger Edwards at D.E.R.A., Malvern. The test problems were sufficiently 

varied to highlight the difference between the performance of the heuristics. 
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7 To compare the difference between problems considered in this thesis and others 

in the literature; for example the CELAR data. 

There is a set of F AP instances known as the CELAR data. In chapter 

6 these instances were briefly discussed and the differences between those 

problems and the TNET data used in this research were highlighted. Chap­

ter 4 described two of the metaheuristic techniques (SA and TS) which 

were developed during the 18 month CALMA project and tested using the 

CELAR data. It would be unfair to compare the metaheuristics developed 

for the CALMA project with the ones developed in this thesis. Many of 

the algorithms in the CALMA project employed consistency techniques to 

reduce the size of the problem instances, and this led to an improvement in 
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their efficiency. In addition to this a great deal of time was spent fine-tuning 

the parameters of the search technique for each problem considered - this 

goes against the ideals behind the research described here. In addition the 

CELAR data describes a fundamentally different type of assignment prob­

lem due to the existence of multiple frequency domains. 

11.3 Conclusions 
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In this section several points are enumerated which outline findings that have been well 

researched in the literature, and conclusions which may be drawn from the research 

described in this thesis. 

1. TS and SA are often used for solving the FAP and produce results which are 

better for large problems than many alternatives, in particular hill climbing and 

genetic algorithms [HTS96] [HST97]. 

2. TS and SA have both been used effectively for the data supplied by D.E.R.A. It 

was found that SA was the more reliable of the two heuristics but that TS was 

better for the easier scenarios. 

3. DC combined with simulated annealing or tabu search has never been considered 

before for any combinatorial problem (as far as an extensive literature search and 

consultation with experts has revealed). 

4. DC is able to improve upon the results obtained by both TS and SA. Barr et 

al listed seven indicators to establish whether a new heuristic method could be 

deemed to have made a contribution to the subject [Barr et a1.95]. The first seven 

indicators below are from their paper, all of which are satisfied by the divide and 

conquer algorithm. In addition, two further important features of the divide and 

conquer have been added to the list . 

• Fast : The DC algorithms generally obtain better quality solutions in less 

time than the corresponding solo metaheuristic for non-trivial problems . 

• Accurate: The DC algorithm has been shown to provide equivalent or higher 

quality solutions than simulated annealing, tabu search or the program in 

use at the D.E.R.A. 
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• Robust : The DC programs, DCSA in particular, has proven to be less 

sensitive to problem characteristics than the SA, TS or DERA programs. 

• Simple : The method is easy to implement - researchers may already have 

existing simulated annealing or tabu search algorithms which can be used 

within the divide and conquer framework. 

• High-Impact : The divide and conquer algorithm developed is able to solve 

an important combinatorial optimisation problem, the FAP, faster and more 

accurately than other existing methods. 

• Generalizable: The division of the FAP is not reliant on knowledge of the 

constraint graph (compared to CELAR problems being solved with pre­

processing using arc consistency and the property that some graphs could 

be partitioned into disjoint subgraphs). The framework could be readily 

adapted to accept other FAPs. 

• Innovative : A 'new' method (combining DC with heuristics) providing im­

provement without fine-tuning of parameters. 

• Efficient : Even though spectral resources are not minimised by way of 

inclusion in the objective function the results show that often fewer spec­

tral resources are used by the solutions obtained by the divide and conquer 

algorithm compared to solo metaheuristics. Efficient use of the available 

spectrum will become essential as demands continue to increase. 

• Parallelisable : Method is ammenable to parallelisation 

5. It is difficult to compare the DC results with the DERA results. However the 

results indicate that DC is better with respect to robustness, quality of solution 

(with some caveats) and is also faster. 

6. Divide and conquer incorporating heuristics may well be effective for other prob­

lems. 

• New 

• Robust 

• Parallelisable 

• Effective. 
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11.4 Final Remarks 
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Finally, it may be concluded that all the initial objectives posed at the outset have 

been achieved. The FAP is an NP-hard combinatorial optimisation problem and since 

exact algorithms are generally impractical for dealing with large realistic problems, the 

development of effective metaheuristic methods is extremely important. The divide and 

conquer technique described in this thesis is more effective and efficient than the SA 

and TS metaheuristics. This thesis has shown that the design of efficient data struc­

tures and the use of pre-ordering and efficient selection techniques can further improve 

the performance of algorithms - these issues should be considered when developing 

any metaheuristic. Also since there are no strict guide-lines on how to measure the 

performance of a heuristic, comparison with available heuristic techniques is also im­

portant. To this end implementations of all four algorithms have been developed so 

that as many variables as possible can be kept constant and therefore enable a fair 

comparison of the algorithms [Bar et aI.95]. 

The divide and conquer technique has been shown to provide high quality solutions 

for this class of F APs. The technique is flexible enough to incorporate other types of 

constraints, objective functions and indeed improving heuristics in the local and global 

improvement stages. The divide and conquer technique is easily adaptable for solving 

other variants of the FAP. Although conclusions were based on a specific class of FAPs, 

these problems are more general than some FAPs that occur in practice. Therefore the 

divide and conquer technique deserves further investigation, both for the FAP and for 

other difficult combinatorial optimisation problems. 

This research has established the usefulness of employing a divide and conquer strategy 

to improve upon the results obtained by metaheuristics used alone and to take the 

emphasis away from parameter tuning into a more general framework. The research also 

shows that enhanced solutions for the FAP can be found by subdividing the problem 

as described. The subproblems are successful even with rich interconnections between 

the subproblems. 

Overall, DCSA appears to be the most efficient and effective approach (of those inves­

tigated) for solving this class of FAPs. The divide and conquer method described here 

is novel, robust and effective. In addition it lends itself to parallelisation. To conclude 

: the divide and conquer framework presented here shows promise and it is worthwhile 
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investigating the suggestion of TS in the local improvement phases and SA in the global 

stages in anticipation of further improving the results. 

This research has gone some way to identifying factors which influence the performance 

of algorithms used for solving the FAP. The divide and conquer framework has been 

shown to out-perform solo metaheuristics without the need for excessive parameter 

tuning or reliance on knowledge of the constraint network. It is hoped that this re­

search will be of use to computer scientists, operation researchers and practitioners 

investigating solution methods for the FAP. This research will also be of interest to 

those considering heuristic approaches in general. Knowledge of how well this divide 

and conquer framework can perform is encouraging and provides some valuable ideas 

and information. 
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Appendix a : Results for Chapter 7 : SA vs. TS 



a 
SA: % Range 

1 iGroup A Data 
Scenario i best worst average Std Devn 

1[ 100 100 100 0.000 
2J 86] 86 86 0.000 
3! 100[ 1001. 100 0.000 
4! 1001 1001 100 0.000 
5! 1001 100[ 100 0.000 
6i 80: 801 80 0.000 
7[ 1001 100 100 0.000 
81 100 100 100 0.000 
91 80 80 80 0.000 

101 100 100 100 0.000 
11i 1001 100 100 0.000 
12! 100 100 100 0.000 
131 .80 80 80 0.000 
141 1001 100 100 0.000 
151 100, 100 100 0.000 
161 80 80 80 0.000 
171 100 100 100 0.000 
18 ', 1001 100 100 0.000 
19! 100 100 100 0.000 
20 80 1 801 80 0.000 
21 100: 1001 100 0.000 
22 100i 100j 100 0.000 
23' 1001 100 100 0.000 
24: 100 1001 100 0.000 
251, 821 82 82 0.000 
261 100 100 100 0.000 
27, 100' 100 100 0.000 
28; 86 86 86 0.000 
29, 1001 100 100 0.000 
30 861 86 86 0.000 
31 i 100 1 100 100 0.000 
32, 100[ 100 100 0.000 
33: 801 80 80 0.000 
34 

I 
100 100 100 0.000 

35 100 100 100 0.000 
361 86 86 86 0.000 
37, 91 91 91 0.000 

, 

iGroup B Data 
Scenario • best [worst average Std Devn 

1 100r 100, 100 0.000 
2 100: 1001 100 0.000 
3 100'1 100 100 0.000 
4 100 100 100 0.000 
5 100 100! 100 0.000 
6 100 100: 100 0.000 
7 100 100 100 0.000 
8 100 100. 100 0.000 
9 100 100 100 0.000 



a 
SA : % Frequencies 

1 1 Group A Data 
Scenario i best worst average Std Devn 

11 98 100 99 0.904 
2 32 32 32 0.000 
31 55 76 68 6.478 
4 1 , 65 80 73 4.333 
5i 100 100 100 0.000 
6: 15 15 15 0.000 
7' 85 91 88 2.050 
8 95 100 98 1.678 
9 15 15 15 0.000 

10 92 99 96 2.330 
11 80 85 82 2.321 
12 100 100 100 0.000 
13 1

[ 10 10 10 0.000 
14 98 100 98 0.728 
15 100 100 100 0.000 
16j 10 10 10 0.000 
171 98 100 99 0.756 
181 78 88 83 3.523 
19i 98 100 100 0.700 
201 15 15 15 0.000 
21 '; 96' 100 99 1.278 
22i 82 92 86 3.375 
23j 78 88 81 3.653 
24 100 100 100 0.000 
251 15 15 15 0.000 
26 98 100 99 0.833 
271 100 100 100 0.000 
28 38 38 38 0.000 
291 100 100 100 0.000 
301 20 20 20 0.000 
31 98 100 99 0.833 
32 100 100 100 0.000 
33 10 10 10 0.000 
341 98 100 99 0.639 
35![ 100 100 100 0.000 
36 45 45 45 0.000 
371 45 45 45 0.000 

Group B Data 
Scenario best worst average Std Devn 

1j 85 95 87 3.642 
2: 85 92 88 1.884 
31 100 100 100 0.000 
4' 100 100 100 0.000 
5 991 1001 100 0.452 
6 1001 1001 100 0.000 
7 100 100 1

, 100 0.000 
8 100 1001 100 0.000 
9 100 100: 100 0.000 



\ . 
a 

Tabu Cost: TNET Data 

i Group A : Data I 
Scenario : best worst • average std deviation 

1 0.0 0.0' 0.001 0.000 
2 0.0 0.0' 0.00 0.000 
3: 0.0' 0.0 O.OO! 0.000 
4 0.0: 16.4 3.101 5.730 
5, O.Oi O.O! 0.001 0.000 
6! O.O! O.O~ 0.00 0.000 
7, 0.0: O.Oi 0.00 0.000 
8 O.O! 0.0 0.00 0.000 
9 O.Oi 0.0: 0.00, 0.000 

10; 0.0 0.0 O.OOi 0.000 
11: 7.2! 30.2' 22.19 7.113 
12' 0.01 0.1 0.05! 0.050 
13; 0.01 0.0: 0.00 0.000 
14; O.O! O.O! 0.00 0.000 
15i O.Oi O.O! 0.00 0.000 
16! 0.01 0.0, 0.00 0.000 
17' 0.01 0.0: 0.00 0.000 
18: 3.91 343.8 95.751 107.763 
19 O.O! 0.1 0.01 i 0.033 
20, O.O! 0.0' 0.00 0.000 
21, 0.0: 0.0, 0.00 0.000 
22 1.2! 80.2 37.401 22.522 
23, 0.0: 24.0, 8.001 8.000 
24: O.Oi 0.7' 0.11 i 0.232 
25, 0.0 ' 0.0 0.00' 0.000 
26' 0.0; 0.0' 0.001 0.000 
27 0.01 0.0 o.ooi 0.000 
28 0.0' 0.0 0.001 0.000 
29 60.8 94.4' 72.21 : 11.048 
30 0.0, 0.0 O.OO! 0.000 
31 0.0 0.0 O.OOi 0.000 
32 0.0' 0.0 O.OOi 0.000 
33 0.0 0.0 0.00: 0.000 
34 0.0 0.0 0.00 0.000 
35 0.0 0.0 0.00 0.000 
36 0.0 0.0 0.00 0.000 
37 0.0 0.0 0.00 0.000 

.-
Group B Data 

Scenario best worst average std deviation 
1 13.0 45.7 31.49 10.278 
2 46.9 112.9 75.73 19.170 
3 41.6 44.5 42.89 0.949 
------------ .--- .. .- --
4 35.7 44.8 41.99 3.641 ---_ .. _-------_ .. -
5 1.7 2.5 1.96 0.255 

~- --- _. __ .. .. - ----
6 1.1 2.6 1.90 0.480 

.. ----- .. ---. . _. . . . -
7 72.7 79.1 74.48 2.493 

--- -
8 23.0 68.0 30.53 14.202 

. - - -- --- ---
9 2.8 24.0 6.73 6.629 



a 

Tabu Time: TNET Data 

Group B : Data 
Scenario : best worst -average std deviation 

11 24\ 26 24.38\ 0.696 
2! 01 0 0.00 0.000 
3 a 0- 0.00 0.000 
4 9\ 18 13.63 2.955 
5 441 89 60.50 18.214 
6 0 a 0.00 0.000 
7 41 4; 4.00 0.000 
81 4 4 4.00 0.000 
9! a 0: 0.00 0.000 

101 15' 15~ 15.00 0.000 
11 58 134; 99.00 29.479 
12 37 105i 69.50 31.068 
13 0 01, 0.00 0.000 
141 31 32; 31.13 0.331 
15 26 291 27.25 0.829 
16 0 °i 0.00 0.000 
17 75 76! 75.13 0.331 
18\ 87 i 453\ 337.00, 109.736 
19 371 104; 55.25\ 25.371 
20i Oi a! 0.00 - 0.000 
21 31 : 31 31.00 0.000 
221 251 i 47t 373.13 59.501 
231 291 48, 36.13 6.936 
24 3~! 91 49.501 25.045 
25i 0 a 0.00 0.000 
26: 39: 40' 39.13i 0.331 
271 26; 27' 26.13\ 0.331 
28: Oi A' 0.00 0.000 
291 609: 639 624.001 10.595 
30! O! a O.OOi, 0.000 
31 i 82' 83 82.13: 0.331 
32: 43 43 43.00' 0.000 
33 0' 0 O.OO! 0.000 
34 66, 86 69.13 6.392 
35 11 15 12.38' 1.317 
36 a 0 0.00- 0.000 
37 a 0 0.00 0.000 

Grou~B Data 
Scenario best worst average std deviation 

1; 33 77 52.63- 15.386 
2 220 365 281.13', 40.160 _. -
3 783 791 785.75 2.332 

.-. ------- .---- -
4 491 626 536.75 38.065 ._- ... --- .-
5 782 787 783.88 2.027 

.. - - -- -. - -
6 231 409 328.25 70.567 
7 765 784 777.00 7.089 --- .. --- -----

8 784 790 786.13 2.204 
.-- -- ._- -

9 783 788 785.25 1.714 



a 

Tabu % Freqs : TNET iData 

1 I Group A : Data I , 
Scenario ! best: worst .average !std deviation 

1; 951 100' 97.501 1.581 
2: , 32! 32, 32.00! 0.000 
31 201 24: 21.751 1.479 
4\ 65! 80! 73.63! 5.023 
5 981 100! 99.501 0.866 
6 151 15: 15.001 0.000 
7 35: 381 35.881 0.927 
81 781 901 82.881 3.219 
91 151 15, 15.001 0.000 

10 481 55; 49.881 2.147 
11 75 85l 80.631 3.314 
12 98 100/ 99.751 0.661 
13 10 10\ 10.00\ 0.000 
14 58 661, 60.131 2.421 
151 95 j 1001 97.88 1 1.269 
16! 101 10/ 10.001 0.000 
171 66l 74! 70.63! 2.176 
18: 821 90'1 86.001 2.784 
191 98\ 100 1 98.25i 0.661 
201 15! 15i 15.00j 0.000 
21 51: 58\ 54.631 2.342 
22i 80i 90i 87.25i 3.419 
231 75i 88j 79.881 3.480 
241 98 1 100i 99.751 0.661 
251 15i 151 15.001 0.000 
26: 60! 66 61.631 2.118 
271 78! 90! 84.131 4.594 
28! 38: 38, 38.001 0.000 
29: 98, 1001 99.50! 0.866 
30i 20' 20: 20.00: 0.000 
31, 66 81 ' 73.00' 4.664 
32' 88 95 93.00 2.345 
33' 10' 10 10.00 0.000 
34 61 74 69.50' 3.708 
35 68 82 77.25 4.323 
36 45 45 45.00 0.000 
37 45 45 45.00 0.000 

Group B Data 
Scenario best worst average std deviation 

1 80, 90 84.00 3.428 
2 82 90 85.25 2.947 

-. 
3 84 89 86.25 1.479 

1------- .. - - -.- - . - -*---
4 95 98 97.25 1.299 

1--._- --- --_._----- .-
5 94 98 95.38 1.218 

f-. --- -- - ---
6 100 100 100.00 0.000 
7 95 100 98.88 1.691 --
8 84 94 90.63 3.238 -------- --
9 91 98 93.75 2.278 



a 

Tabu % Range: TNET Data 

1 IGroupA i Data 
Scenario ! best I worst : average std deviation 

1 , 100 100! 100.00\ 0.000 
2' 86! 86: 86.00 1 0.000 
3i 100 i 100! 100.00! 0.000 
4: 

I 100i 100: 100.001 0.000 
5 '[ 1001 1001 100.001 0.000 
6i 801 80 1 80.00! 0.000 
7i 1001 100i 100.00i 0.000 
81 100! 100i 100.00i 0.000 
9! 80j 80i 80.00! 0.000 

10! 100 i, 100i 100.00: 0.000 
11 i 1001 1001 100.00! 0.000 
121 100 1001 100.00i 0.000 
13[ 80[ 801 80.00 0.000 
141 100 100! 100.00 0.000 
15\ 100 100! 100.00 0.000 
161 80 80i 80.00! 0.000 
17; 100 100i 100.001 0.000 
18t 100 100\ 100.001 0.000 
19i 1001 1001 100.001 0.000 
20! 80! 80 1 80.00! 0.000 
211 1001 100: 100.00( 0.000 
221 1001 1001 100.00! 0.000 
23i 100 100[ 100.001 0.000 
24: 100 1001 100.001 0.000 
25; 82! 821 82.001 0.000 
26: 100\ 100: 100.00! 0.000 
27' 100i 100 100.00! 0.000 
28~ 86i 861 86.00! 0.000 
29: 100 i 100'1 100.00; 0.000 
30: 86i 86: 86.00: 0.000 
31 1001, 100: 100.00: 0.000 
32 100! 100; 100.00 0.000 
33. 80i 80 80.00 0.000 
34 100 100 100.00 0.000 
35 100. 100 100.00 0.000 
36 86 86 86.00 0.000 
37 91 91 91.00 0.000 

Group_ B Data 
Scenario best' worst average std deviation 

1 100 100 100.00 0.000 
2 100: 100, 100.00 0.000 
3 100: 100 100.00 0.000 

-.-
4 100 100 100.00 0.000 

.- .--
5 100 100 100.00 0.000 

. ------.--- ----
6 100 100 100.00 0.000 
----- - --' 

7 100 100 100.00 0.000 
8 100 100 100.00 0.000 
9 100 100 100.00 0.000 



a 

SA vs TS : Average Cost and Time: TNET !Data 

!Average Cost Average Time 
iGrouP A Data Group A !Data 

Scenario 'SA TS ISA :TS 
1 0.40 O.OOi 597; 24 
2 0.00 0.001 0: o 
3 0.00 0.001 01 o 
4, 0.00 3.101 21 14 
51 2.80 O.OO! 675! 61 
6! ,0.00 0.00 01 o 
7' 0.00 0.00\ 731 4 
8: 0.00 0.00 241 i 4 
9 ' 0.00 O.OOi 01 o 

10: 0.00 0.001 285i 15 
11, ' 0.00 22.19 237! 99 
12'; 2.31 0.05 661 70 
131 0.00 0.00 0 o 
14: 0.00 0.00 562 1 31 
151 2.39 0.001 6421 27 
161 0.00 0.00 oj o 
171 1.06 0.00 750! 75 
181 0.00 95.751 532! 337 
191 2.01 0.01 i 6831 55 
20: 0.00 O.OO! O[ o 
21: 0.00 0.001 732\ 31 
22: 1.37l 37.40\ 743 373 
23i 0.00 8.00! 3! 36 
24: 1.87\ 0.11) 6151 50 
25, 0.001 0.00: 0: o 

0.001 667: 39 
27' 0.541 O.OOi 680· 26 
28: O.OOi O.OO! O! o 
29 19.21 j 72.21, 624 

O.OO! o o 
31 1.80! 774 82 
32 1.94' 0.00 _ 760 43 
33 O.OOi 0.00 o o 
34 0.00· 0.00 607 69 
35 0.00 0.00 215 12 
36 0.00 0.00 o o 
37 0.00 0.00 o o 

Average Cost Average Time 
Group B Data Group B Data 

Scenario SA TS SA T5 
1 13.30 ' 31.49' 596 53 

r-----2---44-.0-7---7~5-.7~3----=780 281 
3 38.89 42-.8=-9---:7=-84.---::7=-=8-=-61 

r------··-·------c----c ::---.-:::---
4 29.01 41.99 783 537 r-------.--. -------.----. 
5 22.79 1.96 782 784 

r---6---f-17 ----·1 ~g-6--·78()----328 
1------- - .. ---.-

7 32.71 74.48 781 777 
1---------

8 49.39 30.53 782 786 
r----g ---3is9---S.73---- 782"-- iS5 



a 

SA vs TS : Best Cost and Time: TNET Data 

Best Cost Time 2 Best Cost 
Group A Data Group A Data 

Scenario SA TS :SA TS 
1, 0.00: 0.00 574 24 
2: O.OOi 0.00 01 0 
3 O.OOi 0.00 0 0 
4 0.00 0.00 1 9 
5 2.00 O.OOi 6851 44 
6 0.00 0.00 ' 0 0 
7 0.00 O.OOi 28 4 
8 0.001 0.00: 222 4 
9 O.OO! 0.00: 0 0 

10' O.OOi O.OO! 235 15 
11 0.001 7.201 53 134 
12 1.30 O.OOi 652 37 
13 0.00 0.00 1 0 0 
14 0.001 O.OOi 488 31 
15 1.20 O.OOi 646 26 
16 0.00 O.OOi 0 0 
17 0.00 0.001 701 75 
18\ 0.00 3.90i 426 451 
191 1.20: 0.00: 660 37 
20 0.001 0.00: 0 0 
211 0.00 O.OO! 655 31 
22i O.OO! 1.20! 685 477 
23 0.001 0.00: 1 29 
24 0.80i O.OOi 630 30 
25, O.OO! 0.00: 0 0 
26; O.OOi 0.00' 547 39 
27t O.OOi 0.00:, 498i 26 
281 O.OO! 0.001 01 0 
29i 16.50; 60.80; 781 i 625 
301 O.OOi 0.00 O! 0 
31 i O.OOi 0.00 740! 82 
32: 0.00' 0.00 639: 43 
33' 0.00 0.00 01 0 
34 0.00 0.00 470· 66 
35 0.00 0.00 32 11 
36 0.00 0.00 0 0 
37 0.00 0.00 0; 0 

Best Cost TIme 2 . Best Cost 
Group B Data Group B 'Data 

Scenario SA TS SA iTS 
1 13.00 13.00 576: 59 
2 29.30 46.90 780 293 

-----
3 29.80 41.60 782 791 
4 16.00 35.70 797 545 

-.. - . 

5 17.60 1.70 781 783 
---------- --

6 4.30 1.10 781 409 
---------

7 28.10 72.70 781 765 
----- . --~- .. --. 

8 44.40 23.00 783 784 
.. _- --_._--~.-.. - ~ 

9 23.60 2.80 783 784 



a 
TS and SA : Average % Frequencies 

%Freqs 1 Group A !Data 
ITABU I,SA 

11 98! 100 
2! 32: 32 
3, 21.5: 69 
4' 75 72 
5i 100! 100 
61 15 15 
71 36 88 
8i 82: 98 
91 151 15 

101 49
1 

96 
111 811 82 
121 1001 100 
13! 10! 10 
141 59.5i 98 
15 11 98! 100 
161 101 10 
17\ 71 ! 99 
181 86.51 82 
19 1

1 
98' 100 

20: 15, 15 
21 ; 54.51 99 
22 89! 88 
231 80: 80 
241 1001 100 
251 15; 15 
261 60.5! 99 
271 83.51 100 
28i 381 38 
29 100! 100 
30' 201 20 
31 721 99 
32;1 93.5i, 100 
331 101 10 
34: 70 11 99 
35: 781 100 
36: 45\ 45 
37: 45! 45 

Group B 'Average jAverage 
1 83.51 85 
2' 85: 88 
3 86[ 100 
4 981 100 
5 95( 100 
6 100: 100 
7 100·, 100 
8 90.5; 100 
9 93 100 



a 
SA, TS VS. LRTS : Average Cost and Time 

Group A I Average Cost I Average Time 
Scenario 1 SA TS LRTS 1 SA TS LRTS 

41 0.00 3.10 0.00 2 14 17 
11\ 0.00 22.19 1.80, 237 99 475 
18! 0.00 95.75 14.261 532 337 907 
22! 1.37 37.40 5.62: 743 373 885 
23i 0.00 8.00 0.00'] 3 36 45 
291 19.21 72.21 61.421 784 624 1562 

I 
Group B i Average Cost Average Time 
Scenario \ SA TS LRTS ISA TS LRTS 

1\ 13.30 31.49 20.38 596 53 417 
2 44.07 75.73 44.98 780 281 812 
31 38.89 42.89 0.94 784 786 1565 
4; 29.01 41.99 36.021 783 537 1563 
5i 22.79 1.96 0.40 782 784 1513 
61 7.17 1.90 0.30 780 328 1556 
71 32.71 74.48 65.14 781 777 1562 
8i 49.39 30.53 0.94 782 786 1477 
9, 31.59 6.73 1.08 782 785 1565 



a 
SA: Cost 

SA Group A Data 
Scenario best worst average Std Devn 

1 0 1.7 0.401 0.593 
2 0 0 0.00 0.000 
3 0 0 0.00 0.000 
4 0 0 0.00, 0.000 
5' 2 3.8 2.80 0.670 
6 0 0 0.00 0.000 
7 0 0 O.OO! 0.000 
8 0 0 0.00 0.000 
9 0 0 0.00 0.000 

10 0 0 0.001 0.000 
11 0 0 0.001 0.000 
12 1.3 3.8 2.31, 0.759 
13 0 0 0.001 0.000 
14 0 0 0.001 0.000 
15 1.2 3.8 2.391 0.743 
16 0 0 0.001 0.000 
17 0 2.6 1.06 1.227 
18 0 0 0.00 0.000 
19 1.2 3.4 2.01 ' 0.687 
20 0 0 0.00 0.000 
21 0 0 0.00 0.000 
22 0 4.5 1.37 1.754 
23 0 0 0.00 0.000 
241 0.8 3.2 1.871 0.684 
25 0 0 0.00 0.000 
26 0 0 0.001 0.000 
27 0 2.5 0.541 0.916 
28 0 0 0.00 0.000 
29 16.5 23.8 19.21 i 2.367 
301 0 0 O.OO! 0.000 
31 0 3.8 1.801 1.054 
321 0 5.3 1.941 1.733 
331 0 0 0.00 1

1 0.000 
34 0 0 O.OOi 0.000 
35 0 0 O.OOi 0.000 
36 0 0 0.001 0.000 
37 0 0 O.OOi 0.000 

Group B i 
i , 

Scenario 1 best worst average iStd Devn 
1! 13 14.1 13.301 0.385 
2:. 29.3 58.7 44.07i. 10.897 
31 29.8 51.5 38.89: 6.952 
4] 161 41.5 29.01 ' 8.280 
5 17.61 28.9 22.79 3.873 
6: 4.3\ 10.9 7.17 1.826 
7 28.1 i 37 32.71 3.448 
8. 44.41 55.2 49.39 4.036 
9, 23.6: 38.61 31.59 5.173 



a 
SA: Time(s) 

jGroupA Data 
Scenario best I worst average Std Devn 

1 574\ 615 597 15.406 
2 01 0 0 0.000 
3 01, 1 0 0.495 
4 1 3 21 0.700 
5 654! 691 675: 14.696 
6 01 0 0 0.000 
7 281 122 73 30.773 
8 2221 255 241 10.780 
9 0 0 0 0.000 

10 2351 333 285 28.104 
11 53i 308 237 81.426 
12 6431 680 661 13.260 
13 .Oi 0 0 0.000 
14 4881 666 562 53.992 
15 612

1 
668 642 19.719 

16 01 0 0 0.000 
17 701 781 750 34.272 
18 4261 650 532 87.323 
19 6531 703 683 18.359 
20 Oi , 0 0 0.000 
21 655! 774 732 37.317 
22 685i 780 743 40.897 
23 1\ 5 3 1.678 
24 598!1 632 615 13.266 
25 0\ 0 0 0.000 
26 547 777 667 64.009 
27 498( 780 680 94.760 
28 1 

0, 1 0 0.350 
291 781 i 799 784 6.299 
301 01 , 0 0 0.000 
31 740: 781 774 14.060 
32 639i 781 760 49.399 
33 0, 0 0 0.000 
34 4701 678 607 60.952 
35' 32; 353 215 106.033 
36 0 1 0 0.495 
37 0 1 0 0.495 

I Group B Data 
Scenario best iworst average Std Devn 

1 5741 619 596 19.820 
2 7801 781 780 0.350 
31 782 799 784 5.949 
41 781 797 783 5.599 

5\ 781 782 7821 0.495 
6 780 781 7801 0.452 
7: 781 781 781'1 0.000 
8. 782 783 782\ 0.495 
9, 782 783 7821 0.452 



Appendix b : Results for Chapter 8 : DCSA vs. DCTS 



DCSA Cost: TNET Data 
b 

, Group A Data , 

! 
, 
i 

Scenario I Best iWorst ; Average std deviation 
1; 0.01 0.11 0.01 0.030 
2i 0.01 O.O! 0.00 0.000 
31 0.0: 0.0: 0.001 0.000 
4 0.0' O.O! 0.001 0.000 
5: 0.0: 0.3; 0.101 0.089 
6i O.Oi 0.01 0.00 0.000 
7i O.Or O.O! 0.00 0.000 
8! 0.01 0.01 0.00 0.000 
9! O.O! 0.01 0.001 0.000 

10j 0.01 O.O! 0.00 0.000 
11: 0.01 0.0; O.OOi 0.000 
12, O.Oi 0.1 : 0.01 ! 0.030 
131 O.O! O.O! 0.00 0.000 
14; 0.01 O.O[ 0.001 0.000 
151 0.01 0.01 0.00 0.000 
161 O.O! O.O! 0.00 0.000 
171 O.Oj 0.01 0.00 0.000 
18! 0.01 O.O! 0.00 0.000 
19: 0.01 0.2! 0.07i 0.064 
20: O.Oj O.Oj 0.001 0.000 
21 i O.O[ O.O! 0.00 0.000 
22: 0.01 O.O! 0.001 0.000 
231 0.01 O.Oi 0.00 0.000 
24: O.O! 0.3! 0.14 0.102 
25~ O.O! O.O! 0.00 0.000 
261 0.01 O.O! 0.001 0.000 
27. 0.0' 0.0 ' o.ooi 0.000 
28, O.O! 0.0 O.OOi 0.000 
29: 0.01 23.0: 8.69! 8.460 
30: O.O! 0.0 0.001 0.000 
31. 0.0' 0.0 0.001 0.000 
32 0.01 0.1 0.011 0.030 
33· O.O~ 0.0 O.OO! 0.000 
34 0.0: 0.0 O.OOi 0.000 
35 0.0 0.0 0.001 0.000 
36 0.0 0.0 0.00 0.000 
37 0.0 0.0 0.00 0.000 

Group B Data 
i 

Scenario Best Worst Average std deviation 
1 13.0 13.0 13.00 0.000 
2 28.8 57.2 35.92 9.541 
3 5.7 10.0 8.03: 1.356 
4 5.9 14.1 8.46 2.909 
5 1.0 3.0 1.97 0.648 

.. -.----------
6 0.9 2.0 1.55 0.326 

.. _--- -- ------
7 8.7 47.7 17_09 10.624 ------_. __ . --- - -_._- .-.--

8 14.2 19.3 16.67 1.423 
---- -- --

9 1.9 6.8 4.05 1.384 



DCSA Time: TNET Data b 

r I :GroupA Data i 

Scenario Best tWorstiAverage std deviation 
1 281 1 399! 310.7 33.25 
21 O! 01 0.0 0.00 
31, 0\ 40: 4.0 12.00 
4: 1: 82 10.6 23.83 
5: 346i 465 393.6, 33.19 
6i 0: 0 0.01 0.00 
7j 281 123: 52.6 26.74 
81 90! 166: 103.5 21.84 
9' 01 O! 0.0 0.00 

10 81 : 200! 119.7 29.41 
11, 10! 931 58.1 22.95 
12 324! 397 353.7 18.99 
131 0 0 0.0 0.00 
14i 167! 245, 199.3 21.50 
15 219i 401; 322.6 43.79 
16 01 0, 0.0 0.00 
17 191 i 326! 242.3 36.31 
181 104\ 169! 127.4 18.30 
19 329; 476; 366.1 40.35 
20! 01 01 0.0 0.00 
211 2091 319, 251.5 37.94 
221 1441 227; 173.0 22.90 
23; 2' , 81 : 10.7 23.45 
24i 329; 375; 354.4 12.49 
25 0: 0, 0.0 0.00 
261 187\ 256: 219.11 20.08 
27! 102:, 194:, 145.4 26.04 
281 0: 1; 0.1 0.30 
291 312: 345. 332.51 13.50 
301 0; 0 O.O! 0.00 
31 ; 304: 408 337.91 27.69 
32 126, 249 213.21 31.84 
33! 0\ 0 0.01 0.00 
34: 95 201 166.5: 29.12 
35 12 95 51.6 21.98 
36 Or 1 0.1 0.30 
37 0 1 0.1 0.30 

Grou~B Data 
Scenario Best Worst Average std deviation 

1 85 230 109.2 40.61 
2 121 242 150.0 32.44 
3 505 593 525.6 33.61 
4 264 386 335.0 27.80 
5 502 590 551.0 30.53 
---- .- ---- .--

6 495 551 515.6 18.08 
7--342-345-- - 343.9 0.83 

1------- - -- _. -- ,---.---- - - .-

8 507 616 533.9 42.63 - - .-_ .. ----------_. ---- --
9 501 585 518.5 27.45 



DCSA % Range: TNET Data b 

: Group A : Data 
Scenario i Best Worst [Average Istd deviation 

1: 100 100 100.0! 0.000 
2: 86 861 86.01 0.000 
3 100 100i 100.01 0.000 
4 100 100: 100.0~ 0.000 
5, 1001 100i 100.0' 0.000 
6: 80 80: 80.0: 0.000 

7: 100 100i 100.0: 0.000 
8: 100 100, 100.0i 0.000 
9! 80 801 80.0j 0.000 

10[ 98 100! 99.8: 0.600 
11: 1001 100i 100.01 0.000 
12: 1001 1001 100.0: 0.000 
131 80 80! 80.0: 0.000 
14: 100 100! 100.01 0.000 
15; 100 100i 100.0i 0.000 
161 80 80 80.01 0.000 
17i 100 100 100.0! 0.000 

( 
18i 100 1001 100.01 0.000 
19! 100 100i 100.0! 0.000 
20, 80 80l 80.0! 0.000 
21 : 100 1001 100.01 0.000 
22: 1001 1001 100.01 0.000 
23: 100i 1001 100.01 0.000 
24; 1001 100: 100.0: 0.000 
251 82! 82: 82.01 0.000 
26i 1001 100\ 100.01 0.000 
27: 1001 100: 100.01 . 0.000 

28i 86! 86! 86.0! 0.000 
29: 100\ 100: 100.01 0.000 
30: 861 86, 86.01 0.000 
31, 1001 100' 100.0! 0.000 
32: 100: 100 100.0! 0.000 
33 80i 80 80.0! 0.000 
34' 100: 100 100.0: 0.000 
35 100 100 100.0! 0.000 
36 86 86 86.0' 0.000 
37 91 91 91.0' 0.000 

Group_B Data 
Scenario Best Worst Average std deviation 

1 100 100 100.0 0.000 
2 100 100 100.0 0.000 
3 100 100 100.0 0.000 
4 100 100 100.0 0.000 
5 100' 100 100.0 0.000 
6 100 100 100.0 0.000 

.. - - -----
7 100 100 100.0 0.000 

- -_. ----------. 
8 100 100 100.0 0.000 

f----. --.-- _._------ .. 
9 100 100 100.0 0.000 



DCSA % Freqs : TNET /Data b 

I Group A ; Data 
Scenario ; Best Worst Average istd deviation 

1: 98 100 99.41 0.92 
2: 321 32 32.01 0.00 
3; 21 211 21.01 0.00 
4 721 88 76.51 4.84 
5 1001 1001 100.0: 0.00 
6 15: 15: 15.0: 0.00 
7, 36!, 92 73.7: 21.99 
8~ 92 1 100 96.91 2.43 
9: 151 15 15.0! 0.00 

10 921 100 95.0, 2.19 
11, 781 85! 81.0, 2.53 
12 1001 100 100.01 0.00 
13 10! 10 10.01 0.00 
14' 96: 100 98.8! 1.17 
15, 981 100 99.61 0.80 
16: 10 10 10.01 0.00 
17: 991 100 99.5! 0.50 
18: 781 88 83.11 3.65 
191 981 100 99.8i 0.60 
20: 15i 15 15.01 0.00 
21 : 96! 100 98.61 1.11 
22 82: 90 86.0\ 3.07 
23; 70\ 85 77.6; 4.10 
24, 100j 100 100.0i 0.00 
25; 15i 15 15.01 0.00 
26 99, 100 99.91 0.30 
27: 1001 1001 100.01 0.00 
281 381 38 38.0i 0.00 
29; 100: 100 100.0j 0.00 
30: 201 20 20.01 0.00 
31 : 96: 100 99.4: 1.20 
32 100 1001 100.0, 0.00 
33 10: 10i 10.0: 0.00 
34 98: 1001 99.4: 0.66 
35' 100 100: 100.0' 0.00 
36 45 45: 45.0' 0.00 
37 45 45 45.0 0.00 

'Group B 'Data 
Scenario Best Worst Average std deviation 

1 80 92 86.5 3.83 
2 85 95 89.1 3.01 
3 99 100 99.9 0.30 
4 100 100 100.0 0.00 
5 100 100: 100.0: 0.00 
6 100 100 100.0 0.00 

... 

7 100 100 100.0 0.00 
--.- - ----

8 100 100 100.0 0.00 
. -----.-. - . 

9 99 100 99.9 0.30 



DCTS Cost: TNET Data b 

i '. !GroupA Data 
Scenario i Best: Worst i Average std deviation 

1\ 
I O.O! 0.0 0.00 0.000 

2, 0.01 0.0 0.00 0.000 
3; 0.0: 0.0 0.00 0.000 
4: 0.0' 8.0; 0.80i 2.400 
5: 0.0 O.Oj 0.001 0.000 

6: 0.0 0.0: 0.00 0.000 
7· 0.0: 0.01 0.001 0.000 

8t 0.0: O.O! 0.00 0.000 
9! O.O! 0.0 0.00 0.000 

10! O.Ol 0.01 0.00 0.000 
11 : O.O! 7.91 2.75 3.093 
12 O.O'! 0.01 0.00 0.000 
13 0.0 O.O! 0.00 0.000 
14 0.0: 0.01 0.001 0.000 
15: 0.01 0.0 0.00 0.000 
161 0.01 0.0 0.00 0.000 
171 0.01 0.0 0.00 0.000 
18: O.4f 48.4 17.48 18.023 
191 0.01 0.0 0.00 0.000 
20 1 O.O! 0.0 0.00 0.000 
21 0.0', 0.0 0.00 0.000 
22 6.3! 60.41 34.29 24.394 
23 O.O! 8.0! 0.80\ 2.400 
24, 0.0: 0.21 0.05 0.081 
25. 0.0'. 0.0 0.001 0.000 
26: 0.0: 0.0, 0.00 0.000 
27: 0.0', 0.01 0.00 0.000 
28: 0.0: 0.01 0.00 0.000 
29 23.7' 96.2: 52.86 20.286 
30 0.0: O.O! 0.00 0.000 
31 O.O! O.O! 0.00 0.000 
32 0.0' 0.1' 0.03i 0.046 
33 0.0 0.0: O.OOi 0.000 
34 0.0 O.Oi o.oof 0.000 
35 0.0 0.0: 0.00 0.000 
36 0.0 0.0 0.00, 0.000 
37 0.0 0.0' 0.00 0.000 

. Group B Data 

Scenario Best Worst Average std deviation 
1 13.0 21.0 13.80' 2.400 
2 37.6 96.5 51.86 15.925 

3 4.4 9.8 6.36 1.591 
4 19.4 43.8 33.01 7.652 
5 0.6 5.3 2.30 1.440 

"---
6 0.7 1.9 1.29 0.413 

. ----

7 66.2 135.1 108.93 19.408 ---- ------------ - -. 
8 2.5 10.2 4.71 2.312 

--.------ .. - ." 

9 0.8 5.0 2.72 1.317 



DCTS Time: TNET Data 
b 

t , Group A Oata t 

Scenario IBest : Worst Average std deviation 
1 50\ 126\ 71.6 25.742 
2 01 1! 0.4 0.490 
31 0' 40\ 4.4 11.876 
4: 8; 118: 34.8 30.544 
5: 121: 226 170.6 38.066 
6: O! 1, 0.11 0.300 
71 221 101 31.3 23.242 
8 1 

I 141 94· 23.3 23.576 
91 01 1; 0.1 0.300 

10 40: 117: 50.3 22.325 
111 1601 399i 288.2 53.734 
12: 68i 324: 182.2 80.533 
13\ Oi, 0: O.O! 0.000 
14\ 62! 147~ 74.1 24.394 
15\ 50! 268: 138.3 81.728 
16 01 01 0.0 0.000 
17 117\ 2101 136.6 26.192 
181 3171 451 i 336.5 38.656 
19! 67! 266: 140.9 50.240 
20 0, 0: 0.0 0.000 
21 ; 741 160: 91.0 23.660 
22 3201 442: 336.31 35.355 
23: 26[ 167: 55.9 42.500 
24; 89! 343 212.21 95.028 
25', 01 0\ 0.0 0.000 
261 70i 80: 74.4 2.871 
27\ 63' 337' 121.1 106.987 
28: 0: 0; 0.0 0.000 
29: 555: 615 585.81 19.338 
301 01 0 0.01 0.000 
31 i 105, 138 122.81 8.987 
32: 68 345 282.1 i 105.831 
33 0: 0 0.0 0.000 
34; 84 96 88.7: 3.551 
35 32 38 33.7 2.326 
36 0 0 0.0' 0.000 
37 0 0 0.0' 0.000 

Group B Data 
Scenario Best Worst Average std deviation 

1 125 270 160.3 42.800 
2 306 439 325.1 38.072 
3 852 932 887.1 25.816 
4 513 651 577.3 39.085 
5 816 867 841.8 15.728 
6 403 452 418.8 16.290 
.'-- -- .. _- _.----
7 572 659 610.7 23.431 
.-----"- ---_.-_ . .. -------
8 870 880 875.2 3.156 

.-. -_. .~- ------
9 844 871 857.5 7.446 



DCTS % Range: TNET fOata 
b 

1 1 Group A : Data 
Scenario ,Best 1 Worst I Average istd deviation 

1~ 100 1001 100 0.000 
2' I 86 861 86 0.000 
3: 100 1001 100! 0.000 
4 100 1001 100\ 0.000 
5: 1001 100, 100: 0.000 
6 80! 80 80, 0.000 
7: 100 100: 1001 0.000 
8, 100 100! 1001 0.000 
9[ 80 80i 80i 0.000 

10' 100 100i 1001 0.000 
111 100 100! 100 0.000 
12i 1001 100! 100, 0.000 
13: 801 801 80! 0.000 
14 1001 100! 100! 0.000 
15\ 100 1001 100! 0.000 
161 80 801 80 0.000 
17\ 100 1001 100 0.000 
18! 1001 100! 100 0.000 
19! 100 100i 1001 0.000 
20 1 80i 801 801 0.000 
21 100: 100\ 100! 0.000 
22 100i 100: 100; 0.000 
23 100! 100! 1001 0.000 
24i 100 100i 100( 0.000 
25; 82i 82; 821 0.000 
26: 1001 100 1 100i 0.000 
27: 1001 100 i 1001 0.000 
28, 86i 86: 86: 0.000 
29 100! 100: 100: 0.000 
301 86; 86: 86; 0.000 
31 : 1001 100 1 100: 0.000 
32 100! 100 100, 0.000 
33: 80: 80 80, 0.000 
34 100! 100, 1001 0.000 
35 1001 100 100 0.000 
36 86 86 86 0.000 
37 91 91 91 0.000 

Group B Data 
Scenario Best Worst Average std deviation 

1 100 100 100 0.000 
2 100 100 100 0.000 
3 100 100 100 0.000 
4 100 100 100 0.000 
5 100' 100 100 0.000 
6 100 100 100 0.000 

." -- ~~-

7 100 100 100 0.000 
- ----.----------- -. 

8 100 100 100 0.000 
---------- ------.. --- -------- - --

9 100 100 100 0.000 



DCTS % Freqs : TNET Data b 

i I Group A i Data 
Scenario j Best Worst: Average std deviation 

11 98 1001 99.8 0.60 
2i 32 321 32.0 0.00 
3i 21 21 : 21.0 0.00 
4! 68; 85: 78.1 i 5.43 
5: 1001 100; 100.0 1 0.00 
6: 15: 15: 15.0: 0.00 
7: 71 i 80! 74.6 2.76 
81 90! 1001 96.1 3.42 
9i 151 15i 15.0 0.00 

10i 79 85: 81.1 1.70 
11 ! 80 90! 85.8 3.82 
12\ 981 1001 99.8, 0.60 
131 101 10: 10.0! 0.00 
14i 88! 92', 89.5\ 1.20 
151 98 100; 99.8 0.60 
161 10 10! 10.0 0.00 
17; 89, 96i 92.2 2.04 
181 85 921 88.8 2.36 
191 981 100i 99.6 0.80 
20 1 15) 15i 15.0 0.00 
21 ; 82: 86', 84.2J 1.33 
22! 88! 92~ 89.8! 1.08 
23i 70! 92! 82.0 5.20 
24; 981 100, 99.8 0.60 
251 15i 15 15.0 0.00 
26! 89 92: 90.7 1.19 
27: 100! 1001 100.0 0.00 
28i 38: 38', 38.0 0.00 
29: 100! 100 100.01 0.00 
301 20 1 20, 20.0 0.00 
31 i 89: 92 90.4 1.02 
32 100i 100 100.0j 0.00 
33: 10 i 10: 10.0: 0.00 
34 , 86' 94 90.7: 2.28 
35' 98: 100 99.8' 0.60 
36 45 45 45.01 0.00 
37 45 45 45.0' 0.00 

Group B 'Data 
Scenario Best Worst Average std deviation 

1 80 92 88.8. 3.37 
2 85 98 91.6 4.10 
3 96 100 98.7 1.19 
4 100 100 100.0 0.00 
5 99 100 99.8; 0.40 
6 98 100 99.8 0.60 

4 ____ 

7 100 100 100.0 0.00 
----

8 99 100 99.8 0.40 
---

9 99 100 99.7 0.46 



DCSA vs DCTS :Average Cost and Time : TNET Data b 

1 Average !Cost ; Average Time 
Group A iData I Group A Data 

Scenario DCSA I DCTS DCSA DCTS 
1 0.01 : 0.001 311 72 
2'1 0.00 0.001 0 0 
31 0.00; 0.00: 4 4 
4: , 0.00 0.80 i 11 i. 35 
5! 0.10; 0.00 394: 171 
6i 0.00; O.OOi 0 1 0 
7! O.OOi O.OO! 53 31 
8; 0.001 0.001 104 23 
9 O.OO! O.OO! a a 

101 0.00: 0.001 120 50 
11 i O.OOi 2.75\ 581 288 
12! 0.01. 0.00: 3541 182 
13! 0.001 O.OO! a a 
14 O.OOi 0.001 199 74 
15 O.OO! 0.00 323 138 
16 0.001 0.00 0 0 
171 O.OO! 0.00 242 137 
181 O.OOi 17.481 127 337 
19 0.07; 0.00 366 141 
201 O.OOi O.OO! 01 a 
211 O.OOi O.OO! 2521 91 
22! O.OO! 34.291 1731 336 
23! 0.00: 0.80! 11 56 
24: 0.14; 0.05! 354 212 
25! O.OO( O.OOi a a 
26i 0.001 0.001 219 74 
27: O.OOi O.OO! 1451 121 
281 0.001 0.00 1 a 0 
29! 8.69! 52.86: 333 586 
30 O.OO! 0.001 01 0 
31 ! 0.001 0.00: 338: 123 
32', 0.01 ' 0.03' 213 282 
33! 0.00, 0.00: a 0 
34: 0.00; 0.00 167i 89 
35, 0.00 0.00 52: 34 
36 0.00 0.00 0; 0 
37 0.00 0.00 a 0 

Average Cost Time 'Average 
Group B Data Data ,Group B 

Scenario DCSA DCTS DCSA : DCTS 
1 13.00 13.80 109; 160 
2 35.92 51.86 150 325 
3 8.03 6.36 526: 887 
4 8.46 33.01 335 577 

------
5 1.97 2.30 551 842 -- ------_.-
6 1.55 1.29 516 419 

•• --"-"-- + -- ---- - - -
7 17.09 108.93 344 611 
-------- ----- . --~----

8 16.67 4.71 534 875 
-- ---------

9 4.05 2.72 519 858 



DCSA vs DCTS : Best Cost and Time: TNET Data b 

I Best Cost Time 2 I Best Cost 
Group A Data Group A Data 

Scenario DCSA DCTS DCSA DCTS 
1 0.0 0.0 281 50 
2 O.O! 0.0 0 0 
3 0.01 0.0 01 0 
4 1 0.0 1 0.0 1i 8 
5! 0.0 0.0 346! 121 
6 0.01 0.0 Oi 0 
7 O.Oi 0.0 28i 22 
8 0.0 0.0 901 14 
9 0.0 0.01 0 0 

10' 0.01 0.0 81 i 40 
11 0.01 0.0 10j 160 
12 0.01 0.0 3241 ; 68 
13 0.0 0.0 01 0 
14 0.0 0.0 167 1 62 
15 0.0 0.0 219 50 
16 0.0 0.0 0 0 
17 0.0 0.0 191 117 
18 0.0 0.4 104\ 320 
19 0.01 0.0 3341 67 
20 0.01 0.0 01 0 
21 0.0 0 2091 74 
22 0.01 6.3 144; 321 
23 0.01 0.0 2; 26 
241 O.O! 0.0 350j 115 
251 O.Oj O.Oj 01 0 
26 0.0 0.0 187\ 70 
27 O.O! 0.0 102! 63 
28 0.01 0.0 0 0 
29 0.01 23.7 312 i 612 
30 O.Oj 0.0 Oi 0 
31 i O.O! 0.0 304; 105 
32[ O.O! 0.0 126: 68 
33i O.O! 0.0 0: 0 
34: O.O! 0.01 95: 84 
35! 0.0 1 • O.O! 12 32 
36 0.0, O.O! 0 0 
37 0.0' O.O! o· 0 

Best Cost ·Time2 Best Cost 
Group B . Data Group B Data 

Scenario DCSA . DCTS DCSA DCTS 

1 13.0' 13.0' 85 128 
2 28.8 37.6, 136 315 
3 5.7, 4.4, 506 870 
4 5.9 19.4 336 628 

-
5 1.0 0.6 502 846 ._. -
6 0.9 0.7 496 452 ----- -------
7 8.7 66.2 344 659 ._-- .. - ... --------
8 14.2 2.5 507 876 
9 1.9 0.8 503 855 



Appendix c : Results for Chapter 9 : DCSA vs. SA and DCTS vs. TS 



c 

DCSA vs SA : Best Cost and Time : TNET Data 

I Group A' Data i 

I Best Cost Time 2: Best Cost 
Scenario ! SA DCSA SA !DCSA 

1; 0.0, 0.01 574, 281 
2! 0.0 0.0; 0' a 
3'1 0.0 0.0\ a a 
41 0.0 0.0 1, 1 
5: , 2.0 0.0 685, 346 
61 0.0 0.0 01 a 
71 0.0 0.0 28: 28 
8i 0.0 0.01 2221 90 
9: 0.0 O.O! 0: a 

10, O.O! 0.0 235; 81 
11i 0.0 0.0 53! 10 
12[ 1.3 0.01 652: 324 
131 0.0 0.0 01 a 
141 0.0 0.0 488\ 167 
15i 1.2 0.0 6461 219 
16i 0.0 0.0 01 a 
171 0.0 0.01 701 [ 191 
18! 0.0 0.01 426] 104 
19j 1.2, 0.0 6601 334 
201 0.0 0.01 Of a 
21 i 0.01 O.O! 655; 209 
221 O.O! 0.01 685; 144 
231 O.O! O.O! 1; 2 
24: 0.8: 0.0: 630[ 350 
25i 0.01 O.O! 0: a 
26; 0.01 0.0' 547 187 
27: O.O! 0.0: 498; 102 
28 O.O! 0.0' 0: a 
29: 16.5'1 0.0' 781, 312 
30 0.01 0.0 0: a 
31 0.01 0.0 740 304 
32 0.01 0.0 639 . 126 
33 0.0: 0.0 a a 
34 0.0 0.0 470 95 
35 0.0 0.0 32 12 
36 0.0 0.0 a a 
37 0.0 0.0 a a 

Group B Data 
Best Cost Time 2 Best Cost 

Scenario SA DCSA SA DCSA 
1 13.0' 13.0 576 85 
2 29.3 28.8 780 136 
3 29.8 5.7 782 506 ---
4 16.0 5.9 797 336 -- ... -
5 17.6 1.0 781 502 

.---------
6 4.3 0.9 781 496 
7 28.1 8.7 781 344 --.. -------
8 44.4 14.2 783 507 
9 23.6 1.9 783 503 



c 

DCSA vs SA : Average Cost and TIme: TNET Data 

I : Group A Data i 
IAverage :Cost Average iTime 

Scenario ! SA : DCSA SA ; DCSA 
l' 0.40 0.01 597 311 
2 0.00 0.00 0 0 
3[ 0.00 0.00 0 4 
4: 0.00 0.00 2: 11 
51 2.80 1 0.10 675i 394 
6! 0.00: 0.00 Oi 0 
7: O.OOi 0.00 73 i 53 
81 0.001 0.00 241 i 104 
91 0.00 1 0.00 0: 0 

101 O.OOi 0.00 285, 120 
11: 0.001 0.00 237: 58 
12i 2.311 0.01 661: 354 
131 0.001 0.00 0\ 0 
14! O.OO! 0.00 562j 199 
15i 2.391 0.00 6421 323 
16: O.OO! 0.00 01 0 
17i 1.06; 0.00 750[ 242 
18 1 O.OOi 0.00 532: 127 
191 2.01 0.07 6831 366 
20! O.OO! 0.00 O! 0 
21: O.OOi 0.00 732i 252 
22: 1.3T 0.00 743i 173 
23; 0.00, 0.00 3i 11 
24: 1.87; 0.14 615i 354 
25 0.00 0.001 0 1 0 
26 0.00' 0.00 667: 219 
27 0.54' 0.00 680: 145 
28 0.00 O.OOi 0 0 
29' 19.21, 8.691 784, 333 
30' 0.00 0.001 0 0 
31 1.80 O.OO! 774 338 
32 1.94 0.011 760 213 
33 0.00 O.OOi 0 0 
34 0.00 0.00' 607 167 
35 0.00 0.00 215 52 
36 0.00 0.00 0 0 
37 0.00 O.OOi 0 0 

Group B : Data 
Average Cost :Average Time 

Scenario SA DCSA, SA DCSA 
1 13.30 13.00: 596 109 

1-----------
2 44.07 35.92 780 150 

1------
3 38.89 8.03 784 526 
4 29.01 8.46 783 335 

1------------- -----
5 22.79 1.97 782 551 ----_. ----.- .--- -- --
6 7.17 1.55 780 516 

1----7--32:71-----17:09 781 344 

8 49~3-9--16.67--782534 



c 

DCTS vs TS : Average Cost and Time: TNET Data 

Group A Data ; Group A Data 
Average Cost jAverage Time (s) 

Scenario TS DCTS : TS DCTS 
1 0.001 0.00 24.38 71.6 
2 O.OO! 0.00 0.00 0.4 
3: O.OO! 0.00· 0.00 4.4 
4[ 3.10 13.63 34.8 
51 0.001 0.00, 60.50 170.6 
6 0.00 0.00 1 0.00 0.1 
7 0.001 0.00: 4.00 31.3 
8 0.001 O.OO! 4.00 23.3 
9\ 0.00 0.00; 0.00 0.1 

101 0.001 0.00' 15.00 50.3 
22.191 2.75i 99.00 288.2 

12 0.05 0.00· 69.50 182.2 
13 0.00 0.00 0.00 0.0 
14 0.00 0.00 31.13 74.1 
151 0.00 O.OOi 27.25 138.3 
16 0.00 O.OOi 0.00 0.0 
17 0.00 0.00 75.13 136.6 
18 95.75\ 17.48[ 337.00 336.5 
19 0.01 O.OOi 55.25 140.9 
20 0.00 O.OOi 0.00 0.0 
21 0.001 O.OOL 31.00 91.0 
22! 37.401 34.291 373.13 336.3 
23 8.001 0.80l 36.13 55.9 
24! 0.11 i 0.05: 49.50 212.2 
25j O.OOi O.OO! 0.00 0.0 
26\ O.OO! 0.00: 39.13 74.4 
27: O.OOi 0.001 26.131 121.1 
28j 0.001 O.OOi 0.00 0.0 
29: 72.21 ; 52.86, 624.00 585.8 
30i 0.001 O.OO! 0.00 0.0 

0.001 0.00' 82.13 122.8 
0.001 0.03 43.001 282.1 

33 0.00; 0.00 O.OOi 0.0 
34 0.00' 0.00 69.13: 88.7 
35 0.00 0.00 12.38', 33.7 
36 0.00 0.00 0.0 
37 0.00 0.00 0.00: 0.0 

Group B Data ; 
Average Cost Average ;Time 

Scenario TS . DCTS TS ; DCTS 
31.49 13.80 52.631 160.3 

2 75.73 51.86 281.13 325.1 
~---------------------42.89 6.36 785.75 887.1 3 .. _-- -- .-

4 41.99 33.01 536.75 577.3 \-----_ .. __ ._--- ._ .... -- ... _ .. _._-_.,._-
5 1.96 2.30 783.88 841.8 

.. _-_._-----_. __ . '-
6 1.90 1.29 328.25. 418.8 

1-------:7:---.:74.48 108~93---j77.00' 610.7 
1------::---: --- .. -.--- .. -. 
1--__ 8~--30.53 ~ .. ~~_. 786,~~_, _87~.~ 

9 6.73 2.72 785.25 857.5 



c 

DCTS vs TS : Best Cost and Time: TNET Data 

Group A Data I 
I 

Best iCost TIme 2 iBest Cost 
Scenario TS IOCTS ITS : DCTS 

1 0.00; 0.00 24 50 
2 O.OO! 0.001 0 0 
3 O.OOi 0.00 0 0 
4 O.OO! 0.00 9: 8 
5 0.001 0.00 44 121 
6 O.OO! 0.00 0' 0 
7 0.00 0.00 4, 22 
8 O.OO! 0.00 4 14 
9 O.oot 0.00 0' 0 

10 0.00 1 0.001 15, 40 
11 7.20 0.00 134; 160 
12 0.00 0.00 37; 68 
13 0.00 0.00 01 0 
14 0.001 0.00 31 ; 62 
15 0.00 0.00 26; 50 
16 0.00 0.00 0: 0 
17 0.00 0.00 75; 117 
18 3.90 0.40 451; 320 
19 O.OO! 0.00 37 67 
20 0.001 0.00 0: 0 
21 0.001 0.00 31 i 74 
22 1.201 6.30 477; 321 
23 0.00 0.00 29 i 26 
24 0.001 0.00 30~ 115 
25 0.001 0.00 0: 0 
261 0.001 0.00 1 

39: 70 
27 O.oot 0.00 26' 63 
28 O.OO! 0.00 0: 0 
291 60.801 23.70) 625 612 
30 0.00: O.OOi 0 0 
31 i O.OO! 0.001 82 105 
321 0.00: 0.00; 43 68 
331 0.00 O.OOf 0 0 
34 1 0.00 O.OO! 66 84 
35, 0.00 0.00: 11 32 
36 0.00 0.00: 0 0 
37 0.00 0.00. 0 0 

! Group B :Oata 
: Best Cost : Time 2 Best Cost 

Scenario TS OCTS TS DCTS 
1: 13.00 13.00i 59 128 
2 46.90 37.60 293 315 
3 41.60 4.40 791 870 --.----
4 35.70 19.40 545 628 
5 1.70 0.60 783 846 

-------. 
6 1.10 0.70 409 452 --
7 72.70 66.20i 765 659 --
8 23.00 2.50' 784 876 

-~ 

9 2.80 0.80' 784 855 
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