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Abstract
Non-locality and steering are bothnon-classical phenomenawitnessed innature as a result of quantum
entanglement. It is nowwell-established that one can studynon-locality independently of the formalismof
quantummechanics, in the so-calleddevice-independent framework.With regards to steering, although
one cannot study it completely independently of the quantum formalism, ‘post-quantumsteering’has
beendescribed,which is steering that cannot be reproducedbymeasurements on entangled states but does
not lead to superluminal signalling. In thisworkwepresent a frameworkbasedon the studyof quantum
channels inwhichone can study steering (andnon-locality) in quantumtheory andbeyond. In this
framework,we show that kinds of steering,whether quantumorpost-quantum, are directly related to
particular families of quantumchannels that have beenpreviously introducedbyBeckman et al (2001Phys.
Rev.A64052309).Utilizing this connectionwealsodemonstratenewanalytical examplesofpost-quantum
steering, give aquantumchannel interpretationof almost quantumnon-locality and steering, easily
recover and generalize the celebratedGisin–Hughston–Jozsa–Wootters theorem, and initiate the studyof
post-quantumBusceminon-locality andnon-classical teleportation. In thisway,we seepost-quantum
non-locality and steering as just two aspects of amore general phenomenon.

Entanglement is one of themost striking non-classical features of quantummechanics. Given appropriately
chosenmeasurements certain, but not all, entangled states can exhibit a violation of local realism (local
causality), called ‘non-locality’ [1]. Apart from its fundamental interest, non-locality has also turned into a key
resource for certain information-theoretic tasks, such as key distribution [2] or certified quantum randomness
generation [3], and has beenwitnessed experimentally in a loophole-freemanner [4–6].

The non-classical implications of entanglement alsomanifest as a phenomenon called ‘Einstein–Podolsky–
Rosen steering’, henceforth referred to as solely ‘steering’. There, one party, Alice, by performing appropriately
chosenmeasurements on one half of an entangled state, remotely ‘steers’ the states held by a distant party, Bob,
in awaywhich has no local explanation [7]. Amodern approach to steering describes it as away to certify
entanglement in cryptographic situationswhere some devices in the protocol are not characterized [8]. Steering
hence allows for a ‘one-sided device-independent’ implementation of several information-theoretic tasks, such
as quantumkey distribution [9], randomness certification [10, 11], measurement incompatibility certification
[12–14], and self-testing of quantum states [15, 16].

Even though these phenomena arise naturally within quantummechanics, they are not restricted to it.
Non-local correlations and steering beyondwhat quantum theory allows are conceivable while still complying
with natural physical assumptions, such as relativistic causality [17, 18]. By ‘post-quantum’wemean non-
locality or steering that cannot be realizedwith localmeasurementsmade on an entangled quantum state4.
Post-quantumnon-locality has been vastly explored, especially its implications in information-theoretic tasks
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[19]. Little is known, however, about post-quantum steering,mainly due to the lack of a clear formalism for
studying this phenomenon beyond quantum theory.

Itmay be unclear why onewould be interested in steering in theories beyond quantum theory, since it is a
phenomenon that is definedwithin the quantum formalism. Indeed, if we are testing quantum theory against all
possible, sensible classical descriptions of reality, a local hidden variable is themost general starting point. One
may however ask inwhich sensible ways naturemay differ from aworld described by quantum theory.Here we
argue that itmakes sense to consider the picturewhere locally in our own laboratory everything is described
according to quantum theory, however, the global process governing the interactions between laboratories is
not, analogous to the study of indefinite causal order in [20]. The existence of post-quantum steering
demonstrates that the global theory can deviate fromquantum theory in intriguingways, even if our own
laboratory is restricted to quantum theory. In fact, because of this, wewould argue that post-quantum steering is
ofmore foundational interest than local hidden state (LHS)models.We also note that in quantum information,
bounding the set of quantum assemblages from the post-quantum set has also been studied in the guise of
extended non-local games by Johnston et al [21].

To rectify the lack of a clear formalism for post-quantumsteering,we present a framework to study bothnon-
locality and steering complyingwith theno-signalling principle.Our formalism is basedonquantumchannels, i.e.
completely-positive trace-preservingmaps ondensitymatrices.More specifically, we consider channels on
multipartite systems that satisfy a formof the no-signalling principle, introducedfirst byBeckman et al [22] in
bipartite setups. Indeed, they defined two families of channels.On the onehand, ‘causal channels’, that donot
permit superluminal quantum (and classical) communicationbetween twoparties.On the other, ‘localizable
channels’, that canbe describedbyparties sharing a quantum (entangled) state andperforming local operationswith
respect to eachparty. Furthermore, the set of localizable channels is a strict subset of the causal channels [22].

In thiswork, a given conditional probability distribution (correlations) in anon-locality scenario or a set of
conditional quantumstates (assemblage) in a steering scenario, is associated to a causal channel, and vice versa.We
identify thenature of the correlations, or assemblages,with theproperties of the channels thatmay give rise to them.
Inparticular, if correlations or assemblages are post-quantum then they canbe associatedwith a causal, but not
localizable, channel.Utilizing this connectionwederive results in both the study of quantumchannels and steering.

We also show that our framework is not limited to the study of non-locality and steering.We show that non-
locality studied from the perspective of channels can be expanded to other kinds of non-locality studied in the
literature. In particular, Buscemi introduced the scenario of the semi-quantumnon-local games [23], in which
we can demonstrate a formof non-locality, denoted as ‘Buscemi non-locality’. Buscemi showed that an
entangled state can be used as a resource for demonstrating this formof non-locality. Here, we expand upon this
original work to introduce post-quantumBuscemi non-locality, and showhow it can be understood through
quantum channels. Finally, we consider the analogue of steering for Buscemi non-locality, which is the study of
non-classical teleportation, as initiated byCavalcanti et al [24].

Summary of results

Thismanuscript presents a variety of results which, to guide itsmore comprehensive reading, we nowbriefly
outline.

First, in the study of quantum channels, we define a novel class of quantum channels called the ‘almost
localizable channels’ in definition 1, which are a generalization of the set of localizable channels in [22].We show
in theorem15 that the set of almost quantumassemblages (as defined in [18]) result from almost localizable
channels, and almost localizable channels only give rise to almost quantum correlations5 [25] or assemblages. This
is thefirst time that almost quantumassemblages are given a physical definition, rather than just being defined in
terms of semi-definite programmes.

Second, our framework provides a connection between the study of quantum channels and post-quantum
steering, which is itself a novel observation. Starting from this connection, in section 3.3we give new analytical
examples of post-quantum steering constructed fromnon-localizable, yet causal, channels. In addition,
section 3.2 shows that a consequence of post-quantum steering is the existence of non-localizable channels that
cannot be used to violate a Bell inequality through any local operations whatsoever.Wemoreover give a
characterization of non-signalling assemblages in terms of quantum states and unitary operations, which results
in a diagramatic proof of theGisin–Hughston–Jozsa–Wootters (GHJW) theorem in corollary 14.We show in
section 4.4 that this proof of theGHJW theorem can be generalized to the study of non-classical teleportation,

5
Almost quantum correlations are defined as a particular relaxation of the set of quantum correlations in Bell scenarios. That is, the set of

almost quantum correlations strictly contains those that are achievable by quantummechanics. Almost quantum assemblages are defines as
a particular relaxation of the set of quantumassemblages in steering scenarios.We revise the rigorous definition of these concepts in the next
sections.
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andwe show in corollary 36 that post-quantumnon-classical teleportation can only bewitnessed if there are
multiple black boxes in your network.

Finally, we are the first to highlight the possibilities of studying forms of post-quantumBuscemi non-locality
and post-quantumnon-classical teleportation.Our framework further outlines how to approach these through
the study of quantum channels.

The paper is structured as follows. In section 1we introduce a new family of quantum channels of utmost
relevance in this work, while we review relevant known classes of channels in appendix A. In sections 2 and 3we
(i) discuss the interpretation of Bell and steering scenarios in terms of quantum channels, and (iii) present some
results that followwhen looking at these non-classical phenomena from the scope of quantum channels. The
traditional scope to these phenomena is briefly reviewed in appendices B andC. Finally, in section 4we discuss
howour framework further includes the abovementioned Buscemi non-locality [23] and non-classical
teleportation [24]. For clarity in the presentation, some of the proofs of results in themain body of the paper are
presented in the appendix.

A quick note on notation. AHilbert spacewill typically be denoted by, unless otherwise stated, and the set
of positive operators acting onwith trace atmost 1will be denoted as  ( ). Furthermore, for themore
general set of linear operators acting on, wewill use the notation  ( ).

1.Quantum channels

In the study of non-locality in quantumphysics and beyond, a common approach is to have the fundamental
objects being a black box associatedwith some stochastic behaviour: for a given set of inputs for each party, an
output is generated stochastically. A stochastic process should be suitably normalized, i.e. the sumover all
outcomes for a given input is 1. The quantum analogue of such a process is a quantum channel. Recall that a
channelΛ is a trace-preserving, completely-positive (CPTP)map. That is, given an input quantum state
described by the densitymatrix ρi, a channelΛ acts on this systemproducing an output state with densitymatrix
ρo≔Λ(ρi). The suitable normalization condition is then that the trace of ρo is 1whenever tr 1ir ={ } . A classical
stochastic process can be encoded into a channel with respect to some orthonormal basis of the respective
Hilbert space. To retrieve the probabilities in the stochastic process one only needs to prepare states in that basis
as input, and then onlymeasure in that basis.

Given these simple observations, one can readily relate quantum channels to the study of conditional
probability distributions, and thus quantumnon-locality. For example, we can askwhich channels give rise to
correlations that are compatible with a local hidden variablemodel, or otherwise. Such non-local properties of
quantum channels have been observed and utilized in previous works [22, 26]. There, the relevant objects of
study are semicausal and causalmultipartite quantum channels, in particular the subset of localizable ones,
whichwe formally review in appendix A. To sketch their definitions now, the causal channels are thosewhere
one partyʼs output quantum state is the same for all input states for another party, and the localizable channels
are those that are generated by local operations and shared entanglement between the parties. In this sectionwe
introduce a new class of channels, called the almost localizable channels, whichwill be pertinent when discussing
non-locality and steering.

The general scenariowe consider is that ofmultiple space-like separated parties such that they cannot use
any particular physical system in their respective laboratories that could result in communication. In this way,
the parties are subjected to the same conditions as in a Bell test.We canmodel the parties’ global resources as a
device withmultiple input and output ports: an input and output port associatedwith each party. Therefore,
each party can produce a local input quantum system, put it into their respective input port, and receive a
quantum system from the output port. The global device can contain resources that are shared between distant
parties, such as entanglement. For example, if we have two parties, and they each input a system into their
respective devices, the output of both devices could be associatedwith an entangled quantum state.Wewill now
make this picturemore formal.

We haveN parties labelled by an index jÎ{1, 2,K,N}, and each party has an input and outputHilbert
space, j

in and j
out , respectively, associatedwith the input and output ports of the parties’ device6. The input

quantum systems have states that are associatedwith the densitymatrix j j
in in r Î ( ). TheN-partite device is

then associatedwith a quantum channel :N j
N j

j
N j

1 ... in out   L ⨂ ( ) ⨂ ( ) taking the input state
... N

in
1

in
2

inr r rÄ Ä Ä to ...N
N

out 1 ... in
1

in
2

inr r r rL Ä Ä Ä≔ ( ). It will be convenient at times to take bipartitions
S S N, 1, ,A B Í ¼{ }of theN parties, such that S S N1, ,A BÈ = ¼{ }.With these bipartitions, we can then
considerHilbert spaces ,S S

in in
A B  and ,S S

out out
A B  associatedwith the input and outputHilbert spaces of SA and

SB, respectively.

6
In this paper, allHilbert spaces are assumed to be finite dimensional, unless otherwise specified.
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Given this set-up,we can informally sketch thedefinitionof semicausal and localizable channels in the bipartite
case (i.e.N=2). The formal definitions canbe found in appendixA.A semicausal channel is onewhere the output
state for one particular party is independent of the input state of the other party. In otherwords, the reduced
quantumstate for one of the parties iswell-defined since it is independent of the other partyʼs input. For example, if
a channelΛ12 is semicausal from1 to 2, denoted1 2 , then theoutput state is out 12 in

1
in
2r r r= L Ä( ) and ifwe

trace out party 1, the output state of party 2 is trout
2

1 12 in
1

in
2

in
2r r r r= L Ä = ¡( ( )) ( ), for : in

2
out
2   ¡ ( ) ( )

being a channel. Abipartite channel is causal if it is semicausal in bothdirections, i.e.1 2 and 2 1 . A bipartite
channel is localizable if there exists a joint quantumstate shared between the twoparties such all the parties’maps are
only from the jth partyʼs input and their share of the entangled state to the jth partyʼs output.

In this work, wewill use diagrammatic representations of quantum channels where input and output
systems to a channel are represented bywires, and the channels as boxes connecting inputs and outputs. One can
see an example of such a diagram infigure 1, whereΛ is the channel, and time (theflow from inputs to outputs)
goes frombottom to top. Furthermore, later on, wewill denote the preparation of states as triangles at the
beginning of input wires, andmeasurements as triangles at the end of outputwires.

Within this scenariowe define a new class of channels called the almost localizable channels as follows:

Definition 1 (Almost localizable channels).A causal channel N1L ¼ is almost localizable if and only if there
exists a global ancilla system E withHilbert space E , a local ancilla system Ek for each kth party, with input and
outputHilbert spaces E

in
k and E

out
k , respectively, and state ...E E

E E E
in in in

N1 2   yñ Î Ä Ä Ä Ä∣ such that, for

all states j
N j

1 in r Î =(⨂ ),

U Utr ,N EE E
j

N

jE E
k

N

N kE1
1 0

1

N1  r r y yL = Ä ñá¼ ¼
= =

-

-

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

[ ] ( ∣ ∣ ) †

whereU :kE
k

E
E k

E
E

in in out out
k k     Ä Ä  Ä Ä is a unitary operator for all k, such that, for any

permutation p on the set N1, 2, ,¼{ },

U U U U .
j

N

jE E
k

N

N k E
j

N

j E E
k

N

N k E
1 0

1

1 0

1

   r y y r y yÄ ñá = Ä ñáp p
= =

-

-
= =

-

-( ∣ ∣ ) ( ∣ ∣ )( )
†

( ) ( )
†

Notice that in this definition for localizable channels, the ancillaσR is the same for all inputs to the channel
Λ1KN. If we compare this definitionwith that of localizable channels as given by definition 42, we see that almost
localizable channels are a natural generalization of the localizable ones. Indeed, in definition 42, the condition of
the representation that for all permutations U U, k

N
kE k

N
k E1 1p  =  p= = ( ) is equivalent to the constraint that

U Uk
N

kE k
N

k E1 1y y ñ =  ñp= =∣ ∣( ) for all possible states E
j
N j

in 1 in yñ Î =∣ ⨂ . This last universal quantifier over all
ancilla states can be relaxed further to an existential quantifier, i.e. that there exists a state yñ∣ such that the
unitary operators’ ordering is invariant under permutations of the parties. This relaxation precisely gives the set
of almost localizable channels.

Note that localizable channels are by definition almost localizable, as well as causal. However, as wewill show
in section 2.2, there exist almost localizable channels that are not localizable. In showing this, we use the close
connection between the so-called almost quantum correlations defined in [25] (see appendix B), and the almost

Figure 1.A conditional probability distribution p a b x y, ,( ∣ ) resulting from a quantum channelΛ.
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localizable channels. Indeed, themotivation for the name almost localizable comes from this connection. In this
directionwe also generalize this connection to the study of steering in section 3.1.

2.Non-locality from the scope of quantum channels

In this section, we reinterpret the traditional Bell scenario [1] in terms of quantum channels. In particular, we
connect every quantum channel to a family of correlations in a Bell test.We emphasize that non-locality can, in a
sense, be studied independently of the quantum formalism, so considering all processes as fundamentally
quantummay seem excessive. Instead, one can see our review of non-locality from the point-of-view of quantum
channels as just the beginning of a bigger story, as will hopefully become clear.We review the traditional notion
of a Bell scenario and its relevant sets of correlations in appendix B.

2.1. Non-locality via quantum channels
ABell scenario is characterized by the parameters (N,m, d), whereNdenotes the number of parties,m the number
ofmeasurements eachparty can choose from, eachwith dpossible outcomes.Consider now theparties to have
input andoutputHilbert spaces given by j j

min in  = =¢ and j j
dout out  = =¢ for all j j¹ ¢, where m

has dimensionm and d dimension d. Denote by x x m1:ñ ={∣ } anorthonormal basis of m , and by a a d1:ñ ={∣ }
an orthonormal basis of d . Inwhat follows, we relate channels of the form :N m

N
d

N
1 ...    L Ä Ä( ) ( ) to

correlations in aBell scenario.

Definition 2.A conditional probability distribution p a a x x... ...N N1 1( ∣ ) in a Bell scenario is channel-defined if
there exists a channel :N m

N
d

N
1 ...    L Ä Ä( ) ( ), and some choice of orthonormal bases xj m x m1:ñ Î ={∣ }

and aj d a d1:ñ Î ={∣ } for each jth party, such that

p a a x x a a x x... ... tr . 1N N k
N

k k N k
N

k k1 1 1 1 ... 1= Ä ñá L Ä ñá= =( ∣ ) { ∣ ∣ ( ∣ ∣)} ( )

Given a channelΛ1...N, it is always possible to define correlations resulting from it for a given choice of input and
output orthonormal bases. Figure 1 sketches (in the bipartite case) this construction of correlations
schematically. Given this connection, we can nowdirectly relate the families of correlations presented earlier to
families of channels presented in section 1 and appendix A. Although the results pertinent to non-signalling,
quantumand classical correlationswere noticed in previousworks [22, 26, 27], we present all proofs in
appendix E.1.

Proposition 3.A conditional probability distribution p a a x x... ...N N1 1( ∣ ) is non-signalling if and only if there exists a
causal channel :N m

N
d

N
1 ...
C    L Ä Ä( ) ( ) such that the distribution is channel-defined by N1 ...

CL .

Infigure 2we showhow the example of a Popescu–Rohrlich (PR)non-local box can be realized by a causal
channel. The PRnon-local box is a device that can violate theClauser–Horne–Shimony–Holt (CHSH)
inequality beyondTsirelsonʼs bound, and thus cannot be realized by localmeasurements on an entangled state
[17]. The statistics produced by a PRbox, for binary inputs and outputs, are p a b x y, , a b

xy1

2
d= Å( ∣ ) , whereÅ is

additionmodulo 2. The channel in this figure is an entanglement-breaking channel [27], and thus its Choi state
Ω is separable across the partition of Aliceʼs and Bobʼs input and outputHilbert spaces.However, non-
localizable causal channels that are not entanglement-breaking have been constructed in the literature [26], and
wewill refer to one such channel later. How can one detect non-localizability in a particular channel?One
possible approach is through the correlations that are channel-defined by that channel, as described in the
following result.

Proposition 4.A conditional probability distribution p a a x x... ...N N1 1( ∣ ) is quantum if and only if there exists a

localizable channel :N m
N

d
N

1 ...
Q    L Ä Ä( ) ( ) such that the distribution is channel-defined by N1 ...

QL .

Infigure 3we present the example of a localizable channel that channel-defines the correlations
p a b x y, ,sing ( ∣ )which give Tsirelsonʼs bound for theCHSH inequality [28], i.e. themaximal violation for local

measurements on an entangled state.We present the channel in terms of its unitary representation.
Given a channelΛ, if the correlations that are channel-defined by it are not compatible with quantum

correlations, i.e. they are post-quantum correlations, then the channel was not localizable. For example, if one
obtains correlations that are channel-defined by a channelΛ, and then computes their CHSHvalue, if this
exceeds Tsirelsonʼs bound, the channelΛ is non-localizable. Indeed, this is how it is shown that the channel in
figure 2 is non-localizable, as well as the channel given in [26].

5
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Proposition 5.A conditional probability distribution p a a x x... ...N N1 1( ∣ ) is classical if and only if there exists a local
channel :N m

N
d

N
1 ...
L    L Ä Ä( ) ( ) such that the distribution is channel-defined by N1 ...

LL .

It should be noted that there can exist non-local but localizable channels that will only channel-define
classical correlations. A simple bipartite example of such a channel is onewhere themaximally entangled two-
qubit state is prepared in the ancilla register, the input systems are discarded (or traced out), and each partyʼs
output is one half of the two-qubit register. For this channel, correlations are generated by each party is
measuring one half of amaximally entangled state in afixed basis, which can be reproduced by classical
correlations.

Finally, we now address the set of almost quantum correlations.We have included the proof of the following
result, since it will be useful for our subsequent discussion.

Proposition 6.A conditional probability distribution p a a x x... ...N N1 1( ∣ ) is almost quantum if and only if there exists

an almost localizable channel :N m
N

d
N

1 ...
Q    L Ä Ä( ) ( )˜

such that the distribution is channel-defined by N1 ...
QL ˜

.

Figure 2.A causal channel that generates PRbox correlations, as shown in [22]. First, the inputs xñ∣ and yñ∣ aremeasured on the

computational basis, obtaining outcomes x and y. In addition, a bipartite ancilla state 00 00 11 11E
1

2
r = ñá + ñá(∣ ∣ ∣ ∣) is generated by

preparing the pure state 000 1111

2
ñ + ñ(∣ ∣ ) and tracing out the third system. Then, the classical outputs of thefirst step are compared

(grey dashed lines).Whenever x·y=1, anX gate is performed onBobʼs subsystem,flipping his qubit. Finally, Alice and Bob project
the output state into the computational basis, and so obtain correlations that reproduce a PRbox. This whole process canmade into a
unitary process by replacing the initialmeasurements with controlled unitaries that change the state of some ancilla depending on the
input. TheAND gate and controlled-X gates can then be replaced by a Toffoli gate to get the unitary representation of this channel.
Note also that we can interchangeAlice and Bobʼs operations to get another causal channel that gives the PR box correlations.

Figure 3.A localizablemap that generates singlet correlations that violate the CHSH inequalitymaximally, i.e. up to Tsirelsonʼs
bound 2 2 . All basis states are in the computational basis. First each party performs a unitary operation on their share of the ancillaE

(initialized in state E
00 11

2
ñ = ñ+ ñ∣ ∣ ∣ ) controlled on their input qubits xñ∣ and yñ∣ . The controlled unitaries inside the boxes are

U H0 0 1 1t c t c t= ñá Ä + ñá Ä∣ ∣ ∣ ∣ and V R R0 0 1 1t c Y t c Y t, 4 , 4
= ñá Ä - + ñá Äp p( )∣ ∣ ( ) ∣ ∣ , forH andRY being aHadamard and a

rotation about theY-axis in the Bloch sphere, respectively. The indices c and t denote the control and target qubits, respectively.
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Proof. Firstwe take a probability distribution p a a x x... ...N N1 1( ∣ ) that is in the set of almost quantumcorrelations.
Let a x

i
i i

P ∣
( ) and yñ∣ be the projectors and state that realize7 this distribution,whichhave an associatedHilbert space

d ¢ ofdimension d¢. From thesewewill define an almost localizable channel :N m
N

d
N

1 ...
Q    L Ä Ä( ) ( )˜

such
that the correlations are channel-defined for this channel. Let the ancilla be a quantumsystem initialized on the
state 0 NyYñ = ñ Ä ñÄ∣ ∣ ∣ , where these extraN systems are qudits in theHilbert space d , one for each party,
initialized in 0ñ∣ . Nowdefine the following operators for each party:

O A , 2x
i

j

d

j x
i

j
1

å= P Ä
=

( )( )
∣

( )

where A d1 = and A j j0 0j j
d

1,
1 a a= ñá + ñá + å ñáa a= ¹

-∣ ∣ ∣ ∣ ∣ ∣ for j d1 : 1= - . The operator j x
iP ∣

( ) acts on
A,d j ¢ on the ancillary qudit that corresponds to party i. Then define, for each party, controlled unitary

operations on their input qumit inHilbert space m together with their ancillary system as follows:

U x x O . 3i

x

m

x
i

1
å= ñá Ä
=

∣ ∣ ( )( ) ( )

Now the almost localizable channel can be defined, as infigure 4. Each party has as input system a qumit, the
unitary representation of the channel is given by theU i( ) followed by a swap on the ancilla qudit and the input
qumit for each party. Finally, the output system for each party is their corresponding qudit, and the input qumits
and the ancillary subsystemon d ¢ are traced out. The commutation relations of the j x

iP ∣
( ) on the state yñ∣ imply

that the unitariesU i associatedwith the different parties commute on the ancilla, thus implying the channel is
almost localizable. It is straightforward to check that the correlation p a a x x... ...N N1 1( ∣ ) is recovered by the parties
inputting theirmeasurement settings xiñ∣ , andmeasuring their output systems in the basis aiñ{∣ }.

So far we have seen that an almost localizable channel can be constructed from almost quantum correlations.
Given an almost localizable channel, it is relatively straightforward to see that the channel-defined correlations
will be almost quantum.Note that the action at each jth party of preparing an input state, followed by a unitary
and then a projectivemeasurement can be simulated by the projectivemeasurements a xj j

P ∣ on the ancilla state

Eñ∣ as per the definition of almost localizable channels. These projectors will then satisfy the properties required
to produce almost quantum correlations given the definition of an almost localizable channel. ,

2.2. Connections between channels and correlations
In this section, wefirst comment on how, given some correlations in a Bell scenario, one canfind a canonical
channel that channel-defines them. Then, we elaborate on furtherways onemay use a channel to generate
correlations.

We have previously considered how correlations result from channels. One can then readily ask how
channels can be constructed oncewe are given a set of correlations. Given correlations p a a x x... ...N N1 1( ∣ ), there
is a canonical channel that channel-defines them,which amounts to a controlled preparation of a quantum
system. In particular, for a given choice of input and output orthonormal bases a x,j jñ ñ{∣ } {∣ } for allN parties,

Figure 4.An almost quantummap constructed from the realization of an almost quantum correlation. For simplicity we depict the
case of two parties, Alice and Bob. First each party performs a unitary operation on their share of the ancillaR (initialized in state

0 0yYñ = ñ ñ ñ∣ ∣ ∣ ∣ ) controlled on their input qumits xñ∣ and yñ∣ (see equations (2) and (3)). Then, the input systems together with the
part of the ancilla onHilbert space d ¢ are traced out, and the ancilla quditsmeasured on the computational basis añ∣ and bñ∣ .

7
The state ρ that realizes an almost quantum correlation can be taken to be a pure state, without loss of generality when there are no

restrictions on the dimension of theHilbert space.
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such a channel is defined as

p a a x x a a x x x x a a... ... ... ... ... ... . 4N
c

x x a a
N N N N N N1 ...

, , , ,
1 1 1 1 1 1

N N1 1

å åL = ñá ñá
¼ ¼

(·) ( ∣ )∣ ∣(·)∣ ∣ ( )

It can be readily seen that N
c
1 ...L channel-defines the correlations p a a x x... ...N N1 1( ∣ ) for the choice of input and

output orthonormal bases a x,j jñ ñ{∣ } {∣ } for allN parties.We also remark that one can take any channelΛ that
channel-defines some correlationswith given preparations andmeasurements, and then construct the canonical
channelΛc fromΛwith those preparations andmeasurements. This intuitively amounts of the taking the
original channel and applying fully decoherent channels to the inputs and outputs.

Now, let us elaborate further on how correlationsmay arise from the use of quantum channels. If we are
given a particular channelΛ1...N, indeed, choosing a set of orthonormal bases such that correlations are channel-
defined byΛ1...Nmay not be optimal for witnessing non-locality. That is, given access to a channel, correlations
can be generated throughmore elaboratemeans than just preparing a state from an orthonormal basis, plugging
it into a local port of the channel, and thenmeasuring in another basis. For example, one party could prepare a
bipartite system and send one half of it into the channel, then after the systemhas emerged from the channel, one
can jointlymeasure this output and the remaining half of the bipartite system8.More formally, with each party j,
in addition to theHilbert spaces associatedwith the jth input and output ports of the channel, we associate an
auxiliaryHilbert space j

aux . Then for a given input xj for the jth party, without loss of generality, this party can

prepare a state x
j j
in auxj

  r Î Ä( ), and then the output aj is associatedwith some POVMelement

Ma
j j
out auxj

  Î Ä( ), such that Ma aj j
å = and every element Maj

is a positive operator9. Putting this

together, given a channel N1 ...L , correlations are generated as:

p a a a x x x M, , , , , , tr , 5N N
j

N

a N
j

N

x1 2 1 2
1

1 ... aux
1

j j
 r¼ ¼ = L Ä

= =

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

( ∣ ) ⨂ (⨂ ) ( )

where aux is the identity operator acting on all Hilbert spaces j
aux . This allows us to explore whether a

particular channelmay result in non-local correlations, as we now formalize in the following definition.

Definition 7 (Local-limited channels). If for all states xj
r andmeasurements Maj

{ }, a channel N1 ...L never

produces non-local correlations via equation (5), then the channel is local-limited.

There are several channels which are local-limited. As an example, consider the entangled quantum states
that can never produce non-local correlations for all generalmeasurements [29, 30]. These quantum states can
give rise to localizable channels that are not local yet are local-limited. The construction goes as follows. Take a
localizable channel where the ancillary system is initiated in such an entangled quantum state. In addition, the
‘unitary operations’ between the input and ancillary ports of each party simply trace out the input states. For all
practical purposes then, this channel only prepares a fixed quantum state among the parties, which then goes to
the output ports. It follows that event though such channel is not local, it is however local-limited.

In general, if N
c
1 ...L is a canonical channel for local correlations p a a x x... ...N N1 1( ∣ ), we have the following

result, which is proven in section E.3 of the appendix.

Proposition 8.Given N
c
1 ...L (·) from p a a x x... ...N N1 1( ∣ ), for all measurements Maj

¢, and all states xj
r ¢, the

correlations

p a a a x x x M, , , , , , trN N
j

N

a N
c

j

N

x1 2 1 2
1

1 ... aux
1

j j
 r¢ ¢ ¼ ¢ ¢ ¢ ¼ ¢ = L Ä

=
¢

=
¢

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎫
⎬
⎭

( ∣ ) ⨂ (⨂ )

are local if the correlations p a a x x... ...N N1 1( ∣ ) are local.

Another interesting question is that of constructing almost localizable channels that are non-localizable. The
followingmethodworks for any general Bell scenario as a starting point, depending onwhich type of channel
onewishes to construct, and goes beyond the canonical formpreviously discussed. For the sake of simplicity,
however, we focus on a bipartite Bell scenariowith two dichotomicmeasurements per party.

8
Amore general strategy would be to apply an instrument with a quantummemory to the channel. That is, preparing a bipartite state, and

then sequentially using the channel, in between each use a party applies an operation to the output of the channel and the other half of the
bipartite system (stored in amemory). This would be in analogy to performing a Bell test through collectivemeasurements on a number of
quantum states.
9
Wedo not need to explicitly consider choices of differentmeasurements for Ma{ }, since the state xr carries the information about the

input.
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First, take an almost quantum correlation p a b x y, ,( ∣ )with no quantum realization. Such correlations can
be found by taking those that violate Bell inequalities beyond aTsirelson-like bound, as presented in [25]. Then,
obtain a state andmeasurements that reproduce the correlations as outlined in [31]. Using the protocol
described in the proof of proposition 6, also depicted infigure 4, an almost localizable channel that channel-
defines these correlations can be hence constructed from these ‘state andmeasurements’. This almost localizable
channel is hence provably non-localizable, since it channel-defines Bell correlations beyondwhat quantum
theory allows, and completes the picture of the hierarchy of channels in theorem44.

Finally, while proposition 6 tells us that almost localizable channels channel-define the almost quantum
correlations, does thismean the correlations in equation (5) that are generated by an almost localizable channel
Λ1...Nwill necessarily be almost quantum correlations? The answer does not follow immediately from the
statement of proposition 6, but the proof of this theorem can be slightly extended to give an answer in the
affirmative. To sketch this extension, first note that all states xj

r andmeasurements Maj
can bemade pure and

projective, respectively, by introducing a large enough auxiliary system for each party. That is, xj
r can be replaced

by a pure state xj
y ñ∣ in a larger space, and thenwe can rewrite these states to be Vx x

j
0j j

y yñ = ñ∣ ∣ for some fixed

state 0y ñ∣ . Now if we apply an almost localizable channel to (part of) these input states, thewhole process can be
modelled as preparing the state E

j
0y yñ ñ∣ ⨂∣ , then applying Vxj

to the input states, followed by the unitaries in the
almost localizable channel. Finally, a projectivemeasurement ismade on the output qubits. This whole process
is equivalent to applying the inverse of the unitaries to these projectivemeasurements to formnewprojective
measurements which act on the state E

j
0y yñ ñ∣ ⨂∣ . These newprojectivemeasurements, due to the definition of

the almost localizable channel, will ‘commute’ for the particular state E
j
0y yñ ñ∣ ⨂∣ , and thuswill generate almost

quantum correlations by definition.Note that due to proposition 6, given almost quantum correlations, we can
alwaysfind states andmeasurements and an almost localizable channel that reproduce these correlations.

3. Steering from the scope of quantum channels

Steering refers to the phenomenonwhere one party, Alice, by performingmeasurements on one half of a shared
state, seemingly remotely ‘steers’ the states held by a distant party, Bob, in awaywhich has no classical
explanation [8]. This resembles the phenomenon of non-locality presented in last section, butwith a slight
change: nowone party describes its system as a quantum system. In this section, we discuss an approach to
studying steering via quantum channels. Here, we review the traditional notion of a steering scenario, while its
relevant sets of assemblages are presented in appendix C.

In a bipartite steering scenario, the actions of one party (here Alice, also referred to as ‘untrusted’ or
‘uncharacterized’10) are described solely bym possible classical inputs to her system, labelled by xÎ{1 ...m},
each of which results in one of d possible classical outputs, labelled a=Î{1 ... d}. The second party (Bob, also
referred to as ‘trusted’ or ‘characterized’) fully describes the state of his share of the systemby a subnormalised
quantum state a x B s Î ( )∣ , where B is theHilbert space associatedwith Bobʼs quantum systemwith
dimension dB. The set of subnormalised conditional states Alice prepares onBobʼs side a x a x,s{ }∣ is usually called
assemblage, and p a x tr a xs=( ∣ ) { }∣ denotes the probability that such a subnormalised state is prepared, i.e. the
probability that Alice obtains awhenmeasuring x.

In this workwe go beyond the bipartite definition of steering, and consider a settingwithN untrusted parties
and a single trusted party, still called Bob, who has some associatedHilbert space B . Now,we haveNAlices,
where for the jthAlice, her input is xjÎ{1 ...m} and output is ajÎ{1 ... d}. As a result Bob obtains an
assemblage a a x x a a x x... ... ... , ,N N N N1 1 1 1

s ¼{ }∣ with elements a a x x B... ...N N1 1
 s Î ( )∣ such that

p a a x x... ... trN N a a x x1 1 ... ...N N1 1
s=( ∣ ) { }∣ . Aswith Bell scenarios, for the case ofN�2wewill use the same notation

of inputs being x and y and outputs being a and b.

3.1. Steering via quantum channels
Herewe extend the ideas of section 2.1 to steering scenarios, which provides a novel way to understanding the
phenomenon. First we introduce the formalism and then characterize the channels that give rise to each set of
assemblages.

A steering scenario is characterized byN untrusted parties, each of which generate one ofm possible inputs,
of d possible outcomes each, and a trusted party BobwithHilbert space B with dimension dB. Consider now all
(N+1) parties (including Bob) to have input and outputHilbert spaces. For theN untrusted parties, these
Hilbert spaces are j j

min in  = =¢ and j j
dout out  = =¢ for all j j¹ ¢, where m has dimensionm and d

10
The sense inwhich the parties are untrusted is that whatever is used to produce classical data is some black box.
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dimension d. Denote by x x m1:ñ ={∣ } an orthonormal basis of m , and by a a d1:ñ ={∣ } an orthonormal basis of

d . For Bob, he hasHilbert spaces Bin
 and Bout

 , which are taken to be equal11. Inwhat follows, we relate
channels of the form :N B m

N
B d

N
B1 ... , in out

     L Ä  ÄÄ Ä( ) ( ) to assemblages in a steering scenario as in
figure 5.

Definition 9.An assemblage a a x x B... ...N N1 1
 s Î{ ( )}∣ in a steering scenario is channel-defined if there exists a

channel :N B m
N

B d
N

B1 ... , in out
     L Ä  ÄÄ Ä( ) ( ), some choice of orthonormal bases xj m x m1:ñ Î ={∣ }

and aj d a d1:ñ Î ={∣ } for each party j , and a state 0 Bin
ñ Î∣ , such that

a a x xtr 0 0 , 6a a x x N k
N

k k B N B k
n

k k... ... 1 ... 1 1 ... , 1N N1 1 s = Ä ñá Ä L Ä ñá Ä ñá= ={ ∣ ∣ [ ∣ ∣ ∣ ∣]} ( )∣

where the partial trace is taken over all N untrusted systems.

Note that themain difference between the correlations and assemblages from the point-of-view of channels
is that one of the outputs of the channels is left unmeasured, and Bob has afixed input state 0ñ∣ .We now relate
channels to the families of assemblages presented in appendix C, startingwith the LHS assemblages.

Proposition 10.An assemblage a a x x... ...N N1 1
s{ }∣ is a LHS assemblage if and only if there exists a local channel

:N B m
N

B d
N

B1 ... , in out

L      L Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,
LL .

In the literature,most of the focus has been on detectingwhether an assemblage has a LHSmodel, thus
revealing entanglement in a shared resource. It is therefore reassuring that the LHS assemblages do not involve
entanglement when viewed through the channels that define them.Note that it is possible to have an assemblage
which does not have a LHSmodel, yet the correlations resulting anymeasurement Bobmakes on the assemblage
can be local. In other words, steering is a distinct phenomenon fromnon-locality.

Proposition 11.An assemblage a a x x... ...N N1 1
s{ }∣ is non-signalling if and only if there exists a causal channel

:N B m
N

B d
N

B1 ... , in out

C      L Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,
CL .

Given this definition, if one is given a non-signalling assemblage then it is straightforward tofind a causal
channel that channel-defines the assemblage if the input states and outputmeasurements arefixed. In fact it is an
SDP that is a slightmodification of the SDP that decides whether a channel is causal as outlined in appendix A.
Given elements of the assemblage, since they are channel-defined, this just results in linear constraintsmade on
the channel.

A consequence of the above proposition and the unitary representation of causal channels is the following
theorem.

Theorem12 (Unitary representation of non-signalling assemblages). Let a a x x... ...N N1 1
s{ }∣ be a non-signalling

assemblage. Then, the assemblage is channel-defined by a channel :N B m
N

B d
N

B1 ... , in out

C      L Ä  ÄÄ Ä( ) ( )
if and only if there exist

Figure 5.An assemblage a xs ∣ seen as generated by a quantum channel A BL « .

11
For the specific purposes of studying steering, we could equally take Bin to be , i.e. the scalars, but for the sake of simplicity in our

presentation, we have thismore symmetric set-up.
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• auxiliary systems E and E¢with input and outputHilbert spaces, E
in and E

out for E, with E
Bin =¢ and

E
Bout out

 =¢ for E¢, that is the outputHilbert space of E¢ and B coincide;

• quantum state R ;E E
in in ñ Î Ä ¢∣

• unitary operatorV : d
N E

d
N E

in out   Ä  ÄÄ Ä ,

which produce a unitary representation of the channel N B1 ... ,
CL via

V R R Vtr tr .N B E E B E E E1 ... , ,out in
C  L = Ä Ä ñá Ä¢ ¢ ¢(·) { ( (·) ∣ ∣ ) }†

Furthermore, the unitaryV can be decomposed into a sequence of unitariesU :k E m
E

d
E

, 1 2   Ä  Ä for
appropriately chosenHilbert spaces E

1 and E
2 , where for any given permutation p of the set N1, ,¼{ }, we have

that

V U U U... ,E E N E1 , 2 , ,= p
p

p
p

p
p

( ) ( ) ( )

whereUk E,
p is not necessarily the same asUk E,

p¢ for two different permutationsπ and p¢.

Apictorial representation of this theorem forN=2 is given infigure 6.
Given this characterization of the set of non-signalling assemblages, we now turn to the set of quantum

assemblages.

Proposition 13.An assemblage a a x x... ...N N1 1
s{ }∣ is quantum if and only if there exists a localizable channel

:N B m
N

B d
N

B1 ... , in out

Q      L Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,
QL .

Infigure 7we give a pictorial representation of a channel-defined quantumassemblage. At this point we
should point out the following corollary of this proposition alongwith the previous theorem,whichwasfirst
proven byGHJW.Wenote that our proof is structurally very different from the previous proofs, and is a simple

Figure 6.Unitary representation of non-signalling assemblages forN=2.

Figure 7.Aquantum assemblage in a bipartite steering scenario resulting from a localizablemap.
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consequence of the fact that, forN=1, the unitaryV in theorem 12 acts only on the inputHilbert space of the
untrusted party and the ancillary register. The full proof of this corollary can be found in appendix F.

Corollary 14. For N 1= , all non-signalling assemblages are also quantum assemblages.

It is important to note that this is only true for the case ofN=1, i.e. a single untrusted party. In section 3.3,
we use causal channels to give examples of post-quantum steering, i.e. non-signalling assemblages that are not
quantum.We know that post-quantum correlationswitness a non-localizable channel, then any assemblage that
gives post-quantum correlationsmust have an associated non-localizable channel. However, there exist non-
quantumassemblages thatwill never give rise to non-quantum correlations [18]: there are assemblages that
cannot be channel-defined by a localizable channel, but for anymeasurementmade on the Bobʼs system the
corresponding Bell correlations are channel-defined by a local channel. This highlights that post-quantum
steering is distinct frompost-quantumnon-locality, and indeed fromnon-locality itself.

ForN�2, as pointed out in [18], characterizing the set of quantum assemblages is difficult, and at least as
hard as characterizing the set of quantum correlations. However, the almost quantum assemblages are a superset
of the quantumassemblages, and for the former there is a characterization in terms of a semi-definite
programme. In the next result we give a physical interpretation for the almost quantumassemblages.

Theorem15.An assemblage a a x x... ...N N1 1
s{ }∣ is almost quantum if and only if there exists an almost localizable

channel :N B m
N

B d
N

B1 ... , in out

Q      L Ä  ÄÄ Ä( ) ( )˜
such that the assemblage is channel-defined by N B1 ... ,

QL ˜
.

The full proof is in appendix G, but is essentially a consequence of the following lemma,which is also proven
in appendixG.Given this lemma, one can essentially use the proof of proposition 6 to obtain the result in
theorem15.

Lemma16.An assemblage a a x x... ...N N1 1
s{ }∣ is almost quantum if and only if there exists aHilbert space

B  @ Ä , quantum state yñ Î∣ , and projectivemeasurements a xj j
 P Î{ ( )}∣ for each jth party where

a a xj j j
å P =∣ and for all permutationsπ of N1, , , j

N
a x j

N
a x1 1j j j j

y y¼  P ñ =  P ñ= =p p{ } ∣ ∣∣ ∣( ) ( ) , such that

tr .a a x x
j

N

a x B... ...
1

N N j j1 1  s y y= P Ä ñá
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∣ ∣∣ ∣

3.2. Connections between channels and assemblages
In section 2.2, we indicated the general way to obtain correlations given a channel, and thenwe gave a canonical
way of constructing a channel from correlations. In this section, wewill do exactly the same for the case of
steering.

In analogywith the case of Bell non-locality, wewillfirst describe a general way to generate an assemblage
froma channel. As in the case of Bell non-locality, theN untrusted parties can prepare a state

x
j j
in auxj

  r Î Ä( ) indexed by their input xj for jÎ{1,K,N}, put one of its subsystems (living in j
in ) into

the channel, and jointlymeasure the output of the channel and other subsystems associatedwith initial state xj
r .

Themeasurements then are the operators Ma
j j
out auxj

  Î Ä( ), which have outcomes aj. The novelty in
steering is the trusted party, and there is a potential ambiguity in how to generate an assemblage from a channel
withN input port andN output ports.We could restrict to channels that trace out the input of the trusted party
(or, equivalently, there is no input port), or the trusted party just always inputs the same quantum state into the
channel. The second approach ismore general when one considers the possibility that the trusted party has an
auxiliary systemwithHilbert space Baux

 , and prepares the state ;B B Bin aux
  s Î Ä( ) there could be

correlations between the input system and auxiliary system thatwould be destroyed by tracing out the input
system. Thismore general approach results in the assemblage being a set of operators that act on theHilbert
space B Bout in

 Ä , and is in the spirit of channel steering [32], whichwe touch upon later.
To summarize this discussion, given a causal channelΛ1...N,B, each jth untrusted party will prepare the state

x
j j
in auxj

  r Î Ä( ), and obtainmeasurement outcomes corresponding to the operators

Ma
j j
out auxj

  Î Ä( ). The trusted party withHilbert space B , will prepare the state B B Bin aux
  s Î Ä( ),

and thus generate assemblage elements a a x x B B... ...N N1 1 out aux
  s Î Ä( )∣ , which can be obtained as

Mtr , 7a a x x N
j

N

a B N B
j

N

x B... ... 1 ...
1

1 ... , aux
1

N N j j1 1 out s r s= Ä L Ä Ä
= =

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

⨂ ⨂ ( )∣

where aux is the identity operator acting on all Hilbert spaces j
aux .
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Let us nowmove on to the case of constructing a generic channel from an assemblage. That is, given an
assemblagewith elements a a x x B... ...N N1 1

 s Î ( )∣ , we specify a canonical channel :N
c

m
N

B1 ... in
  S Ä Ä( )

d
N

Bout
  ÄÄ( ), with B Bout

 = , that will reproduce that assemblage, given appropriate choices of
preparations andmeasurements. This canonical channel is defined as

a a x x x x a a... ... tr ... ... ,N B
c

x x a a
N N B N N a a x x1 ... ,

, , , ,
1 1 1 1 ... ...

N N

in N N

1 1

1 1å å sS = ñá ñá Ä
¼ ¼

(·) ∣ ∣ (·)∣ ∣ ∣

and can be seen as a channel which completely decoheres the input and output systemswith respect to a basis,
traces out the trusted partyʼs input, and then produces assemblage elements in the trusted partyʼs output of the
channel. Notice that the assemblage elements a a x x... ...N N1 1

s ∣ are channel-defined by N B
c
1 ... ,S , as long as appropriate

elements of an orthonormal basis are chosen.
The channel N B

c
1 ... ,S canmoreover be used to generate correlations, and not just assemblages. This is done

by themethod outlined in section 2.2, where the correlations are obtained as

p a a a x x x M M, , , , , , tr ,N B N B
j

N

a a N B
c

j

N

x x1 1
1

1 ... , aux
1

j B j B
 r r¢ ¼ ¢ ¢ ¢ ¼ ¢ ¢ = Ä S Ä Ä

=
¢ ¢

=
¢ ¢

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

( ∣ ) ⨂ ⨂

from the localmeasurements Maj
¢ and states xj

r ¢, where xB¢ and aB¢ represent the trusted partyʼs inputs and
outputs, respectively.We can now askwhen this channel gives non-local correlations, or conversely, when is a
channel N B

c
1 ... ,S local-limited. The following result addresses this, and is proven in section E.3 of the appendix.

Proposition 17.Given N B
c
1 ... ,S (·) from assemblage elements a a x x... ...N N1 1

s ∣ , this channel is local-limited if for all
measurements Pa x BB B

 Î ( )∣ indexed by the choice xB and outcomes aB, the correlations
p a a a x x x P, , , , , , trN B N B a x a a x x1 1 ... ...B B N N1 1

s¼ ¼( ∣ ) ≔ { }∣ ∣ are local.

Adirect consequence of this result is that the canonical channel that onewould construct for the post-
quantumassemblage given in [18] is a local-limited, yet non-localizable channel. Furthermore, this channel is
actually not even almost localizable [18].We summarize all of these observations infigure 8.

One can definemoreover the set of channels restricted to producing only quantum correlations, and call
them the quantum-limited channels, where these correlations can be non-local, therefore defining a larger set
than the set of local-limited channels.We can then take, for instance, the post-quantum assemblages from [33]
that can result in non-local but quantum correlations, and from their canonical channels give quantum-limited
channels that are not almost localizable.

3.3. Examples of post-quantum steering
In this sectionwe have outlined a constructiveway to understand post-quantum steering: assemblages that
cannot be channel-defined by localizable channels.We give a couple of examples of post-quantum steering that
are a simple consequence of theorem 12.

Figure 8.A schematic of the sets of causal channels.Wehave set out the hierarchy in the paper, where the set of local-limited channels
(those that do not result in Bell non-locality) intersects all families of channels; this results fromknowing that there are non-almost
localizable channels that are local-limited, and by taking convex combinations.
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Thefirst example of post-quantum steering is depicted infigure 9, and is in a tripartite scenario where Alice
and Bob steer Charlie, whoseHilbert space has dimension dC=2. There, an ancilla is initialized on state

R AB C

00 00 11 11

2

0 0 1 1

2
r = Äñá + ñá ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

, whereAB andC denote Alice and Bobʼs andCharlieʼs share of the
ancilla system. Then, the part of the ancilla shared byAlice andBob is used as the ancilla in the channel that

generates PR box correlations, while the qubit on state
0 0 1 1

2

ñá + ñá∣ ∣ ∣ ∣
is output byCharlie. Thismap is causal

since it has exactly the same form as described in theorem12 (after one locally dilates all processes to be unitary).
Once that Alice and Bob input qubits in the computational basis andmeasure their output systems, the
following assemblage elements are then prepared inCharlieʼs lab:

p ab xy .ab xy PR 2

s = ( ∣ )∣

This assemblage is a non-signalling onewhich has no quantum realization [18]. However, note that we can have
post-quantum steeringwithout any entanglement (across any of the bipartitions) in the shared ancilla state ρR in
the causal channel. In our next example, the ancilla in the channel does consist of entanglement, and the channel
generates pure state entanglement between three parties.

The second example of post-quantum steering also comprises a causal channel that is not localizable, and
relies on the results of [26]. The steering scenario consists of Alice and Bob, who by performing two dichotomic
measurements, steer Charlie, whoseHilbert space has dimension dC=2. The channel used by the three parties
is depicted infigure 10. Each partyʼs input system is given by a qubit labelled byA,B andC, respectively. Then,
the channelmakes use of afive qubit ancilla (X W W W XA A C B B) initialized on the state:

000 1 111 .W W W W W W
00 11

2

XAXB XAXB
A B C A B Cy a añ = Ä ñ + - ñ

ñ + ñ∣ ( ∣ ∣ )∣ ∣

First, Alice (Bob)makes a controlled swap on the input andXA (XB) qubits, withWA (WB) being the control
qubit. Then, both theXA andXB qubits aremeasured in the computational basis, and their logicalAND
computed. Finally, if thismeasurement result is 1, a controlled-NOT is performed byAlice on qubitA, withWA

as the control qubit. The output systems are then a ququart AWA for Alice, another one BWB for Bob, and a
qubitWC for Charlie. Since themarginal channel for Alice and Bob is causal [26], this tripartite extension is also
causal. To construct an assemblage, ab xys{ }∣ for x y a b, , , 0, 1Î { }, from this channel, we prepare states xñ∣ and
yñ∣ in the computational basis for Alice and Bob, respectively, and thenmeasure in the computational basis,
where Aliceʼs outcome is a andBobʼs is b. To check that this resulting assemblage is post-quantum, one can
check that if we trace out Charlieʼs system, the correlations betweenAlice and Bob violate theCHSH inequality
beyondTsirelsonʼs bound. Sincewe trace out Charlieʼs output system, the ancillaʼs state for Alice and Bob is
given by

00 11 00 11

2
00 00 1 11 11 .

X X X X X X X X

W W W W

ancilla
A B A B A B A B

A B A B

r

a a

=
ñ + ñ á + á

Ä

ñá + - ñá

(∣ ∣ )( ∣ ∣ )

( ∣ ∣ ( )∣ ∣ )

For a choice of parameter 1

6
a = , the correlations can be shown to give a value of 3 for theCHSH inequality,

which is larger thanTsirelsonʼs bound 2 2 . Therefore, themap is definitely not localizable for that choice ofα.
This channel can hence be used for Alice and Bob to channel-define a post-quantum assemblages onCharlieʼs

Figure 9.A causal channel that generates a non-signalling assemblage given particular input states andmeasurements. A tripartite

ancilla state R
00 00 11 11

2

0 0 1 1

2
r = Äñá + ñá ñá + ñá∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

is generated by preparing the pure state Rñ∣ and tracing out part of it. Charlieʼs

output is his part of the ancilla system,which is in the state
0 0 1 1

2

ñá + ñá∣ ∣ ∣ ∣
. Alice and Bob then implement, on their ancillary systems,

the channel that generates PRbox correlations for given particularmeasurements. Therefore, the assemblage prepared inCharlieʼs lab
is p ab xyab xy PR 2

s = ( ∣ )∣ .
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subsystem.Not only this, but since almost quantum correlations cannot violate Tsirelsonʼs bound either [25],
then this assemblage is not even almost quantum, and thus the channel is not almost localizable.

Finally, we discuss how certifying the post-quantumness of the Bell correlations that are channel-defined by
a causalmap is not a necessary condition for such a channel to be non-localizable. For this, consider the
post-quantum assemblage given in themain result of [18].We can construct a canonical channel that is not
localizable and that channel-defines this post-quantum assemblage. Now, this particular assemblage has the
property that the Bell correlations it produces are quantum, ormore precisely, local [18]. Hence, we can
construct a provably non-localizable channel that can only channel-define local correlations in Bell scenarios.

4. Teleportation andBuscemi non-locality

Inspired by the connection between forms of non-locality and quantum channels, in this sectionwe initiate the
study of post-quantumnon-classical teleportation, and post-quantumBuscemi non-locality. Non-classical
teleportation [24] andBuscemi non-locality [23] (or semi-quantumnon-locality12) have been introduced very
recently within the quantum information community as generalizations of steering andBell non-locality,
respectively.Wewill review each of these notions, and then relate their study to our study of channels, and this
will naturally give a framework inwhich to study their post-quantum generalizations.

4.1. Buscemi non-locality
The pioneeringwork by Buscemi consisted in defining a semi-quantumnon-local game and arguing that any
entangled state ismore useful than a separable one forwinning at it [23]. It should be noted that the kind of game
Buscemi describes is subtly distinct to the one hinted by Leung, Toner andWatrous [34]. In this section, wewill
study the kind of non-locality that is witnessed in these games, andwe begin by presenting the general setup.

ConsiderN parties, each of which has a quantum systemwithHilbert space j and can prepare it in one out
ofm quantum states. For each j�N, the states inwhich party jmay prepare their system are x jj

 r Î ( ), with
xjÎ{1,K,m} being the classical label of the particular preparation. The parties then locally plug the system

Figure 10.A tripartite causal channel that is not localizable. The ancilla is initialized in the state X X W W WA B A B Cy fñ = F ñ Ä ña
+∣ ∣ ∣ ,

where 1 2 00 11F ñ = ñ + ñ+∣ (∣ ∣ ) and 000 1 111f a añ = ñ + - ña∣ ∣ ∣ . Alice (Bob)performs a controlled swap  on the qubits
A andXA (B andXB), whereWA (WB) is the control qubit. Then, qubitsXA andXB aremeasured in the computational basis and the
logicalAND of the results computed.Whenever this is 1, Alice performs a controlled-NOT gate on qubitA, withWA as the control
qubit. The output systems are two quqarts: AWA for Alice and BWB for Bob, and a qubitWC for Charlie.

12
We donot use this terminology so as not to confuse between semi-quantum and post-quantum.
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into some device (it can be a black box in analogywith Bell non-locality), and then receive a classical output from
the device. Let ajÎ{1,K, d} denote the classical output for the jth party, where d is the total number of possible
outputs the device can locally produce.

Effectively, this whole process just described is ameasurement on the preparationsmade by theN parties.
Bymeans of a set of tomographically-complete preparations at each site, the parties can hence generate a
description of thismeasurement. For convenience, we now introduce a new piece of terminology to describe
thismeasurement.

Definition 18. In a Buscemi non-locality experiment, for a set of classical outputs a a, , N1 ¼{( )}, a distributed
measurement is Ma a j

N
j a a, , 1 , ,N N1 1

 Î¼ = ¼{ (⨂ )} where M 0a a, , N1
¼ and Ma a a a N, , , , 1, ,N N1 1

å =¼ ¼ ¼ .

Given this distributedmeasurement, it is straightforward to generate conditional probabilities from its
elements and certain state preparations xj

r{ } as

p a a x x M, , , , tr ... .N N a a x x1 1 , , N N1 1
r r¼ ¼ = Ä Ä¼( ∣ ) { }

For the purposes of Buscemiʼs original work, we need to define the set of distributedmeasurements that result
from the set of local operations and shared randomness, whichwe call the local distributedmeasurements.

Definition 19.Adistributedmeasurement is local if there exist N auxiliary systems Rj for j N1, ,Î ¼{ }with
Hilbert spaces j

N
R1 j

=⨂ such that

M tr ,a a R R R R
j

N

a, , , , , ,
1

N N N j1 1 1
r= P¼ ¼ ¼

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭⨂

where a j R aj j j
  P Î Ä{ ( )} is a complete projectivemeasurement, and R R R, , N j1

 r Î¼ (⨂ ) is a separable
state, i.e. for j

Rj
f ñ Îl∣

p ... ,R R R R
N N

R, ,
1 1 2 2

N N1 1 2år f f f f f f= ñá Ä ñá Ä Ä ñá
l

l l l l l l l¼ ∣ ∣ ∣ ∣ ∣ ∣

with p 0l and p 1å =l l .

Without loss of generality the localmeasurements can be taken to be projective, since the dimension of the
Hilbert spacesRj isfinite, but not constrained. Clearly, the state R R, , N1

r ¼ could, in principle, be entangled, and
thuswe nowdefine the set of quantumdistributedmeasurements.

Definition 20.Adistributedmeasurement is quantum if there exist N auxiliary systems Rj for j N1, ,Î ¼{ }
withHilbert spaces j

N
R1 j

=⨂ such that

M tr ,a a R R R R
j

N

a, , , , , ,
1

N N N j1 1 1
r= P¼ ¼ ¼

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭⨂

where a j R aj j j
  P Î Ä{ ( )} is a complete projectivemeasurement, and R R R, , N j1

 r Î¼ (⨂ ) is any
quantum state, entangled or otherwise.

Themain result of Buscemi in [23] can then be restated as: for every non-separable state R R, , N1
r ¼ , there

exists a set of projectivemeasurements a j R aj j j
  P Î Ä{ ( )} such that the distributedmeasurement is not

local. A corollary of this is that the set of local distributedmeasurements is strictly contained in the set of
quantumdistributedmeasurements.

In complete analogywith the study of Bell non-locality and steering, we can askwhat are themost general
distributedmeasurements that do not permit superluminal signalling. The following definition formalizes the
answer to this.

Definition 21.Given a bipartition S S N1, ...,1 2È = { }ofN parties where S i i, , s1 1= ¼{ }and
S i i, ,s N2 1= ¼+{ }, a distributedmeasurement Ma a... N1

{ }does not permit signalling across this bipartition if
there exist sets of completemeasurements M ...a a i i, ...,i is s1 1

  Î Ä Ä{ ( )}and
M ...a a i i, ...,is iN s N1 1

  Î Ä Ä
+ +{ ( )} such that

M 8
a a

a a i i
, ...,

, ..., , ,

i is

i is s

1

1 1å = ¼ ( )

M 9
a a

a a i i
, ...,

, ..., , ,

is iN

is iN s N

1

1 1å = ¼

+

+ + ( )
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M M 10
a a

a a a a i i
, ...,

, ..., , ..., , ,

is iN

N i is s N

1

1 1 1å = Ä ¼

+

+ ( )

M M . 11
a a

a a i i a a
, ...,

, ..., , , , ...,

i is

N s is iN

1

1 1 1
å = Ä¼ +

( )

Adistributedmeasurement Ma a... N1
{ }belongs to the set of non-signalling distributedmeasurements if and only

if it does not permit signalling across any bipartition of the N parties.

If a distributedmeasurement is non-signalling but not quantum thenwe refer to this as post-quantum
Buscemi non-locality.We are not thefirst to describe the set of non-signalling distributedmeasurements, Šupić et
al [35] defined this set in the bipartite setting, although the terminology ‘distributedmeasurement’ is of our
creation.We believe we are, however, thefirst to point out the possibility of post-quantumBuscemi non-
locality. Indeed, in the next sectionwe point this out in a clear fashion.

4.2. Buscemi non-locality via quantum channels
In this sectionwe take our channels-based perspective and apply it to the study of Buscemi non-locality. This
indeed proceeds similarly to the study of steering andBell non-locality. The Buscemi non-locality scenario
consists ofN parties, where party jth (for each j�N) acts on theHilbert space j , and outputs data ajÎ{1,K,

d}. To study such a Buscemi scenario, considerN parties to have inputHilbert spaces j
jin = , and output

Hilbert spaces j
dout = for all j, where d has dimension d. Denote by a a d1:ñ ={∣ } an orthonormal basis of

d .We now consider channels :N j in
j

d
N

1 ...    L  Ä(⨂ ) ( ) and relate channels of this form to distributed
measurements.

Definition 22.Adistributedmeasurement Ma a j
N

j, , 1N1
 Î¼ ={ (⨂ )} is channel-defined if there exists a

channel :N j
j

j j j
n j

d
N

1 ... in 1 out     L =  ==
Ä(⨂ ⨂ ) (⨂ ), and some choice of orthonormal bases

aj d a d1:ñ Î ={∣ } for each party, such that

M a a ,a a N
k

N

k k, , 1 ...
1

N1 = L ñá¼
=

⎛
⎝⎜

⎞
⎠⎟⨂∣ ∣†

where N1 ...L† is the dual of N1 ...L .

Figure 11 presents a pictorial representation of distributedmeasurements as quantum channels. Given this
definition, as before, we can now give alternative definitions of local, quantum, and non-signalling distributed
measurements.

Proposition 23.Adistributedmeasurement is local if and only if there exists a local channel
:N j

j
d

N
1 ... in
L    L  Ä(⨂ ) ( ) such that the distributedmeasurement is channel-defined by N1 ...

LL .

Proposition 24.Adistributedmeasurement is quantum if and only if there exists a localizable channel
:N j

j
d

N
1 ... in
Q    L  Ä(⨂ ) ( ) such that the distributedmeasurement is channel-defined by N1 ...

QL .

Proposition 25.Adistributedmeasurement is non-signalling if and only if there exists a causal channel
:N j

j
d

N
1 ... in
C    L  Ä(⨂ ) ( ) such that the distributedmeasurement is channel-defined by N1 ...

CL .

Figure 11.Adistributedmeasurement Ma a, , N1 ¼ viewed as a causal channelΛ.
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Given these definitions of distributedmeasurements, it is straightforward to see that if each partywere to
prepare pure states from an orthonormal basis, thenwe recover the Bell non-locality setting. This then implies
that local, quantum, and post-quantumnon-locality implies a local, quantum, and post-quantumdistributed
measurement. A simple consequence of this is that the set of non-signalling distributedmeasurements is strictly
larger than the set of quantumdistributedmeasurements. For example, we can take the channel that produces
the PR box correlations, and generate a post-quantumdistributedmeasurement. However, do there exist post-
quantumdistributedmeasurements that will never produce post-quantum correlations?We leave this question
as open, but in this directionwe nowdefine the set of almost quantumdistributedmeasurements as the analogue
of almost quantum correlations and assemblages.

Definition 26.Adistributedmeasurement is almost quantum if there exists an almost localizable channel

:N j
j

d
N

1 ... in
Q    L  Ä(⨂ ) ( )˜

such that the distributedmeasurement is channel-defined by N1 ...
QL ˜

.

Given that the set of almost quantum correlations is larger than the set of quantum correlations, it follows
that the set of almost quantumdistributedmeasurements is larger than the set of quantumdistributed
measurements. In futureworkwewill investigate whether this set has a useful characterization in terms of semi-
definite programming. Given such a characterization, we should be able to address the question of whether post-
quantumBuscemi non-locality implies post-quantumBell non-locality.

4.3. Non-classical teleportation
Thefinal scenariowe consider is a generalization of the steering scenario asfirst outlinedbyCavalcanti et al [24]. In
this scenario theoriginalmotivationwas to consider twoparties, andhave one party ‘teleport’ quantum
information to the other, even if their resources are noisy. Inparticular, Alice is given one out ofmpossible
quantumstatesρj for jÎ{1,K,m}, and produces some classical data (using ameasurement on this input state
and someother shared resourcewithBob), andBobhas a quantumsystemuponwhich he canperform state
tomography. Importantly, the set of states{ρj} is known to all parties, unlike in conventional teleportationwhere
there is a single unknown state that is to be teleported.OnceBobknows the choice of state ρj and the classical data
(that resulted fromAliceʼsmeasurement), Bob can deduce their (subnormalised) state conditionedupon this
information.This is analogous to the assemblage in a steering scenario, which is a collectionof (subnormalised)
states conditioned on the classical informationgenerated by theuntrustedparty. In the casewhereAlice andBob
share amaximally entangled state, Alice canmake an entangledmeasurement onher input stateρj andher half of
thismaximally entangled state. Conditioned on theoutcomeof themeasurement, the state inBobʼs laboratorywill
beρjwith someunitary applied that depends on theoutcome. In general, givenBobʼs conditional (subnormalised)
quantumstate, theywish to establish if ‘non-classical teleportation’ took place.

We now extend this scenario tomimic closer the case ofmultipartite steering experiments. ConsiderN
parties, each of which has a quantum systemwithHilbert space j and can prepare it in one out ofm quantum
states. For each j�N, the states inwhich party jmay prepare their system are x jj

 r Î ( ), with xjÎ{1,K,m}
being the classical label of the particular preparation. In addition, consider another party, Bob, who has a
quantum systemwithHilbert space B and can performquantum state tomography on his part of his system.
ThefirstN parties generate classical data locally from their system, andwe denote by ajÎ{1,K, d} the classical
output obtained by party j, for each j�N.

Since the firstN parties could prepare their input system in an arbitrary state before plugging it into their
unknowndevice, they could each choose states from a tomographically-complete set of states, as with the
Buscemi non-locality scenario. That is, enough states that span the space j ( ). The difference now in this
scenario from the Buscemi non-locality scenario is that we have Bobʼs quantum systemwithHilbert space B ,
and uponwhich he can perform any quantumoperation he likes. Therefore if we consider thewhole process in
terms of knownquantum systems, we have the inputHilbert spaces j and an ‘output’Hilbert space B in Bobʼs
laboratory. Therefore the process of producing classical data and a (subnormalised) quantum state in Bobʼs
laboratory can be described in terms of an object, whichwe call a teleportage. This object can be characterized as a
map from space of operators over j

N
j1=⨂ to the space of operators on B , and it is characterized by the fact

that a tomographically-complete set of input states can be generated, and a tomographically-complete
measurement can bemade onBobʼs system.

Definition 27. For a set of classical outputs a a, , N1 ¼{( )}and theHilbert space B of Bobʼs system, a teleportage
is an instrument Ta a j

N
j B a a, , 1 , ,N N1 1

   Î ¼ = ¼{ (⨂ ) ( )} such that, for all quantum

states T, tr trj
N

j a a a a1 , , , ,N N1 1
 r r rÎ å == ¼ ¼(⨂ ) { ( )} { }.
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Wenote that one can obtain an assemblage a a x x B, , , ,N N1 1
 s Î¼ ¼{ ( )}∣ for any set of input quantum states

xj
r{ }, in the followingway:

T .a a x x a a
j

N

x, , , , , ,
1

N N N j1 1 1s r=¼ ¼ ¼
=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟⨂∣

This is actually slightly distinct from the assemblages in the standard steering scenario, since the states xj
r have

some quantum information, and so the classical labels xj do not capture everything.
Aswith the study of Buscemi non-locality and steering, we can define the physicallymeaningful sets of

teleportages.

Definition 28.A teleportage is local if there exist N auxiliary systems Rj for j N1, ,Î ¼{ }withHilbert spaces

j
N

R1 j
=⨂ such that

T tr ,a a N R R R R B
j

N

a B, , 1, , , , , , , ,
1

N N N j1 1 1
r= P Ä¼ ¼ ¼ ¼

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭⨂

where a j R aj j j
  P Î Ä{ ( )} is a complete projectivemeasurement, and R R B R B, , ,N j1

  r Î Ä¼ (⨂ ) is a
separable state, i.e. for j

Rj
f ñ Îl∣ and B

Bf ñ Îl∣

p ... ,R R B R R
N N

R
B B

, , ,
1 1 2 2

N N1 1 2år f f f f f f f f= ñá Ä ñá Ä Ä ñá Ä ñá
l

l l l l l l l l l¼ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

with p 0l and p 1å =l l .

Definition 29.A teleportage is quantum if there exist N auxiliary systems Rj for j N1, ,Î ¼{ }withHilbert

spaces j
N

R1 j
=⨂ such that

T tr ,a a N R R R R B
j

N

a B, , 1, , , , , , , ,
1

N N N j1 1 1
r= P Ä¼ ¼ ¼ ¼

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭⨂

where a j R aj j j
  P Î Ä{ ( )} is a complete projectivemeasurement, and R R B R B, , ,N j1

  r Î Ä¼ (⨂ ) is any
quantum state, entangled or otherwise.

Definition 30.Given a bipartition S S N1, ...,1 2È = { }ofN parties where S i i, , s1 1= ¼{ }and
S i i, ,s N2 1= ¼+{ }, a teleportage T :a a j

N
j B, , 1N1

   ¼ ={ (⨂ ) ( )}does not permit signalling across this
bipartition if there exist further teleportages
T T: , :a a j

s
j B a a j s

N
j B, ..., 1 , ..., 1i is is iN1 1

        = = ++
{ (⨂ ) ( )} { (⨂ ) ( )}, and quantum state B B r Î ( )
such that

T

T

T T

T T .

a a
a a B

a a
a a B

a a
a a a a

a a
a a a a

, ...,
, ...,

, ...,
, ...,

, ...,
, ..., , ...,

, ...,
, ..., , ...,

i is

i is

is iN

is iN

is iN

N i is

i is

N is iN

1

1

1

1

1

1 1

1

1 1

å

å

å

å

r

r

=

=

=

=

+

+

+

+

(·)

(·)

(·) (·)

(·) (·)

A teleportage Ta a... N1
{ }belongs to the set of non-signalling teleportages if and only if it does not permit signalling

across any bipartition of theN parties.

We say a teleportage demonstrates post-quantumnon-classical teleportation if it is a non-signalling
teleportage that is not a quantum teleportage. As far aswe know, we are the first to define the set of non-
signalling teleportages, in addition to introducing the nomenclature.

4.4. Non-classical teleportation via quantum channels
Finally, we look at non-classical teleportation through the lens of channels. Recall that we have a black box device
withN inputs for quantum systems, andN classical outputs a d1, ,j Î ¼{ } for jÎ{1,K,N}. For theN ports of

the black box device we associate input and outputHilbert spaceswith each party such that j
jin = and

j j
dout out  = =¢ for all j, j′Î{1,K,N}, where d is aHilbert space of dimension d. For Bob, we have an

input and outputHilbert space denoted B
in and B

out , respectively, wherewe have that B B
Bin out  = = .

Therefore the channels of interest will be :N j
j

B d
N

B1 ... in     L Ä  ÄÄ(⨂ ) ( ), and as beforewe can
define teleportages in terms of these channels.
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Definition 31.A teleportage T T:a a a a j
N

j B a a, , , , 1 , ,N N N1 1 1
   Î ¼ ¼ = ¼{ (⨂ ) ( )} is channel-defined if there

exists a channel :N j
j

j j B j
n

d
N

B1 ... in 1      L = Ä  Ä=
Ä(⨂ ⨂ ) (⨂ ), and some choice of orthonormal

bases aj d a d1:ñ Î ={∣ } for each party, such that

T a atr 0 0 ,a a B k
N

k k N B, , out , , out , 1 1 ...N N1 1= Ä ñá L Ä ñá¼ ¼ =(·) { ∣ ∣ (· ∣ ∣ )}

where 0 B Bñ Î∣ .

Figure 12 depicts a teleportage as a quantum channel. Given this definition, as before we obtain the following
results:

Proposition 32.A teleportage is local if and only if there exists a local channel :N j
j

j j B1 ... in
L    L = Ä (⨂ ⨂ )

j
n

d
N

B1  Ä=
Ä(⨂ ) such that the teleportage is channel-defined by N1 ...

LL .

Proposition 33.A teleportage is quantum if and only if there exists a localizable channel :N j
j

1 ... in
Q  L =(⨂

j j B j
n

d
N

B1    Ä  Ä=
Ä⨂ ) (⨂ ) such that the teleportage is channel-defined by N1 ...

QL .

Proposition 34.A teleportage is non-signalling if and only if there exists a causal channel :N j
j

1 ... in
C  L =(⨂

j j B j
n

d
N

B1    Ä  Ä=
Ä⨂ ) (⨂ ) such that the teleportage is channel-defined by N1 ...

CL .

It should be clear that post-quantum steering implies post-quantumnon-classical teleportation, since if an
assemblage is post-quantum then it is channel-defined by a non-localizable channel, this non-localizable
channel will then channel-define a teleportage that is post-quantum.

For the study of steeringwe had an alternative characterization of non-signalling assemblages in terms of a
unitary representation. This result can be generalized to the set of non-signalling teleportages as follows.

Theorem35.Unitary representation of non-signalling teleportages Let Ta a... N1
{ }be a non-signalling teleportage.

Then, the teleportage is channel-defined by a channel :N B j
j

B d
N

B1 ... , in
C      L Ä  ÄÄ(⨂ ) ( ) if and only if

there exist

• auxiliary systems E and E¢with input and outputHilbert spaces, E
in and E

out forE, with E
Bin =¢ and

E
Bout =¢ for E¢, that is the outputHilbert space of E¢ andB coincide;

• quantum state R ;E E
in in ñ Î Ä ¢∣

• unitary operator V : j
j E

d
N E

in in out   Ä  ÄÄ⨂ ,

which produce a unitary representation of the channel :N B j
j

B d
N

B1 ... , in
C      L Ä  ÄÄ(⨂ ) ( ) via

V R R Vtr tr .N B E B E E1 ... , ,out in
CL = Ä ñá ¢(·) { ( (·) ∣ ∣ ) }†

Furthermore, the unitaryV can be decomposed into a sequence of unitariesU :k E m
E

d
E

, 1 2   Ä  Ä for
appropriately chosenHilbert spaces E

1 and E
2 , where for any given permutationπ of the set N1, ,¼{ }, we have

that

Figure 12.ATeleportage Ta a, , N1 ¼ viewed as a causal channelΛ.
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V U U U... ,E E N E1 , 2 , ,= p
p

p
p

p
p

( ) ( ) ( )

whereUk E,
p is not necessarily the same asUk E,

p¢ for two different permutations p and p¢.

Given this last result about non-signalling teleportages, we can actually generalize theGHJW theorem from
the case of steering to the study of non-classical teleportation.

Corollary 36. For N 1= , all non-signalling teleportages are also quantum teleportages.

That is, for the original context inwhich non-classical teleportationwas studied, the bipartite setting, the no-
signalling principle is already enough to characterize exactly everything that can be done quantummechanically
in the experiment.

Finally, in analogywith everything that has gone before, we can define the set of almost quantum
teleportages as follows.

Definition 37.A teleportage is almost quantum if there exists an almost localizable channel :N j
j

1 ... in
Q  L =(⨂˜

j j B j
n

d
N

B1    Ä  Ä=
Ä⨂ ) (⨂ ) such that the teleportage is channel-defined by N1 ...

QL ˜
.

4.5. Connections between all forms of post-quantumnon-locality
The relationship between entanglement, steering, and non-locality is nowwell-studiedwithin the scope of
quantum states. Since non-locality implies steering the non-trivial question is which entangled states
demonstrate steering, but not non-locality. It has been shown that for all possiblemeasurements on a quantum
state, entanglement, steering, and non-locality are all inequivalent [30]. In post-quantumnon-locality,
obviously we cannot automatically associate a process withmeasurements on a quantum state. Furthermore,
due to theGHJW theorem, post-quantum steering cannot be demonstratedwhen there are only two parties,
although post-quantumnon-locality can be demonstratedwith only two parties. Therefore, the relationship
between post-quantumnon-locality and post-quantum steering is somewhat subtle. The resolution is, of
course, to consider a steering scenario with two (ormore) uncharacterized parties and then generate correlations
bymaking ameasurement onBobʼs system. If these correlations demonstrate post-quantumnon-locality then
this implies post-quantum steering, since thewhole process cannot be associatedwith localmeasurements on a
quantum system.However, post-quantum steering does not imply post-quantumnon-locality, as demonstrated
in [18].

The relationship between post-quantumnon-locality and post-quantumBuscemi non-locality was
discussed at length in the previous section. In particular, if we take a distributedmeasurement and for a
combination of local preparations of states, we obtain post-quantum correlations, then this implies post-
quantumBuscemi non-locality. Asmentioned above, we leave it openwhether there are post-quantum
distributedmeasurements that do not result in post-quantumnon-locality for all possible preparations.

The next point to consider is the relationship betweenpost-quantumBusceminon-locality andpost-quantum
non-classical teleportation.As in the relationship betweennon-locality and steering, ifwe take a teleportage and
make ameasurement onBobʼs system,weobtain a distributedmeasurement. If thedistributedmeasurement is
post-quantum, then clearly the teleportagewas itself post-quantum. Likewise, one canobtain an assemblage froma
teleportageby preparing certainquantumsystems for each of the uncharacterized parties. If the assemblage
demonstrates post-quantumsteering then the teleportagewas post-quantum.We see then that all these different
formsof post-quantumnon-locality are somehow related to eachother as summarized infigure 13.

What is the relationship between post-quantum steering and post-quantumBuscemi non-locality? Atfirst
sight it seems difficult to relate the two, since in one scenariomeasurements aremade, but preparations aremade
in the other.However, given our picture of non-locality from the perspective of quantum channels we canfind a
resolution.Oneway of generating an assemblage froma distributedmeasurement would be the following (see
figure 14): encode the classical inputs xjñ{∣ }as elements of an orthonormal basis m for j N1, ,Î ¼{ }, and
take a localizable channel : m

N
B j

N
j B1    L Ä  ÄÄ

=( ) ⨂ where j is theHilbert space associatedwith
the jth partyʼs input to a distributedmeasurement, and B is an auxiliaryHilbert space associatedwith Bobʼs
system; apply the channelΛ to the input states x x x, , N1 2 ¼ ñ{∣ }, and then apply the distributedmeasurement to
the systems now living in theHilbert space j

N
j1=⨂ , which results in an assemblage a a x x... ...N N1 1

s{ }∣ , i.e.
operators acting onBobʼs system. Since this extra element is a localizable channel, it will not introduce any post-
quantum elements in its own right. Therefore, if we take a distributedmeasurement and turn it into an
assemblage in this fashion, if the assemblage is post-quantum then the original distributedmeasurement itself
was post-quantum.
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Given figure 13, we immediately see that post-quantumnon-classical teleportation cannot imply post-
quantumnon-locality, since post-quantum steering does not imply post-quantumnon-locality. That is, if post-
quantumnon-classical teleportation and post-quantumnon-locality were equivalent then, post-quantum
steeringwould imply post-quantumnon-locality, which is not true. Furthermore, this also implies that either
post-quantumBuscemi non-locality does not imply post-quantumnon-locality, or post-quantumnon-classical
teleportation does not imply post-quantumBuscemi non-locality, or both. Infigure 13we indicate thesemain
open questions between all forms of post-quantumnon-locality with a questionmark next to the implication.
To prove, for example, that post-quantumBuscemi non-locality does not imply post-quantumBell non-
locality, onewould need tofind a distributedmeasurement that cannot be realized via a localizable channel, yet
this channel does not give post-quantum correlations, e.g. it could be local-limited.We conjecture that all four
notions of post-quantumnon-locality are inequivalent.

5.Discussion

In this workwe have shown that the study of post-quantumnon-locality and steering can be seen as two facets of
the study of quantum channels that do not permit superluminal signalling.We further showed that other
scenarios can be readily approachedwithin this scope, and hence initiated the study of post-quantumBuscemi
non-locality and post-quantumnon-classical teleportation. This general perspective allows us generate new
examples of post-quantum steering, and allowus to generate novel kinds of non-signalling, but non-localizable
channels. Furthermore, we have expanded the definition of almost quantum correlations to the domain of
quantum channels (with no referencemade tomeasurements), allowing us to recover almost quantum
correlations and almost quantumassemblages in an appropriate domain.

Another channel-based perspective on the study of steering has led to so-called channel steering [32], as
brieflymentioned in section 3.2. Channel steering is a generalization of standard bipartite steering (involving
Alice and Bob), where now there is a third party, Charlie, that inputs a quantum system into a channel, andAlice
and Bob have systems that are the outputs of this channel. In a sense, this channel is then a broadcast channel.
Alice can perform ameasurement on her system to demonstrate to Bob that she can steer his output of the
channel. Channel steering is distinct from the forms of non-locality considered here, but we can extend our

Figure 13. Implication relations among the different forms of post-quantumnon-locality.Where there is a questionmark next to an
implication, thismeans that it is openwhether there is an implication. One can also infer from the diagram that post-quantumBell
non-locality infers post-quantumnon-classical teleportation, but the reverse implication definitely does not hold.

Figure 14.A steering experiment constructed from aBuscemi non-locality one. The distributedmeasurement is depictedwithin the
dotted box.
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channels to include this third party, and then study causal, but non-localizable, channels for post-quantum
channel steering.We leave this for futurework.

The characterization of quantumnon-locality is not only of foundational interest, but it is also of use in
quantum information theory. In particular, characterizing the set of quantum correlations is useful for device-
independent quantum information, since it allows for away to practically constrainwhat, say, amalicious agent
can do in the preparation of devices. The study of Buscemi non-locality is of relevance tomeasurement-device-
independent quantum information, hence this paradigmmay profit from the characterization of what is
quantummechanically allowed in the setup, with direct consequences regarding randomness certification and
entanglement quantification [35, 36].

One of themain open problems of this work is to further probe the relationships between the different kinds
of post-quantumnon-locality and steering. For example, as discussed, we know that post-quantum steering
does not always imply post-quantumnon-locality, but does post-quantumBuscemi non-locality imply post-
quantumBell non-locality? Infigure 13we summarized all the known relationships between all forms of post-
quantumnon-locality.We conjecture that all of these different notions of post-quantumnon-locality are
inequivalent, just as post-quantumnon-locality is inequivalent to post-quantum steering.

On theway to proving our conjecture, itmay be relevant tofirst study possible characterizations of all forms
of almost quantumnon-locality in terms of a semi-definite programme. Such a connectionwas crucial in [18]
when showing that post-quantum steering does not imply post-quantumnon-locality. Indeed, in this workwe
gave an interpretation in terms of quantum channels to the original SDP characterization of almost quantum
asseblages, thus giving a physical underpinning of this set. This interpretation allowed us to generalize the notion
of almost quantumnonclassicality, hence now it would be interesting to relate back these general notions to
SDPswhen possible.

Sincewe have shown that post-quantumnon-locality and steering are two aspects of amore general study of
quantum channels, we hope this workmotivates a resource theory of post-quantumness. This resource theory
could be approached from the point-of-view quantum channels, where the non-localizability of a channel is a
resource. This relates directly to the study of zero-error communicationwith quantum channels [37]. Given this
connection, we expect tofind applications of post-quantum steering, just as wefind that post-quantumnon-
locality can be used to trivialize communication complexity. Furthermore, wemight be able tofind applications
of post-quantumBuscemi non-locality and post-quantumnon-classical teleportation. Going further, there are
other possibilities for non-locality scenarios. In particular, one can consider scenarios where all parties’ outputs
are quantum systems.

Ourwork could fit neatly within the study of quantum combs [38], quantum strategies [39], quantum causal
models [40–43] and processmatrices [20]. Indeed, since in certain scenarios in ourwork it is assumed that one
party has access to a quantum systembut the global systemmay be incompatible with quantummechanics, it has
a similarmotivation to the study of indefinite causal order [20]. It would be interesting to see howour non-
signalling processes interact with processes that could include signalling, andwhether this interaction could be
used to understand the structure of post-quantumnon-locality.

Last but not least, the resource theory of non-locality has been studied by only thinking of systems as black
boxes. That is, one does not need to considerHilbert spaces, or other features of quantummechanics, but only
consider the correlations associatedwith particular devices. The approach in this paper has been couched in the
language of quantum theory. Canwe consider generalizing our framework further to consider trusted (and
characterized) devices thatmay not be quantum, but are objects that can be describedwithin a broad family of,
say, generalized probabilistic theories [44]? Indeed, steering has already been studiedwithin the broad
framework of these theories [45, 46]. The study of non-signalling channels in general theories is left for future
work and could then shed insight ontowhat is so special about quantum theory.
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AppendixA. Relevant concepts fromquantum channels

In this sectionwe review families ofmultipartite quantum channels which are pertinent when discussing non-
locality and steering. The general scenario we consider is that outlined in section 1.

Beckman et al [22] considered quantum channels in such a set-up of space-like separated laboratories,
especially those channels that are compatible with relativistic causality. That is, if two parties are space-like
separated, the channelmapping their input states to their output states do not permit communication between
them, called the causal channels. There aremultiple equivalentmathematical definitions capturing this concept
[47], andwe shall present the definition of semicausal and causal channels.

Definition 38 (Semicausal andCausal channels).Given amultipartite system and a bipartition
S S N1, ,A BÈ = ¼{ }of its elements, amap : S S S S

in in out out
A B A B     L Ä  Ä( ) ( ) is semicausal from SB to

SA, denoted S SB A , there exists a channel : S S
in out

A A   G ( ) ( ), such that for all states
, tr trS S

S Sin in in in in
A B

B B
  r r rÎ Ä L = G( ) { [ ]} ( [ ]). Amap that is semicausal for all bipartitions is called causal.

For every channel there exists a unitary operatorU acting on a system and ancillaE, such that
U Utr 0 0E Er rL = Ä ñá[ ] { ( ∣ ∣ ) }† for some state 0 E Eñ Î∣ .What is the formof a unitary dilation of (semi)causal

channels? For bipartite semicausalmaps, works by Schumacher andWestmoreland [47], D’Ariano et al [26], and
Piani et al [27] provide the following characterization:

Theorem39 (Unitary representation for bipartite semicausal channels [26, 27, 47]). Let ABL be aCPTPmap,
with B A . Then, there exists an auxiliary system E with input, intermediate and outputHilbert spaces,

,E E
in int  , and E

out , respectively, and quantum state 0 E
inñ Î∣ , producing a unitary representation of themap as

U Utr 0 0AB E Er rL = Ä ñá[ ] { ( ∣ ∣ ) }† , where the unitaryU can be decomposed as a unitary acting on A and E
followed by a unitary acting on B and E alone. That is,

U U U ,EB AE=

forU :EB
E B E B
int in out out   Ä  Ä andU :AE

A E A E
in in out int   Ä  Ä .

The statement of this theorem is depicted infigure A1.When themap is fully causal, then there exist both a
decomposition in terms ofU U UEB AE= and one in terms ofV V VAE EB= , where theUj andVj are unitaries,
for j AE EB,Î { }.

This result can be generalized tomultipartite causal channels.We nowuse notationwhere parties are
labelled by numbers going from1 toN. Given amultipartite causalmapΛ1KN, there exist unitary operators
Up p{ } acting on local systems plus a global auxiliary system E such that U Utr 0 0N E E1 r rL = Ä ñáp p¼ [ ] { ( ∣ ∣ ) }† ,

where the unitaryUπ has the formofU Uk
N

k E1= p p= ( ) andπ is a permutation of the parties {1, 2,K ,N}. The
proof is presented in appendixD.1.

A particular class of causal channels is the class of localizable channels [22]. These are channels implemented
by local operations performed by each party on their input and a share of a quantumancilla (see figure A2).We
formalize this definition below.

Definition 40 (Localizable channels).A causal channel N1L ¼ is localizable if there exists an N -partite ancilla
system R, withHilbert spaces ...R R R RN1 2

   Ä Ä Ä≔ with Rj labelling the jth subsystemof R, and state

R R s Î ( ) such that, for all states j
N j

1 in r Î =(⨂ ),

,N k
N

R R1 1 kr r sL = Ä L Ä¼ =[ ] [ ]

where :R
k

R
k

in outk k
    L Ä ( ) ( ).

Notice that in this definition for localizable channels, the ancillaσR is the same for all inputs to the channel
Λ1KN.

It is known that, already for bipartite systems, there exist channels that are causal but not localizable [22].
Furthermore, there are examples that are not entanglement-breaking [26], unlike the example given in [22].

Just as we considered the causal channels in terms of unitaries, we can consider localizable channels in terms
of unitary operators. Since there are only localmaps in the localizable channels, it is straightforward to dilate
each of thesemaps if we increase theHilbert space dimension of local systemsRj in the ancilla. This gives the
following equivalent definition of localizable channels.

Definition 41 (Unitary representation of localizable channels).A causal channel N1L ¼ is localizable if and
only if there exists anN-partite ancilla systemEwith input and outputHilbert spaces
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...E E E E
in in in in

N1 2   Ä Ä Ä≔ and ...E E E E
out out out out

N1 2   Ä Ä Ä≔ , with j labelling the jth subsystemofE,

and state E
E
inyñ Î∣ such that, for all states j

N j
1 in r Î =(⨂ ),

V Vtr ,N E E1 r r y yL = Ä ñá¼ [ ] { ( ∣ ∣ ) }†

whereV Uk
N

kE1 k
= Ä = for unitary operatorsU :kE

k E k E
in in out outk

k k   Ä  Ä .

In addition to the above unitary representation, there exists another equivalent representation. This
representation does notmake reference to a tensor product structure in the ancilla, instead the unitaries in a
unitary representation of a causal channel are independent of each other, in a particular sense. Nowwe have a
global ancilla living inHilbert space E and local ancillaeEk for each kth party, with input and outputHilbert

Figure A1. (a)A semicausal CPTP channel, where Bob does not signal Alice, has an equivalent representationwhere Alice performs a
unitary operationUAE onher systemplus an ancilla, and afterwards Bob performs a unitary operationUEB onhis systemplus the
shared ancilla. (b)A causalmap, where there exist a unitary decomposition for each ordering of the parties.

Figure A2.Abipartite localizable channel, decomposed as local unitaries acting on a shared ancilla.
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spaces E
in

k and E
out

k , respectively. The local ancillae are introduced so that everything can remain unitary.

Therefore, the total input and outputHilbert spaces of all the ancillae are ...E
E E E
in in in

N1 2   Ä Ä Ä Ä and

...E
E E E
out out out

N1 2   Ä Ä Ä Ä , respectively.

Definition 42 (Commuting unitary representation of localizable channels).A causal channel N1L ¼ is
localizable if and only if there exists a global ancilla system E withHilbert space E , a local ancilla system Ek for
each kth party, with input and outputHilbert spaces E

in
k and E

out
k , respectively, and state

...E E
E E E
in in in

N1 2   yñ Î Ä Ä Ä Ä∣ such that, for all states j
N j

1 in r Î =(⨂ ),

U Utr ,N EE E
j

N

jE E
k

N

N kE1
1 0

1

N1  r r y yL = Ä ñá¼ ¼
= =

-

-

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

[ ] ( ∣ ∣ ) †

whereU :kE
k

E
E k

E
E

in in out out
k k     Ä Ä  Ä Ä is a unitary operator for all k, such that, for any

permutation p on the set N U U1, 2, , , k
N

kE k
N

k E1 1¼  =  p= ={ } ( ) .

Since all theHilbert spaces in this work are taken to befinite dimensional, these two unitary representations
of localizable channels are equivalent. This can be shown by a straightforward extension of lemma 4.1 in [48]. It
should be remarked upon that if wewere to allow for infinite dimensionalHilbert spaces, then these two
definitionswill not be equivalent, as pointed out byCleve, Liu and Paulsen [49]. In full generality, since the first
unitary representation implies the commuting unitary representation, one could then take the commuting
unitary representation to be themost general definition of localizable channels when allowing for infinite
dimensionHilbert spaces.

Finally, from the point-of-view of non-locality and steering, the set of local channels is of interest.

Definition 43 (Local channel).A channel is local if it is localizable, but with the additional constraint that the
ancilla state Rs is a separable state, i.e.

p ... ,R R R
N N

R
1 1 2 2

N1 2ås f f f f f f= ñá Ä ñá Ä Ä ñá
l

l l l l l l l∣ ∣ ∣ ∣ ∣ ∣

for j
R Rj j

f ñ Îl∣ .

It can be readily seen that localizable channels aremore general than local channels. For example, the latter
set of channels cannot be used to generate entanglement between two parties, but a localizable channel can.We
can now summarize all the information about causal channels in the following theorem.

Theorem44. Let , ,C Q Q˜ , and L be the set of causal, almost localizable, localizable, and local channels, respectively,
thenwe have that C Q Q L  ˜ .

Anatural question is given a channelΛ, canwe decide if it belongs to , ,C Q Q˜ , or L.Wefirst restrict to the
bipartite setting, andwe suppose thatΛ is given a convenient representation, such as theChoi–Jamiołkowski
representation [50]. That is, for a bipartite setting channelΛ, theChoi state in

1
out
1

in
2

out
2    W Î Ä Ä Ä( ),

such that
in
1

in
2  W L Ä Ä F ñáF+ +≔ ( )(∣ ∣), for

d d
j j k k

1
,

j kin
1

in
2

in
1

in
1

in
2

in
2

 
   å åF ñ = ñ ñ ñ ñ+∣ ∣ ∣ ∣ ∣

with d being the dimension of theHilbert space. TheChoi stateΩ is positive semi-definite if only ifΛ is a
channel. In order to decide if the channelΛ is causal, we can use the definition of causal channels alongwith this
property of Choi states to state the following result.

Proposition 45.A channel L is causal if and only if its Choi state W satisfies the following:

1. $ a densitymatrix 1 in
1

out
1  S Î Ä( ) such that tr

d

1
1out

2

in
2 in

2 


W = S Ä , and

2. $ a densitymatrix 2 in
2

out
2  S Î Ä( ) such that tr

d

1
2out

1

in
1 in

1 


W = Ä S .

A consequence of this result is that there exist positive semi-definitematrices 1S andΣ2 such that the
conditions of the proposition are satisfied. In other words, one can decide whether a channel is in the set C using
a semi-definite programme (see [51]), and so one can efficiently decide this problem.

Decidingwhether a channel belongs in the sets ofQ and L is not as easily resolved as the case for C. For
example, while channels in Lwill have aChoi stateΩ that is not entangled across the partition of party 1 and
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party 2ʼs respectiveHilbert spaces, the converse is not true. That is, there are channels in C (but not in Q)whose
Choi state is also not entangled across this partition [22]. Furthermore, decidingmembership in L (even up to
some error) is NP-hard, although it is possible tofind conditions to test whether a channel is in the set L [51].

For case of decidingmembership in Q (even up to some error), this is problem is also NP-hard [51]. In
addition to this, the set of localizable channels is not closed [34]. Gutoski has given a criterion for deciding if a
channel is in Q, which is somewhat analogous to the condition of complete positivity for channels. However, in
general, there is no knownway of deciding infinite timewhether this criterion is satisfied. Indeed, as wewill
point out, this problem is deeply related to the problemof decidingwhether certain correlations in a Bell test can
be realized by localmeasurements on a quantum state; a problemwith deep connections to open problems in
mathematics [52]. For the case of deciding if a channel belongs to the set Q̃, we leave this to future work.

Appendix B. Bell non-locality

A traditional Bell experiment (sometimes called a ‘Bell scenario’) consists ofN distant parties, each of them
having access to a share of a physical system. These parties input (in a space-like separatedmanner) classical data
into their device (labelled as xiÎ{1,K,m} for party i), and obtain outputs (labelled as aiÎ{1,K, d} for party
i) from the device. For simplicity, in a bipartite setting (i.e. forN=2), wewill use the notation of inputs being x
and y instead of x1 and x2, with outputs being a and b instead of a1 and a2.

The objects of interest in these Bell experiments are the correlations observed in the generated classical data,
i.e.the conditional probability distribution p a a x x, , , ,N N1 1¼ ¼( ∣ ). Depending on the type of device that the
parties use (i.e. classical, quantum, possibly post-quantum), different correlationsmay be feasible in the
experiment. The sets of correlations that have been ofmain interest in the literature are the following.

Definition 46.Classical correlations, also referred to as ‘locally causal’ [1], are those allowing for shared random
variablesλÎΛ, and take the form

p a a x x D a x D a x p, , , , , 12N N
N

N N1 1
1

1 1å l¼ ¼ = ¼
l

l l
ÎL

( ∣ ) ( ∣ ) ( ∣ ) ( ) ( )

where D 0, 1j Îl (·) { } is a deterministic response function given l for the jth party, and p l( ) is the distribution
over the variables l such that p 1lå =l ( ) .

Definition 47.Quantum correlations, arise if there exists aHilbert space, a state yñ Î∣ , and (complete)
projectivemeasurements a x

i
a x,i i i i

P{ }∣
( ) for each party i , such that the conditional probability distribution is given

by the Born rule:

p a a x x, , , , , 13N N a x a x
N

1 1
1

N N1 1
y y¼ ¼ = á P ¼ P ñ( ∣ ) ∣ ∣ ( )∣

( )
∣

( )

and such that i
N

a x
i

j
N

a x
j

1 1i i j j
 P =  P p

= = p p∣
( )

∣
( ( ))

( ) ( )
, for any permutation p of the parties N1, 2, ,¼{ }.

Definition 48.Given a bipartition S S N1, ...,1 2È = { }ofN parties S i i, , s1 1= ¼{ }and S i i, ,s N2 1= ¼+{ }, a
conditional probability distribution p a a x x, ..., , ...,N N1 1( ∣ ) does not permit signalling across this bipartition if

p a a x x p a a x x, ..., , ..., , ..., , ..., 14i i i i
a a

N N
, ,

1 1s s

is iN

1 1

1

å=
¼+

( ∣ ) ( ∣ ) ( )

p a a x x p a a x x, ..., , ..., , ..., , ..., , 15i i i i
a a

N N
, ,

1 1s N s N

i is

1 1

1

å=
¼

+ +( ∣ ) ( ∣ ) ( )

for all inputs x x, ..., N1( ). A distribution p a a x x, ..., , ...,N N1 1( ∣ ) belongs to the set of non-signalling
correlations if and only if it does not permit signalling across all bipartitions of the N parties.

There exist non-signalling correlations that do not have a quantum realization [17]. A relevant set of post-
quantumyet non-signalling correlations is that of the almost quantum correlations [25]. It is notable that, as
mentioned, the almost quantum correlations happen to complywith the physical information-theoretic
principles that have been proposed so far to characterize the quantum set [19].We nowpresent the definition of
the set of almost quantum correlations.

Definition 49.Almost quantum correlations, arise if there exists aHilbert space, a state yñ Î∣ , and

(complete) projectivemeasurements a x
i

a x,i i i i
P{ }∣

( ) for each party i, such that the conditional probability
distribution is given by:

p a a x x, , , , , 16N N a x a x
N

1 1
1

N N1 1
y y¼ ¼ = á P ¼ P ñ( ∣ ) ∣ ∣ ( )∣

( )
∣

( )

such that i
N

a x
i

j
N

a x
j

1 1i i j j
y y P ñ =  P ñp

= = p p
∣ ∣∣

( )
∣

( ( ))
( ) ( )

, for any permutation p of the N parties.
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AppendixC. Einstein–Podolsky–Rosen steering

In analogywith the study of non-locality, in steering scenarios there are four sets of assemblages of particular
interest [18].

Definition 50. LHS assemblages (a.k.a. unsteerable assemblages) are those that take the form:

D a x ,a a x x
j

N

j j... ...
1

N N1 1 å s s=
l

l l
=

( ∣ )∣

where l is a shared randomvariable, D a x 0, 1j j Îl ( ∣ ) { } a deterministic response function for the jth party, and

B s Îl ( ) a subnormalised quantum state prepared by Bob as a function ofλ, such that tr 1så =l l{ } .

Definition 51.Quantum assemblages arise when all N untrusted parties perform localmeasurements on a
shared (possibly entangled) quantum state that is also sharedwith Bob. That is, the elements of the assemblage
are

tr ... , 17a a x x a x a x a x B... ... A ... AN N N N N1 1 1 1 1 2 2 s r= P Ä P Ä Ä P Ä[( ) ] ( )∣ ∣ ∣ ∣

where for each jth party a a xj j j
å P =∣ forms a complete projectivemeasurement for each xj, and

... N B1   r Î Ä Ä Ä( ) is the state of the shared systembetween N parties (the jth party havingHilbert
space j , for each j N ) andBob (withHilbert space B ).

Definition 52.Given a bipartition S S N1, ...,1 2È = { }of theN untrusted parties where S i i, , s1 1= ¼{ }and
S i i, ,s N2 1= ¼+{ }, an assemblage a a x x... ...N N1 1

s{ }∣ does not permit signalling across this bipartition if its elements
satisfy

18a a x x
a a

a a x x, ..., , ...,
, ,

, ..., , ...,i is i is

is iN

N N1 1

1

1 1ås s=
¼+

( )∣ ∣

, 19a a x x
a a

a a x x, ..., , ...,
, ,

, ..., , ...,is iN is iN

i is

N N1 1

1

1 1ås s=
¼

+ +
( )∣ ∣

for all inputs x x, ..., N1( ). An assemblage a a x x, ..., , ...,N N1 1
s{ }∣ belongs to the set of non-signalling assemblages if

and only if it does not permit signalling across any bipartition of the N untrusted parties, and

B
a a

a a x x
, ,

, ..., , ...,

N

N N

1

1 1år s=
¼

∣

for all inputs x x, ..., N1( ), where B B r Î ( ) is Bobʼs reduced quantum state.

In complete analogywith the study of non-locality, we call post-quantum assemblages those assemblages that
are non-signalling yet are not quantum, and post-quantum steering is the demonstration that an assemblage is
post-quantum. Furthermore, one can now studymore specific relaxations of the set of quantum assemblages;
this not only allows us to generate post-quantum assemblages, but if an assemblage does not belong to a set that
is a relaxation of the quantum set, it is definitely not quantum.A relevant set is that of almost quantum
assemblages [18], inspired by almost quantum correlations, and defined in [18] in terms of a semi-definite
programme (see [31]).

Before presenting the definition, we give a bit of simplifying notation. Given a subset S N1 ...Í { }, we define
the strings a x a a a x x x... ... ... ...S S j k l j k l

 ( ∣ ) ≔ ( ∣ ) such that j, k, lÎS, i.e. strings of outputs given inputs for parties
in the subset S. The string of allN parties is denoted a x

 ( ∣ ). To refer to particular inputs and outputs in the string
a xS S
 ( ∣ ), if jÎS, then a x a x a a,S S j j j S j j[( ∣ )] ≔ ( ∣ ) [ ] ≔ , and x xS j j[ ] ≔ .We then take the set of such strings, or
words, to beW a xS S S

 ≔ {( ∣ )} (which also includes the empty stringÆ for when S is the empty set). In addition to
this notationwe also define twowords a xS S

 ( ∣ ) and a xS S¢ ¢¢ ¢
 ( ∣ ), to be orthogonal, denoted as a x a xS S S S^ ¢ ¢¢ ¢

   ( ∣ ) ( ∣ ) if there
is a j S SÎ Ç ¢ such that x xS j S j= ¢¢[ ] [ ] but a aS j S j¹ ¢¢[ ] [ ] .We can nowpresent the definition of almost quantum
assemblages [18].

Definition 53.An assemblage a a x x... ...N N1 1
s{ }∣ is an almost quantumassemblage if for the set of words

W a x S N: 1 ...S S Í
 ≔ {( ∣ ) { }}with W∣ ∣ elements, there exists amatrixΓ of dimension W W´∣ ∣ ∣ ∣, whose

elements are d dB B´ matrices a x a x,S S S S
G ¢ ¢¢ ¢
   ( ∣ ) ( ∣ ) indexed bywords a xS S

 ( ∣ ) and a xS S¢ ¢¢ ¢
 ( ∣ ), such that

(i) 0G ,

(ii) a x a x0 ifa x a x S S S S,S S S S
G = ^ ¢ ¢¢ ¢ ¢ ¢¢ ¢

       ( ∣ ) ( ∣ )( ∣ ) ( ∣ ) ,

(iii) R, sG =Æ Æ ,
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(iv) S,a x a x, S S S S
sG = "Æ

   ( ∣ ) ( ∣ ) ,

(v) a a x x a a x x a x a a x x a a x x a x, , ,T S T S T S T S S S T S T S T S T S S S
G = G = G¢ ¢   ¢ ¢   ¢ ¢  ¢ ¢ ¢ ¢ ¢ ¢
                   ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) ( ∣ ) for all subsets S S, ¢, and T such that T SÇ and

T SÇ ¢ are both the empty set.

While this last definition is somewhat technical, section 3.1 presents an equivalent physical definition of the
almost quantum assemblages.

AppendixD. Proofs of the statements in section 1 and appendixA

In this sectionwe provide the proofs of the theorems and propositions of section 1 and appendix A.

D.1.Unitary representation ofmultipartite causalmaps
In this sectionwe characterizemultipartite causal channels (see figureD1). Consider anN-partitemap that acts
on ,k

N k
in 1 in = Ä = , and denote byAk theN input systems (a.k.a. parties). Themain theorem thatwewill prove

is the following.

Theorem54 (Unitary representation formultipartite semicausalmaps). Let N1 ...L be aCPmap, with
A A A...N 2 1   . Then, there exist unitary operatorsU :A E

k E k E
in int out intk k k 1

   Ä  Ä
+
for

k N U2 1, :A E
E E

in
1

in out
1

int1 1
     - Ä  Ä , andU :A E

N E N E
in int out outN N

   Ä  Ä , with E
intk


being the kthHilbert space of the systemE between unitariesUA Ek 1-( ) andUA Ek

acting on the system plus an ancilla E
such that

U Utr 0 0 ,N E E1 ... r rL = Ä ñá[ ] { ( ∣ ∣ ) }†

whereU U U...A E A EN 1
= .

For bipartitemaps this reduces to the result by [47]. To prove themultipartite statement, we need the
following lemma:

Lemma55.Unitary representation for unitary semicausal maps [47]. Let ABCL be a unitary tripartite CPTPmap. If
C A themap can be decomposed as

U U ,ABC ABC ABCr rL =[ ] †

withU U UBC AB= , whereUBC andUAB are unitaries.

Nowwe can present the proof of themain theoremof the section.

Proof.Consider anN-partitemap N1 ...L where A A A...N N 1 1  - . By theorem39, this channel can be
decomposed as:

U Utr 0 0 ,N E E1 ... r rL = Ä ñá[ ] { ( ∣ ∣ ) }†

withU U UA E A A E...N N 1 1
= - .

Now, the situation is the following: we have N 1- input systems plus an ancillaE interacting via the unitary
UA A E...N 1 1- , and afterwards a unitary transformationUA EN

is applied to the ancilla E and the last systemAN. The

FigureD1.Multipartite semicausal channel, with A A A...N 2 1   .
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first part of this protocol, by lemma 55, can be decomposed as a unitary between A A... N1 2- andE, followed by a
unitary between AN 1- andE, i.e.U U UA A E A E A A E... ...N N N1 1 1 2 1

=- - - . By applying this way lemma 55 recursively,
one getsU U U U...A A E A E A E A E...N N N1 1 1 2 1

=- - - . It follows that the channel N1 ...L has a unitary decompositionwith
U U U U...A E A E A EN N 1 1

= - . ,

Amultipartitemap is then causal if it is semicausal for all possible orderings of the parties.

Appendix E. Assemblages, correlations, distributedmeasurements, and teleportages, and
the channels that define them

E.1. Proofs for correlations and assemblages
In this subsectionwe gives proofs of propositions 10, 11–13. Essentially the same proofs apply for the
propositions 3, 4, 5, since one can take BobʼsHilbert space to be empty in a steering scenario, and for N 2 , we
recover a Bell scenario.

Proposition 10.An assemblage is a LHS assemblage if and only if there exists a local channel :N B1 ... ,
LL

m
N

B d
N

Bin out
     Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,

LL .

Proof. First we prove that if an assemblage has a LHSmodel, then it is channel-defined by a local channel. The
first thing to note is that any LHS assemblage can be reproduced by theN untrusted partiesmaking local
measurements Ma x jj j

 Î{ ( )}∣ (for the jth party) on a separable state j
N

j B1 r Î Ä=⨂ , for j being the jth
partyʼs localHilbert space.While some entangled states will only produce a LHSmodel assemblage, thismeans
that there exists another separable state that can produce the same LHSmodel assemblage.Without loss of
generality we canmodel thismeasurement as a projectivemeasurement. This choice of localmeasurement
Ma xj j

{ }∣ can then be simulated by preparing the input choice as the state xj mñ Î∣ where x m1, ,j Î ¼{ }. The
outcome of themeasurement will be translated into a register withHilbert space d , with outcomes aj mñ Î∣
described by elements of an orthonormal basis; the register is initially prepared in the state 0 dñ Î∣ . Therefore,
each jth party is associatedwith theHilbert space j d m  Ä Ä , and to this systemwe apply the unitary

U M a x x0 . 20j
x a

a x j j j
,j j

j jå= Ä ñá Ä ñá∣ ∣ ∣ ∣ ( )∣

After applying this unitary, the systems in the register associatedwith j m Ä are traced out for each jth
system, leaving the system in d , which is thenmeasured in the orthonormal basis aj mñ Î∣ . Therefore, the
assemblage can be channel-defined by this whole local channel including the unitaries as the separable state ρ.

In the other direction, if given a local channel then it channel-defines a LHS assemblage. This should be clear
since the local unitaries followed by ameasurement acting on a share of a separable state, will only produce local
measurements on a separable state, and therefore the assemblage has a LHSmodel. ,

Proposition 11.An assemblage a a x x... ...N N1 1
s{ }∣ is non-signalling if and only if there exists a causal channel

:N B m
N

B d
N

B1 ... , in out

C      L Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,
CL .

Proof. First we prove that an assemblage that is channel-defined by a causal channel is a non-signalling
assemblage. This follows immediately from the definition of causal channel. Given this channel-defined
assemblage a a x x... ...N N1 1

s{ }∣ , whenwe take a sumover outcomes aj, then this is equivalent to tracing out the output
systemof a causal channel. This thus results in a new assemblage that is channel-defined by a causal channel
(with fewer output systems), and thus the initial assemblage is a non-signalling assemblage. It is also
straightforward to see, given the definition of a causal channel, that when tracing out theN untrusted parties, we
obtain a reduced quantum state for Bob that is independent of the inputs x x, , N1 ¼( ).

We nowproceed to the converse statement that given a non-signalling assemblage, then there exists a causal
channel such that the assemblage is channel-defined by it. First, if wefix orthonormal bases for the input and
outputHilbert spaces as xjñ{∣ }and ajñ{∣ }, respectively, thenwe construct the channel withKraus decomposition

K Ktr , 21
a a x x

B
a x

a x a x a x
, , , , ,

, ,

N N1 1

å sG = Ä
¼ ¼

(·) ( {·} ) ( )
≔( ) ≔( )

∣
†

such that Ba x  s Î ( )∣ , and

K a x a x a x... . 22N N Ba x, 1 1 2 2 = ñá Ä ñá Ä Ä ñá Ä∣ ∣ ∣ ∣ ∣ ∣ ( )

It can be readily verified that this is a channel, andwhenwe prepare x x x x... ... 0 0N N B1 1ñá Ä ñá∣ ∣ ∣ ∣ as input, act on
the inputwithΓ, and thenmeasure in the basis a a... N1 ñ{∣ }on theNuntrusted parties, we obtain an assemblage.
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It remains to show that channelΓ is itself a causal channel given a non-signalling assemblage. This can be shown
inductivelyfirst tracing out the output systemof party 1 as follows:

a K K atr tr 23
a a a x x

B
a x

a x a x a x1 1
, , , , ,

, , 1

N N1 1 1

å å sG = á Ä ñ
¼ ¼

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟{ (·)} ∣ ( {·} ) ∣ ( )

≔( ) ≔( )
∣

†

x K K xtr 24
x a a x x

B
a x

a x a x a x1
, , , , ,

, , 1

N N1 2 2

å å s= á Ä ñ
¼ ¼

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∣ ( {·} ) ∣ ( )

≔( ) ≔( )
∣

†

tr , 251=G¢( {·}) ( )
where : m

N
B d

N
B

1 1     G¢ Ä  Ä- -( ) ( ) is another channel corresponding to parties 2 toN. The second
line above results from the fact that the assemblages are non-signalling, and new channel G¢ is written as

L Ltr , 26
a a x x

B
a x

a x a x a x
, , , , ,

, ,

N N2 2

å sG¢ = Ä
¼ ¼

(·) ( {·} ) ( )
≔( ) ≔( )

∣
†

for

L a x a x a x... . 27N N Ba x, 2 2 3 3 = ñá Ä ñá Ä Ä ñá Ä∣ ∣ ∣ ∣ ∣ ∣ ( )

The same argumentworks for any party j, and then given the new channel G¢, one can trace out one ormore of
the remaining parties’ outputs to get another channel, and so on. In this way, the channelΓ channel-defines the
non-signalling assemblage, and is causal, thus concluding the proof. ,

Proposition 13.An assemblage a a x x... ...N N1 1
s{ }∣ is quantum if and only if there exists a localizable channel

:N B m
N

B d
N

B1 ... , in out

Q      L Ä  ÄÄ Ä( ) ( ) such that the assemblage is channel-defined by N B1 ... ,
QL .

Proof.The proof of this is exactly the same as the proof for proposition 23, except the separable state in the proof
is replacedwith an entangled state. ,

Asmentioned above, the proofs above easily generalize to the study of correlations. Indeed, one can run
through the above arguments and just have Bobʼs systembe the empty system, thus recovering the Bell scenario
forN�2.

E.2. Proofs for distributedmeasurements and teleportages
In this subsectionwe gives proofs of propositions 32–34. Essentially the same proofs apply for the propositions
23–25 since, as with the connection between steering andBell scenarios, one can take BobʼsHilbert space to be
empty in a non-classical teleportation scenario, and forN�2we recover a Buscemi non-locality scenario.

Proposition 32.A teleportage is local if and only if there exists a local channel
:N j

j
j j B j

n
d

N
B1 ... in 1

L       L = Ä  Ä=
Ä(⨂ ⨂ ) (⨂ ) such that the teleportage is channel-defined

by N1 ...
LL .

Proof.The proof that a teleportage is channel-defined by a local channel is a local teleportage is immediate from
the definitions, i.e. a local channel sequentially combinedwith a localmeasurement is again a localmeasurement.
For the converse statement that given a local teleportage, there exists a local channel that channel-defines the
teleportage, the channel is constructed by having local unitaries that ‘copy’ the outcome of a localmeasurement
to a local output register (withHilbert space d ) into an orthonormal basis of this register, which is then
measured in this basis. ,

Proposition 33.A teleportage is quantum if and only if there exists a localizable channel
:N j

j
j j B j

n
d

N
B1 ... in 1

Q       L = Ä  Ä=
Ä(⨂ ⨂ ) (⨂ ) such that the teleportage is channel-defined

by N1 ...
QL .

Proof.The proof of this follows the proof of proposition 44, except nowwith an entangled state instead of a
separable state. ,

Proposition 34.A teleportage is non-signalling if and only if there exists a causal channel
:N j

j
j j B j

n
d

N
B1 ... in 1

C       L = Ä  Ä=
Ä(⨂ ⨂ ) (⨂ ) such that the teleportage is channel-defined

by N1 ...
CL .
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Proof.Given a teleportage that is channel-defined by a causal channel, the teleportage is non-signalling
essentially by definition: taking a sumover outcomes aj is equivalent to tracing out the jth output systemof the
channel, resulting in a new teleportage for all systems not including j. For the other direction, of given a non-
signalling teleportage, we can construct a causal channel that channel-defines the teleportage. First, given the
elementsTa a, , N1 ¼ of the teleportage, since it is forms an instrument in general, we can straightforwardly
construct a channel from an instrument: we introduce output registers d for each jth party and thus define a
channel : j j B d

N
B     G Ä  ÄÄ(⨂ ) ( ) in the followingway:

Ta a tr , 28
a a

B
a

a
, , N1

åG = ñá Ä
¼

(·) ∣ ∣ ( {·}) ( )
≔( )

with a d
Nñ Î Ä∣ . Nowwithmeasurements on the register of the outputs d

NÄ , the teleportage is then channel-
defined byΓ. It remains to show thatΓ is causal. This follows from the definition of non-signalling
teleportages. ,

E.3. Constructing channels from correlations and assemblages
Let us beginwith proposition 8ʼs statement and proof.

Proposition 8.Given N
c
1 ...L (·) from p a a x x... ...N N1 1( ∣ ), for all measurements Maj

¢, and all states xj
r ¢, the

correlations

p a a a x x x M, , , , , , tr 29N N
j

N

a N
c

j

N

x1 2 1 2
1

1 ... aux
1

j j
 r¢ ¢ ¼ ¢ ¢ ¢ ¼ ¢ = L Ä

=
¢

=
¢

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

( ∣ ) ⨂ ⨂ ( )

are local if the correlations p a a x x... ...N N1 1( ∣ ) are local.

Proof.Given a distribution p a a x x... ...N N1 1¢ ¢ ¢ ¢( ∣ ) of the form in equation (5)with N1 ...L (·) being the channel in (4),
wefirst observe that this probability is invariant if for each state x

j j
in auxj

  r Î Ä¢ ( ), we replace it with xj
r¢ =¢

x x x xx
j

j j x
j

j jaux auxj j
 rå Ä ñá Ä ñá¢( ∣ ∣) ( ∣ ∣), where j

aux is the identity acting on j
aux . Therefore, for whatever state

xj
r ¢, the probabilities p a a x x... ...N N1 1¢ ¢ ¢ ¢( ∣ ) are unchanged if we replace it with a state x xx x x x j j,

j j j j
r s¢ = å Ä ñá¢ ¢ ∣ ∣,

where x x
j

, auxj j
 s Î¢ ( ) and is equal to x xtr x

j
j jin auxj

r Ä ñá¢( ∣ ∣). Furthermore, we apply a similar argument to the

generalmeasurement Maj
¢, such that the distribution is conserved by replacing it with

M Q a a , 30a
a

a a j j,j

j

j jå¢ = Ä ñá¢ ¢ ∣ ∣ ( )

such that Q a Mtra a
j

j a, in auxj j j
= Ä á¢ ¢(( ∣) ), which lives in j

aux ( ). Taking aj
r¢ ¢ and Ma jj

¢¢{ } as our state and

measurements, we obtain the correlations

p a a a x x x p a a x x Q, , , , , , ... ... tr 31N N
a a x x

N N
j

N

a a x x1 2 1 2
... ...

1 1
1

, ,

N N

j j j j

1 1

å å s¢ ¢ ¼ ¢ ¢ ¢ ¼ ¢ =
=

¢ ¢
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭( ∣ ) ( ∣ ) ⨂ ( )

p a a x x q a a x x... ... , , . 32
a a x x

N N
j

N

j j j j
... ...

1 1
1N N1 1

å å = ¢
=

¢( ∣ ) ( ∣ ) ( )

Hence, the correlations p a a a x x x, , , , , ,N N1 2 1 2¢ ¢ ¼ ¢ ¢ ¢ ¼ ¢( ∣ ) can be seen as the correlations p a a x x... ...N N1 1( ∣ ) acted
on by some local stochastic processing in the formof a conditional probability q a a x x, ,j j j j¢¢( ∣ ). Since local
stochastic processing cannot turn local correlations into non-local ones, the distribution
p a a a x x x, , , , , ,N N1 2 1 2¢ ¢ ¼ ¢ ¢ ¢ ¼ ¢{ ( ∣ )}will be local provided that p a a x x... ...N N1 1{ ( ∣ )} is. ,

Wenowpresent proposition 17, and its proof.

Proposition 17.Given N B
c
1 ... ,S (·) from assemblage elements a a x x... ...N N1 1

s ∣ , this channel is local-limited if for all
measurements Pa x BB B

 Î ( )∣ indexed by the choice xB and outcomes aB, the correlations
p a a a x x x P, , , , , , trN B N B a x a a x x1 1 ... ...B B N N1 1

s¼ ¼( ∣ ) ≔ { }∣ ∣ are local.

Proof. Firstly, since the channel N B
c
1 ... ,S traces out the part of xB

r ¢ that is input into the channel, without loss of
generality, we can replace xB

r ¢ with x0 B
s sÄ ¢ , where B0 in

 s Î ( ) is some fixed state, and x BB aux
 s Î¢ ( ).

Therefore, the preparation of xB
s ¢ following by themeasurement MaB

¢ can be incorporated into a single
measurement Pa x BB B out

 Î¢ ¢{ ( )}∣ , such that Pa a x BB B B out
å =¢ ¢ ¢∣ . This then simplifies the correlations to be

32

New J. Phys. 20 (2018) 053048 M JHoban andAB Sainz



p a a a x x x M P, , , , , , tr . 33N B N B
j

N

a a x N B
c

j

N

x1 1
1

1 ... , aux
1

0j B B j
 r r¢ ¼ ¢ ¢ ¢ ¼ ¢ ¢ = Ä S Ä Ä

=
¢ ¢ ¢

=
¢

⎪
⎪

⎪
⎪

⎧
⎨
⎩

⎛
⎝
⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞
⎠
⎟⎟

⎫
⎬
⎭

( ∣ ) ⨂ ⨂ ( )∣

By expanding out this expression and using identical reasoning to the proof of proposition 8, we arrive at

p a a a x x x P q a a x x, , , , , , tr , , , 34N B N B
a a x x

a x a a x x
j

N

j j j j1 1
... ...

... ...
1N N

B B N N

1 1

1 1å å s¢ ¼ ¢ ¢ ¢ ¼ ¢ ¢ = ¢¢ ¢
=

¢( ∣ ) { } ( ∣ ) ( )∣ ∣

where q a a x x, ,j j j j¢¢( ∣ ) is a local conditional probability. Therefore, if Ptr a x a a x x... ...B B N N1 1
s¢ ¢{ }∣ ∣ is local for all

measurements Pa xB B¢ ¢∣ , the correlations are local, and the channel is local-limited. ,

Appendix F. Unitary representation of non-signalling assemblages and teleportages

In this sectionwe discuss the unitary representations of non-signalling assemblages and teleportages as outlined
in theorems 12 and 35. As outlined in themain text, theGHJW theorem [53, 54] can also be seen as a corollary of
theorem12, and our generalization of theGHJW theorem is a corollary of theorem 35.Wewill only present the
proof of theorem 35 since theorem12 is a special case.

Theorem35Unitary representation of non-signalling teleportages. Let Ta a... N1
{ }be a non-signalling teleportage.

Then, the teleportage is channel-defined by a channel :N B j
j

B d
N

B1 ... , in
C      L Ä  ÄÄ(⨂ ) ( ) if and only if

there exist

• auxiliary systems E and E¢with input and outputHilbert spaces, E
in and E

out for E, with E
Bin =¢ and

E
Bout =¢ for E¢, that is the outputHilbert space of E¢ andB coincide;

• quantum state R ;E E
in in ñ Î Ä ¢∣

• unitary operator V : j
j E

d
N E

in in out   Ä  ÄÄ⨂ ,

which produce a unitary representation of the channel :N B j
j

B d
N

B1 ... , in
C      L Ä  ÄÄ(⨂ ) ( ) via

V R R Vtr tr .N B E B E E1 ... , ,out in
CL = Ä ñá ¢(·) { ( (·) ∣ ∣ ) }†

Furthermore, the unitary V can be decomposed into a sequence of unitariesU :k E m
E

d
E

, 1 2   Ä  Ä for
appropriately chosenHilbert spaces E

1 and E
2 , where for any given permutationπ of the se N1, ,¼{ }, we have that

V U U U... ,E E N E1 , 2 , ,= p
p

p
p

p
p

( ) ( ) ( )

whereUk E,
p is not necessarily the same asUk E,

p¢ for two different permutationsπ and p¢.

Proof. First of all, we can treat allNuntrusted parties as a single party called ‘Alice’ (orA for short) that produces
anN-length string a aa , , N1 ¼≔ ( ). This treatment ofN untrusted parties, and 1 trusted party is summarised in
figureD2, where theN parties are treated as a single Alice. This allows us to then consider a bipartite non-
classical teleportation scenario and a causalmap ABL . First, write themap in its unitary representationwith
A B , thisfirst equivalence then gives part of the statement of the theoremwhereV is the unitaryVAE, and the
state on B is the state of the right-hand systemof Rñ∣ . The second equivalence shows that thewhole channel can
be seen as a localizable channel across the bipartition betweenAlice and Bob.

In order to prove the remainder of the theorem, it remains to decomposeV into a sequence of unitaries. To
do this, we use the fact that among theN parties (thatmake upAlice) there cannot be any signalling. Therefore,
using theorem54we arrive at the full statement of the theorem. ,

AppendixG. Almost quantumassemblages

Herewe provide the proofs of lemma 16 and theorem 15, respectively.

Lemma.An assemblage a a x x... ...N N1 1
s{ }∣ is almost quantum if and only if there exists aHilbert space B  @ Ä ,

quantum state yñ Î∣ , and projectivemeasurements a xj j
 P Î{ ( )}∣ for each jth party where a a xj j j

å P =∣ and

for all permutationsπ of N1, , , j
N

a x j
N

a x1 1j j j j
y y¼  P ñ =  P ñ= =p p{ } ∣ ∣∣ ∣( ) ( ) , such that

tr . 35a a x x
j

N

a x B... ...
1

N N j j1 1  s y y= P Ä ñá
=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∣ ∣ ( )∣ ∣
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Proof.Consider a steering scenariowhereN parties steer one, by performingmmeasurements of d outcomes
each. LetD be the dimension of theHilbert space of the characterized party, denoted by B .

Wewillfirst prove the ‘if’ direction.
Take an assemblage a xs  { }∣ , generated by the uncharacterized parties performingmeasurements a x

k
k k

P ∣
( ) on

the state ρ, whichwithout loss of generality we can consider to be a pure state r y y= ñá∣ ∣. LetW be the set of
words as in definition 53.Nowdefine thematrixΓ, with size W W´∣ ∣ ∣ ∣andwhose elements areD×D
matrices, as follows:

tr ,

tr ,

tr ,

.

a x a x N
i S

a x
j S

a x

a x N
j size x

a x

a x N
i size x

a x

R

, 1, ...,
1: 1:

, 1, ...,
1:

, 1, ...,
1:

,

S S S S i i j j

S S j j

S S i i

 





r

r

r

s

G P P

G P

G P

G

¢ ¢
= = ¢

¢ ¢

Æ ¢ ¢
= ¢

¢ ¢

Æ
=

Æ Æ

¢ ¢

¢ ¢

   

 

 

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

≔

≔

≔

≔

( ∣ ) ( ∣ )
∣ ∣

∣
†

∣ ∣
∣

( ∣ )
( )

∣

( ∣ )
( )

∣
†

By definition, thisΓ satisfies (iii) and (iv) of definition 53. Since themeasurements a xk k
P ∣ are projective,Γ

also satisfies condition (ii). The commutation relation of the projectivemeasurements a xk k
P ∣ on the state ρ

further imply (v).
We still need to show that 0G .We hence need to show thatΓ as an element of M MW D( )∣ ∣ (i.e. of the set of

W W´∣ ∣ ∣ ∣matrices whose entries areD×Dmatrices) is positive semi-definite, which is equivalent to showing
thatΓ as an element of M W D∣ ∣ (i.e. of the set of W D W D´∣ ∣ ∣ ∣ matrices whose entries are complex numbers) is

FigureD2. This is an explanation of the essence of theorem 35, whereNuntrusted parties are treated as a single party called ‘Alice’.
This shows us that with respect to these collective parties, the unitary representation of the channel can be simplified to the statement
of theorem 35.
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positive semi-definite [55].Wewill hence show that M W DG Î ∣ ∣ is a Gramianmatrix (i.e.it can bewritten as
V VG = † for somematrixV ), and since all Gramianmatrices are positive semi-definite the claim follows.

First observe that entries ofΓ are of the form

j l ,a x a x a x a x, ,S S j S S l S S S S
G = á G ñ¢ ¢ ¢ ¢¢ ¢ ¢ ¢
       ∣ ∣[( ∣ )] [( ∣ )] ( ∣ ) ( ∣ )

where a x a x,S S j S S l¢ ¢¢ ¢
   [( ∣ )] [( ∣ )] denotes the j l,( ) component of thematrix a x a x,S S S S

G ¢ ¢¢ ¢
   ( ∣ ) ( ∣ ), with

u v W: ,a x a x u v, ,S S S S
G Î G Î¢ ¢¢ ¢
    { }( ∣ ) ( ∣ ) , and j l,ñ ñ∣ ∣ elements of an orthonormal basis of B .
By cyclicity of the partial trace we can alsowrite

F Gtra x a x N a x a x, 1 ...S S S S S S S S
y yG = ñá¢ ¢ ¢ ¢¢ ¢ ¢ ¢

       ( ∣ ∣ )( ∣ ) ( ∣ ) ( ∣ ) ( ∣ )
†

for F G v S, :a x a x A vS S S S
 ÈÎ P Î¢ ¢¢ ¢

    { } { }( ∣ ) ( ∣ ) , wherewe have identified a x i S a x1:S S i i
P  P=

  ≔( ∣ ) ∣ ∣ ∣ .
By defining A as theHilbert space of the uncharacterized parties, note that

j l j y F G y l

G y l j y F

G y l y j y F y

y y

u v ,

a x a x
y

a x a x

y
a x a x

y
a x

y
a x

y
y a x

y
y a x

a x a x

,

, ,

S S S S

A

S S S S

A

S S S S

A

S S

A

S S

S S l S S j

S S l S S j

*





 

å

å

å å

å å

y y

y y

y y

a a

á G ñ= á á ñá ñ ñ

= á ñ ñá á ñ

= á ¢ñ ñá ¢ á á ñ ñ

= á ¢ ñ

= á ñ

¢ ¢
ñÎ

¢ ¢

ñÎ
¢ ¢

¢ñÎ ñÎ
¢ ¢

¢
¢ ¢ ¢

¢ ¢

¢ ¢ ¢ ¢

¢ ¢

¢ ¢

¢ ¢

¢ ¢

       

   

   

   

   

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣

∣ ∣

( ∣ ) ( ∣ )
∣

( ∣ ) ( ∣ )
†

∣
( ∣ )
†

( ∣ )

∣
( ∣ )
†

∣
( ∣ )

[( ∣ )] [( ∣ )]

[( ∣ )] [( ∣ )]

where yñ{∣ } is an orthonormal basis in A such that y y y
ydá ¢ ñ = ¢∣ and j y F a xy a x S S, S S j

a y= á á ¢ ¢ ñ¢ ¢ ¢ ¢¢ ¢

   ∣ ∣ ( ∣ )∣[( ∣ )] is some
scalar. Nowwe can further define the set of vectors

v a x W j D v y: , 1 , ,a x S S a x
y

y a x,S S j S S j S S jå añ ¢ ¢ Î = ¼ ñ = ñ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢¢ ¢ ¢ ¢ ¢ ¢

      
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

∣ ( ∣ ) ∣ ∣[( ∣ )] [( ∣ )] [( ∣ )]

and define thematrixV as that whose columns are each one of these vectors.We see then that V VG = † , i.e.the
elements ofΓ are all the inner product of vectors associatedwith a row and column. Therefore,Γ is Gramian.

This proves thefirst part of the claim: an assemblage that arises fromperforming those types of
measurements on a quantum state are almost quantumassemblages.

For the converse, take an almost quantumassemblage a xs  { }∣ . Let M MW DG Î ( )∣ ∣ be itsmomentmatrix
fromdefinition 53. Let i i W:ñ Î{∣ }be theGramvectors of thatmatrix, i.e. i ji j,G = á ñ∣ . Note that these vectors
have as entries elements ofMD (i.e.D×Dmatrices on complex numbers). For each uncharacterized party k,
define the subspaceV a a x x a x Sspan :a x

k
k k kk k

¢ ¢ ñ ¢ ¢ Î
   ≔ {∣( ∣ ) ( ∣ ) }∣

( ) ¯ , where S Wk Ì¯ is the subset of words that do
not involve party k. Note for clarity we have dropped the index indicating the subset of the parties. Nowdefine:

E V x m a dproj , 1: , 1: 1, 36a x
k

a x
k

k k k k
" = " = -≔ ( ) ( )∣

( )
∣

( )

E E . 37d x
k

a

d

a x
k

1

1

k k k
 å-

=

-

≔ ( )∣
( )

∣
( )

By definition, Ea x
k
k k∣

( ) are projection operators. Condition (ii) of definition 53 implies that E E 0a x
k

a x
k

k k k k
=¢∣

( )
∣

( ) if

a a¹ ¢. Hence, Ea x
k

ak k
{ }∣

( ) defines a complete projectivemeasurement for each xk for each party.

Nowwewill see the action of any sequence Ek
N

a x
k

1 k k
 = ∣

( ) on Æñ∣ . Let us start with just one projector:

E E a x E a x

a x

a x
k

a x
k

k k a x
k

k k

k k

k k k k k k
Æñ= ñ + Æñ - ñ

= ñ

∣ ∣( ∣ ) (∣ ∣( ∣ ) )
∣( ∣ )

∣
( )

∣
( )

∣
( )

since by definition E a x a xa x
k

k k k kk k
ñ = ñ∣( ∣ ) ∣( ∣ )∣

( ) and condition (v) implies that

a a x x a a x x a x, ,k k k k k ká ¢ ¢ Æñ = á ¢ ¢ ñ
   ( ∣ ) ( ∣ ) ( ∣ )

for all a x Sk¢ ¢ Î
 ( ∣ ) ¯.

The same reasoning can be applied to Ea x
k
∣

( ) acting on an arbitrary vñ∣ with v SkÎ ¯:

E v E a x v E v a x v

a x v 38

a x
k

a x
k

k k a x
k

k k

k k

k k k k k k
ñ = ñ + ñ - ñ

= ñ

∣ ∣( ∣ ) (∣ ∣( ∣ ) )
∣( ∣ ) ( )

∣
( )

∣
( )

∣
( )

since a x v Vk k a x
k
k k

ñ Î∣( ∣ ) ∣
( ) and condition (v) implies a x v v a x v a x v, ,k k k k k ká ñ = á ñ( ∣ ) ( ∣ ) ( ∣ ) .
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Therefore,

E Etr . 39a x
k n

a x
k

k n
a x
k

1: 1:
S S k k k k s = áÆ Æñ = ÆñáÆ

= =

 
⎧⎨⎩

⎫⎬⎭∣ ∣ ∣ ∣ ( )∣ ∣
( )

∣
( )

Thismotivates the following definition: r ÆñáÆ≔ ∣ ∣.
The next ingredient is to check that commutation relations of the projectivemeasurements Ea x

k
k k

{ }∣
( ) on the

state ρ satisfy the conditions stated in the Lemma. This follows immediately from (38).
To conclude the proof, notice that the trace in equation (39) can actually be interpreted as a partial trace on

theHilbert space of the uncharacterized parties A . This follows fromunderstanding the set M MS D( )∣ ∣ as the
tensor product algebra M MS DÄ∣ ∣ [55]. First, invoke the isomorphismbetween projection operators
E M MS DÎ ( )∣ ∣ and projection operators E DÄ with E M SÎ ∣ ∣

13 . Then, notice that an orthonormal basis fñ{∣ }
for M MS D( )∣ ∣ can be seen as Df f j jñá = ñá Ä{∣ ∣ ∣ ∣ }, where jñ{∣ } in an orthonormal basis for A . ,

Theorem.An assemblage a a x x... ...N N1 1
s{ }∣ is almost quantum if and only if there exists an almost localizable channel

:N B m
N

B d
N

B1 ... , in out

Q      L Ä  ÄÄ Ä( ) ( )˜
such that the assemblage is channel-defined by N B1 ... ,

QL ˜
.

Proof.Given an assemblage channel-defined by an almost localizable channel, it is immediate that is an almost
quantumassemblage due to lemma 29. To show that an assemblage as defined in lemma 29 can be channel-
defined by an almost localizable channel, we can use exactly the same constructive argument as in proposition
17. That is, given projectors as in lemma 29, we can construct local unitaries that act on a register in the state yñ∣
as in the proof of proposition 17. ,
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