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Abstract

Non-locality and steering are both non-classical phenomena witnessed in nature as a result of quantum
entanglement. It is now well-established that one can study non-locality independently of the formalism of
quantum mechanics, in the so-called device-independent framework. With regards to steering, although
one cannot study it completely independently of the quantum formalism, ‘post-quantum steering’ has
been described, which is steering that cannot be reproduced by measurements on entangled states but does
not lead to superluminal signalling. In this work we present a framework based on the study of quantum
channels in which one can study steering (and non-locality) in quantum theory and beyond. In this
framework, we show that kinds of steering, whether quantum or post-quantum, are directly related to
particular families of quantum channels that have been previously introduced by Beckman et al (2001 Phys.
Rev. A 64052309). Utilizing this connection we also demonstrate new analytical examples of post-quantum
steering, give a quantum channel interpretation of almost quantum non-locality and steering, easily
recover and generalize the celebrated Gisin—Hughston—Jozsa—Wootters theorem, and initiate the study of
post-quantum Buscemi non-locality and non-classical teleportation. In this way, we see post-quantum
non-locality and steering as just two aspects of a more general phenomenon.

Entanglement is one of the most striking non-classical features of quantum mechanics. Given appropriately
chosen measurements certain, but not all, entangled states can exhibit a violation of local realism (local
causality), called ‘non-locality’ [1]. Apart from its fundamental interest, non-locality has also turned into a key
resource for certain information-theoretic tasks, such as key distribution [2] or certified quantum randomness
generation [3], and has been witnessed experimentally in a loophole-free manner [4—6].

The non-classical implications of entanglement also manifest as a phenomenon called ‘Einstein—Podolsky—
Rosen steering’, henceforth referred to as solely ‘steering’. There, one party, Alice, by performing appropriately
chosen measurements on one half of an entangled state, remotely ‘steers’ the states held by a distant party, Bob,
in a way which has no local explanation [7]. A modern approach to steering describes it as a way to certify
entanglement in cryptographic situations where some devices in the protocol are not characterized [8]. Steering
hence allows for a ‘one-sided device-independent’ implementation of several information-theoretic tasks, such
as quantum key distribution [9], randomness certification [10, 11], measurement incompatibility certification
[12—-14], and self-testing of quantum states [15, 16].

Even though these phenomena arise naturally within quantum mechanics, they are not restricted to it.
Non-local correlations and steering beyond what quantum theory allows are conceivable while still complying
with natural physical assumptions, such as relativistic causality [17, 18]. By ‘post-quantum’ we mean non-
locality or steering that cannot be realized with local measurements made on an entangled quantum state”.
Post-quantum non-locality has been vastly explored, especially its implications in information-theoretic tasks

4 . . .

We do not mean post-quantum in the sense of post-quantum cryptography, where one designs cryptographic protocols that cannot be
efficiently broken by quantum computers. Post-quantum in our sense could refer to non-locality and steering in generalized probabilistic
theories.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft


https://doi.org/10.1088/1367-2630/aabea8
mailto:matthew.hoban@cs.ox.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabea8&domain=pdf&date_stamp=2018-05-18
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/aabea8&domain=pdf&date_stamp=2018-05-18
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

New J. Phys. 20 (2018) 053048 M ] Hoban and A B Sainz

[19]. Little is known, however, about post-quantum steering, mainly due to the lack of a clear formalism for
studying this phenomenon beyond quantum theory.

It may be unclear why one would be interested in steering in theories beyond quantum theory, sinceitisa
phenomenon that is defined within the quantum formalism. Indeed, if we are testing quantum theory against all
possible, sensible classical descriptions of reality, alocal hidden variable is the most general starting point. One
may however ask in which sensible ways nature may differ from a world described by quantum theory. Here we
argue that it makes sense to consider the picture where locally in our own laboratory everything is described
according to quantum theory, however, the global process governing the interactions between laboratories is
not, analogous to the study of indefinite causal order in [20]. The existence of post-quantum steering
demonstrates that the global theory can deviate from quantum theory in intriguing ways, even if our own
laboratory is restricted to quantum theory. In fact, because of this, we would argue that post-quantum steering is
of more foundational interest than local hidden state (LHS) models. We also note that in quantum information,
bounding the set of quantum assemblages from the post-quantum set has also been studied in the guise of
extended non-local games by Johnston et al [21].

To rectify the lack of a clear formalism for post-quantum steering, we present a framework to study both non-
locality and steering complying with the no-signalling principle. Our formalism is based on quantum channels, i.e.
completely-positive trace-preserving maps on density matrices. More specifically, we consider channels on
multipartite systems that satisfy a form of the no-signalling principle, introduced first by Beckman et al [22] in
bipartite setups. Indeed, they defined two families of channels. On the one hand, ‘causal channels’, that do not
permit superluminal quantum (and classical) communication between two parties. On the other, ‘localizable
channels’, that can be described by parties sharing a quantum (entangled) state and performing local operations with
respect to each party. Furthermore, the set of localizable channels is a strict subset of the causal channels [22].

In this work, a given conditional probability distribution (correlations) in a non-locality scenario or a set of
conditional quantum states (assemblage) in a steering scenario, is associated to a causal channel, and vice versa. We
identify the nature of the correlations, or assemblages, with the properties of the channels that may give rise to them.
In particular, if correlations or assemblages are post-quantum then they can be associated with a causal, but not
localizable, channel. Utilizing this connection we derive results in both the study of quantum channels and steering.

We also show that our framework is not limited to the study of non-locality and steering. We show that non-
locality studied from the perspective of channels can be expanded to other kinds of non-locality studied in the
literature. In particular, Buscemi introduced the scenario of the semi-quantum non-local games [23], in which
we can demonstrate a form of non-locality, denoted as ‘Buscemi non-locality’. Buscemi showed that an
entangled state can be used as a resource for demonstrating this form of non-locality. Here, we expand upon this
original work to introduce post-quantum Buscemi non-locality, and show how it can be understood through
quantum channels. Finally, we consider the analogue of steering for Buscemi non-locality, which is the study of
non-classical teleportation, as initiated by Cavalcanti et al [24].

Summary of results

This manuscript presents a variety of results which, to guide its more comprehensive reading, we now briefly
outline.

First, in the study of quantum channels, we define a novel class of quantum channels called the ‘almost
localizable channels’ in definition 1, which are a generalization of the set of localizable channels in [22]. We show
in theorem 15 that the set of almost quantum assemblages (as defined in [18]) result from almost localizable
channels, and almost localizable channels only give rise to almost quantum correlations’ [25] or assemblages. This
is the first time that almost quantum assemblages are given a physical definition, rather than just being defined in
terms of semi-definite programmes.

Second, our framework provides a connection between the study of quantum channels and post-quantum
steering, which is itself a novel observation. Starting from this connection, in section 3.3 we give new analytical
examples of post-quantum steering constructed from non-localizable, yet causal, channels. In addition,
section 3.2 shows that a consequence of post-quantum steering is the existence of non-localizable channels that
cannot be used to violate a Bell inequality through anylocal operations whatsoever. We moreover give a
characterization of non-signalling assemblages in terms of quantum states and unitary operations, which results
in a diagramatic proof of the Gisin—Hughston—Jozsa—Wootters (GHJW) theorem in corollary 14. We show in
section 4.4 that this proof of the GHJW theorem can be generalized to the study of non-classical teleportation,

Almost quantum correlations are defined as a particular relaxation of the set of quantum correlations in Bell scenarios. That is, the set of
almost quantum correlations strictly contains those that are achievable by quantum mechanics. Almost quantum assemblages are defines as
aparticular relaxation of the set of quantum assemblages in steering scenarios. We revise the rigorous definition of these concepts in the next
sections.
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and we show in corollary 36 that post-quantum non-classical teleportation can only be witnessed if there are
multiple black boxes in your network.

Finally, we are the first to highlight the possibilities of studying forms of post-quantum Buscemi non-locality
and post-quantum non-classical teleportation. Our framework further outlines how to approach these through
the study of quantum channels.

The paper is structured as follows. In section 1 we introduce a new family of quantum channels of utmost
relevance in this work, while we review relevant known classes of channels in appendix A. In sections 2 and 3 we
(1) discuss the interpretation of Bell and steering scenarios in terms of quantum channels, and (iii) present some
results that follow when looking at these non-classical phenomena from the scope of quantum channels. The
traditional scope to these phenomena is briefly reviewed in appendices B and C. Finally, in section 4 we discuss
how our framework further includes the above mentioned Buscemi non-locality [23] and non-classical
teleportation [24]. For clarity in the presentation, some of the proofs of results in the main body of the paper are
presented in the appendix.

A quick note on notation. A Hilbert space will typically be denoted by H, unless otherwise stated, and the set
of positive operators acting on H with trace at most 1 will be denoted as D(H). Furthermore, for the more
general set of linear operators acting on H, we will use the notation L(H).

1. Quantum channels

In the study of non-locality in quantum physics and beyond, a common approach is to have the fundamental
objects being a black box associated with some stochastic behaviour: for a given set of inputs for each party, an
output is generated stochastically. A stochastic process should be suitably normalized, i.e. the sum over all
outcomes for a given input is 1. The quantum analogue of such a process is a quantum channel. Recall that a
channel A is a trace-preserving, completely-positive (CPTP) map. That is, given an input quantum state
described by the density matrix p; a channel A acts on this system producing an output state with density matrix
Po = A(py). The suitable normalization condition is then that the trace of p, is 1 whenever tr{p;} = 1. A classical
stochastic process can be encoded into a channel with respect to some orthonormal basis of the respective
Hilbert space. To retrieve the probabilities in the stochastic process one only needs to prepare states in that basis
asinput, and then only measure in that basis.

Given these simple observations, one can readily relate quantum channels to the study of conditional
probability distributions, and thus quantum non-locality. For example, we can ask which channels give rise to
correlations that are compatible with a local hidden variable model, or otherwise. Such non-local properties of
quantum channels have been observed and utilized in previous works [22, 26]. There, the relevant objects of
study are semicausal and causal multipartite quantum channels, in particular the subset of localizable ones,
which we formally review in appendix A. To sketch their definitions now, the causal channels are those where
one party’s output quantum state is the same for all input states for another party, and the localizable channels
are those that are generated by local operations and shared entanglement between the parties. In this section we
introduce a new class of channels, called the almost localizable channels, which will be pertinent when discussing
non-locality and steering.

The general scenario we consider is that of multiple space-like separated parties such that they cannot use
any particular physical system in their respective laboratories that could result in communication. In this way,
the parties are subjected to the same conditions as in a Bell test. We can model the parties’ global resources as a
device with multiple input and output ports: an input and output port associated with each party. Therefore,
each party can produce a local input quantum system, put it into their respective input port, and receive a
quantum system from the output port. The global device can contain resources that are shared between distant
parties, such as entanglement. For example, if we have two parties, and they each input a system into their
respective devices, the output of both devices could be associated with an entangled quantum state. We will now
make this picture more formal.

We have N parties labelled by anindexj € {1, 2, ..., N}, and each party has an input and output Hilbert
space, H{n and HJ , respectively, associated with the input and output ports of the parties’ device”. The input
quantum systems have states that are associated with the density matrix pijn € D(Hijn). The N-partite device is
then associated with a quantum channel A; _ y : ®§\] L(H{n) — ®§V E(H{;ut) taking the input state
p}n ® pfn® ®p£ to oy = A N(piln ® pfn® “® pﬁ ). It will be convenient at times to take bipartitions
St S C {1, ..., N} ofthe N parties, such that S, U Sg = {1, ..., N}. With these bipartitions, we can then
consider Hilbert spaces 13, H;? and H3%,, H38, associated with the input and output Hilbert spaces of S4 and
Sp, respectively.

In this paper, all Hilbert spaces are assumed to be finite dimensional, unless otherwise specified.
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Figure 1. A conditional probability distribution p(a, b|x, y) resulting from a quantum channel A.

Given this set-up, we can informally sketch the definition of semicausal and localizable channels in the bipartite
case (i.e. N = 2). The formal definitions can be found in appendix A. A sernicausal channel is one where the output
state for one particular party is independent of the input state of the other party. In other words, the reduced
quantum state for one of the parties is well-defined since it is independent of the other party’s input. For example, if
achannel A}, is semicausal from 1 to 2, denoted 1 —= 2, then the output stateis o, = /\12(,01 ® p2 ) and if we
trace out party 1, the output state of party 2 is pout = trl(Alz(p ® p ) = T(p yfor Y : LO(HE) — L(HE,)
being a channel. A bipartite channel is causal if it is semicausal in both dlrectlons ie.1 > 2and 2 > 1. Abipartite
channel is localizable if there exists a joint quantum state shared between the two parties such all the parties’ maps are
only from the jth party’s input and their share of the entangled state to the jth party’s output.

In this work, we will use diagrammatic representations of quantum channels where input and output
systems to a channel are represented by wires, and the channels as boxes connecting inputs and outputs. One can
see an example of such a diagram in figure 1, where A is the channel, and time (the flow from inputs to outputs)
goes from bottom to top. Furthermore, later on, we will denote the preparation of states as triangles at the
beginning of input wires, and measurements as triangles at the end of output wires.

Within this scenario we define a new class of channels called the almost localizable channels as follows:

Definition 1 (Almost localizable channels). A causal channel A; __y is almostlocalizable if and only if there
exists a global ancilla system E with Hilbert space Hg, alocal ancilla system Ej for each kth party, with input and
output Hilbert spaces H* and HE:,, respectively, and state |1); € H @ HE @ HE® ... @HEN such that, for

all states p € ’D(®j:1 Hin),

A Nlp] = trgg,.. EN{H Uie (p @ |9¥) (¥lE) H Uf, kE},
j=1

where Uiz : HE @ He @ HE — HE, © Hp @ HE: isaunitary operator for all k, such that, for any

permutation 7 on theset {1, 2, ..., N},

H Ui (p @ [¥) (¥lk) H g = H Ur(je (p @ 1¥) (¢lE) H U w—pe-

j=1

Notice that in this definition for localizable channels, the ancilla oy is the same for all inputs to the channel

Ay - Ifwe compare this definition with that of localizable channels as given by definition 42, we see that almost
localizable channels are a natural generalization of the localizable ones. Indeed, in definition 42, the condition of
the representation that for all permutations 7, Hk L Uke = Hk 1 T(k) g is equivalent to the constraint that
Hk:l Uielt) = HkN:1 (b el) for all possible states ) € HE :1 an This last universal quantifier over all
ancilla states can be relaxed further to an existential quantifier, i.e. that there exists a state 1)) such that the
unitary operators’ ordering is invariant under permutations of the parties. This relaxation precisely gives the set
of almost localizable channels.

Note that localizable channels are by definition almost localizable, as well as causal. However, as we will show
in section 2.2, there exist almost localizable channels that are not localizable. In showing this, we use the close
connection between the so-called almost quantum correlations defined in [25] (see appendix B), and the almost

4
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localizable channels. Indeed, the motivation for the name almost localizable comes from this connection. In this
direction we also generalize this connection to the study of steering in section 3.1.

2. Non-locality from the scope of quantum channels

In this section, we reinterpret the traditional Bell scenario [1] in terms of quantum channels. In particular, we
connect every quantum channel to a family of correlations in a Bell test. We emphasize that non-locality can, ina
sense, be studied independently of the quantum formalism, so considering all processes as fundamentally
quantum may seem excessive. Instead, one can see our review of non-locality from the point-of-view of quantum
channels as just the beginning of a bigger story, as will hopefully become clear. We review the traditional notion
of a Bell scenario and its relevant sets of correlations in appendix B.

2.1.Non-locality via quantum channels

A Bell scenario is characterized by the parameters (N, m1, d), where N denotes the number of parties, 7 the number
of measurements each party can choose from, each with d possible outcomes. Consider now the parties to have
input and output Hilbert spaces given by HJ, = Hfl; = Hyand Hi, = H), = H,forall j = j', where H,,
has dimension m and H,; dimension d. Denote by {|x) } ,—1.,, an orthonormal basis of H,,, and by {|a}} ,—1.4

an orthonormal basis of H ;. In what follows, we relate channels of theform A,y : E(H%N ) — C(’H?N ) to
correlations in a Bell scenario.

Definition 2. A conditional probability distribution p(a; ... ay|x; ... xy) in a Bell scenario is channel-defined if
there exists a channel A,y : L(HEN) — L(H$YN), and some choice of orthonormal bases { %)) € Hun} x=1:m
and {|aj) € Hg} 4—1.aforeach jthparty, such that

pay...anlx; ... xn) = tr{@N |ax) (ar] Ay NP Ixk) (xi ]} (D

Given a channel Ay, itis always possible to define correlations resulting from it for a given choice of input and
output orthonormal bases. Figure 1 sketches (in the bipartite case) this construction of correlations
schematically. Given this connection, we can now directly relate the families of correlations presented earlier to
families of channels presented in section 1 and appendix A. Although the results pertinent to non-signalling,
quantum and classical correlations were noticed in previous works [22, 26, 27], we present all proofs in
appendix E.1.

Proposition 3. A conditional probability distribution p(ay ... ay|x; ... Xn) is non-signalling if and only if there exists a
causal channel AS  : LOHENY — LOHEN) such that the distribution is channel-defined by AS .

In figure 2 we show how the example of a Popescu—Rohrlich (PR) non-local box can be realized by a causal
channel. The PR non-local box is a device that can violate the Clauser—Horne—Shimony—Holt (CHSH)
inequality beyond Tsirelson’s bound, and thus cannot be realized by local measurements on an entangled state
[17]. The statistics produced by a PR box, for binary inputs and outputs, are p(a, b|x, y) = %6;‘{9 »» where @ is
addition modulo 2. The channel in this figure is an entanglement-breaking channel [27], and thus its Choi state
Q) is separable across the partition of Alice’s and Bob’s input and output Hilbert spaces. However, non-
localizable causal channels that are not entanglement-breaking have been constructed in the literature [26], and
we will refer to one such channel later. How can one detect non-localizability in a particular channel? One
possible approach is through the correlations that are channel-defined by that channel, as described in the
following result.

Proposition 4. A conditional probability distribution p(ay ... ay|x; ... x) is quantum if and only if there exists a
localizable channel A2y : LOHENY — L(HN) such that the distribution is channel-defined by AS .

In figure 3 we present the example of alocalizable channel that channel-defines the correlations
Pring (4> blx, y) which give Tsirelson’s bound for the CHSH inequality [28], i.e. the maximal violation for local
measurements on an entangled state. We present the channel in terms of its unitary representation.

Given a channel A, if the correlations that are channel-defined by it are not compatible with quantum
correlations, i.e. they are post-quantum correlations, then the channel was not localizable. For example, if one
obtains correlations that are channel-defined by a channel A, and then computes their CHSH value, if this
exceeds Tsirelson’s bound, the channel A is non-localizable. Indeed, this is how it is shown that the channel in
figure 2 is non-localizable, as well as the channel given in [26].

5
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pPR(av b|$, y) =

Figure 2. A causal channel that generates PR box correlations, as shown in [22]. First, the inputs |x) and | y) are measured on the
computational basis, obtaining outcomes x and y. In addition, a bipartite ancilla state p; = %( [00) (00| + [11)(11])is generated by
preparing the pure state %qooo) + |111)) and tracing out the third system. Then, the classical outputs of the first step are compared
(grey dashed lines). Whenever x - y = 1, an X gate is performed on Bob’s subsystem, flipping his qubit. Finally, Alice and Bob project
the output state into the computational basis, and so obtain correlations that reproduce a PR box. This whole process can made into a
unitary process by replacing the initial measurements with controlled unitaries that change the state of some ancilla depending on the
input. The AND gate and controlled-X gates can then be replaced by a Toffoli gate to get the unitary representation of this channel.
Note also that we can interchange Alice and Bob’s operations to get another causal channel that gives the PR box correlations.

Alice Bob

%

=)
(" N

_T_

psing(a7 b|33, y) =

NE—

g
S

Figure 3. A localizable map that generates singlet correlations that violate the CHSH inequality maximally, i.e. up to Tsirelson’s
bound 2+/2.. All basis states are in the computational basis. First each party performs a unitary operation on their share of the ancilla E
(initialized in state |[E) = %) controlled on their input qubits |x) and |y). The controlled unitaries inside the boxes are

U, =10)(0]. ® H, + 1) (1], ® L, and V; = |0) (0], ® R}g:(*%) + 1){1]. ® RY,,(%), for Hand Rybeinga Hadamard and a

rotation about the Y-axis in the Bloch sphere, respectively. The indices c and ¢ denote the control and target qubits, respectively.

Proposition 5. A conditional probability distribution p(a, ... an|x, ... xn) is classical if and only if there exists a local
channel A- 2 LOHENY — LOHGN) such that the distribution is channel-defined by A

It should be noted that there can exist non-local but localizable channels that will only channel-define
classical correlations. A simple bipartite example of such a channel is one where the maximally entangled two-
qubit state is prepared in the ancilla register, the input systems are discarded (or traced out), and each party’s
outputis one half of the two-qubit register. For this channel, correlations are generated by each party is
measuring one half of a maximally entangled state in a fixed basis, which can be reproduced by classical
correlations.

Finally, we now address the set of almost quantum correlations. We have included the proof of the following
result, since it will be useful for our subsequent discussion.

Proposition 6. A conditional probability distribution p(a, ... an|x; ... xn) is almost quantum if and only if there exists
an almost localizable channel AS y : L(HENY — L(HGN) such that the distribution is channel-defined by AS .
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pAQ(au b‘l‘, y) =

N avavi
<& N

Figure 4. An almost quantum map constructed from the realization of an almost quantum correlation. For simplicity we depict the
case of two parties, Alice and Bob. First each party performs a unitary operation on their share of the ancilla R (initialized in state
|¥) = 10)|4)|0)) controlled on their input qumits |x) and | y) (see equations (2) and (3)). Then, the input systems together with the
part of the ancilla on Hilbert space H, are traced out, and the ancilla qudits measured on the computational basis |a) and | b).

Proof. First we take a probability distribution p(a; ... ay|x; ... xy) thatis in the set of almost quantum correlations.
Let I1¥) and |4)) be the projectors and state that realize’ this distribution, which have an associated Hilbert space

ajlx;
‘H 7 of dimension d’. From these we will define an almost localizable channel A?m N LOHENY — L(HGN) such
that the correlations are channel-defined for this channel. Let the ancilla be a quantum system initialized on the
state |[U) = |¢) ® |0)*N, where these extra N systems are qudits in the Hilbert space H,4, one for each party,
initialized in |0). Now define the following operators for each party:

jlx

d
oY =319 ® 4, @
j=1

where A} = 1gand A; = ) (0] + |0) (j| + Zi;ll’aijlaﬂmforj = 1:d — 1. Theoperator Hg’ﬁc actson

Ha', Ajontheancillary qudit that corresponds to party i. Then define, for each party, controlled unitary
operations on their input qumit in Hilbert space H,, together with their ancillary system as follows:

m
U =3 Ix) (xl @ 0. 3)
x=1

Now the almost localizable channel can be defined, as in figure 4. Each party has as input system a qumit, the
unitary representation of the channel is given by the U followed by a swap on the ancilla qudit and the input
qumit for each party. Finally, the output system for each party is their corresponding qudit, and the input qumits
and the ancillary subsystem on ‘H y are traced out. The commutation relations of the Hg’lzc on the state [1)) imply
that the unitaries U associated with the different parties commute on the ancilla, thus implying the channel is
almost localizable. It is straightforward to check that the correlation p(a; ... ay|x; ... xx) is recovered by the parties
inputting their measurement settings | x;), and measuring their output systems in the basis {|a;) }.

So far we have seen that an almost localizable channel can be constructed from almost quantum correlations.
Given an almost localizable channel, it is relatively straightforward to see that the channel-defined correlations
will be almost quantum. Note that the action at each jth party of preparing an input state, followed by a unitary
and then a projective measurement can be simulated by the projective measurements I1,,; on the ancilla state
|E) as per the definition of almost localizable channels. These projectors will then satisfy the properties required
to produce almost quantum correlations given the definition of an almost localizable channel. O

2.2. Connections between channels and correlations

In this section, we first comment on how, given some correlations in a Bell scenario, one can find a canonical
channel that channel-defines them. Then, we elaborate on further ways one may use a channel to generate
correlations.

We have previously considered how correlations result from channels. One can then readily ask how
channels can be constructed once we are given a set of correlations. Given correlations p(a; ... ay|x; ... xy), there
is a canonical channel that channel-defines them, which amounts to a controlled preparation of a quantum
system. In particular, for a given choice of input and output orthonormal bases {|a;) }, {|x;) } for all N parties,

7 . . . .
The state p that realizes an almost quantum correlation can be taken to be a pure state, without loss of generality when there are no
restrictions on the dimension of the Hilbert space.
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such a channel is defined as

AfN() = Z Z p(al...alel...xN)lal...aN> <X1...XN|(')|X1...XN> <Ll1...6lN|. 4)

Xly coes XN 15 -y AN

It can be readily seen that A] _ channel-defines the correlations p(a; ... ay|x; ... x) for the choice of input and
output orthonormal bases {|a;) }, {|x;)} for all N parties. We also remark that one can take any channel A that
channel-defines some correlations with given preparations and measurements, and then construct the canonical
channel A° from A with those preparations and measurements. This intuitively amounts of the taking the
original channel and applying fully decoherent channels to the inputs and outputs.

Now, let us elaborate further on how correlations may arise from the use of quantum channels. If we are
given a particular channel A; 5, indeed, choosing a set of orthonormal bases such that correlations are channel-
defined by A, may notbe optimal for witnessing non-locality. That is, given access to a channel, correlations
can be generated through more elaborate means than just preparing a state from an orthonormal basis, plugging
itinto alocal port of the channel, and then measuring in another basis. For example, one party could prepare a
bipartite system and send one half of it into the channel, then after the system has emerged from the channel, one
can jointly measure this output and the remaining half of the bipartite system®. More formally, with each party j,
in addition to the Hilbert spaces associated with the jth input and output ports of the channel, we associate an
auxiliary Hilbert space /. Then for a given input x; for the jth party, without loss of generality, this party can

prepareastate p, € D(H{n ® 'Hl,), and then the output a;jis associated with some POVM element
M, € L(HI, @ Hl,y),suchthat 2q My =1 and every element M, is a positive operator’. Putting this
together, given a channel A _y, correlations are generated as:

N N
p(ab az ..., aleh X5 oees xN) =1r ®Maj AL..N & ]I-aux(®pxj) > (5)
j=1 j=1

where 1,y is the identity operator acting on all Hilbert spaces HJ,,. This allows us to explore whether a

aux*

particular channel may result in non-local correlations, as we now formalize in the following definition.

Definition 7 (Local-limited channels). If for all states P, and measurements {M,},a channel A; _y never
produces non-local correlations via equation (5), then the channel is local-limited.

There are several channels which are local-limited. As an example, consider the entangled quantum states
that can never produce non-local correlations for all general measurements [29, 30]. These quantum states can
give rise to localizable channels that are not local yet are local-limited. The construction goes as follows. Take a
localizable channel where the ancillary system is initiated in such an entangled quantum state. In addition, the
‘unitary operations’ between the input and ancillary ports of each party simply trace out the input states. For all
practical purposes then, this channel only prepares a fixed quantum state among the parties, which then goes to
the output ports. It follows that event though such channel is not local, it is however local-limited.

In general, if A{ _ isa canonical channel for local correlations p (4 ... an|x; ... xn), we have the following
result, which is proven in section E.3 of the appendix.

Proposition 8. Given A[ _ (-) from p(ay ... an|xi ... xn), for all measurements M1, and all states p ./, the
7 g
correlations

N N
/ ! ! / / !
play, ag ..., alxi, x5 ..., x§) = tr ®Ma]/ A v ® ]laux(®px]()
=1 i=1

arelocal if the correlations p(ay ... an|x, ... xn ) are local.

Another interesting question is that of constructing almost localizable channels that are non-localizable. The
following method works for any general Bell scenario as a starting point, depending on which type of channel
one wishes to construct, and goes beyond the canonical form previously discussed. For the sake of simplicity,
however, we focus on a bipartite Bell scenario with two dichotomic measurements per party.

8 Amore general strategy would be to apply an instrument with a quantum memory to the channel. That is, preparing a bipartite state, and
then sequentially using the channel, in between each use a party applies an operation to the output of the channel and the other half of the
bipartite system (stored in a memory). This would be in analogy to performing a Bell test through collective measurements on a number of
quantum states.

We do not need to explicitly consider choices of different measurements for { M,}, since the state p, carries the information about the
input.
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First, take an almost quantum correlation p(a, b|x, y) with no quantum realization. Such correlations can
be found by taking those that violate Bell inequalities beyond a Tsirelson-like bound, as presented in [25]. Then,
obtain a state and measurements that reproduce the correlations as outlined in [31]. Using the protocol
described in the proof of proposition 6, also depicted in figure 4, an almost localizable channel that channel-
defines these correlations can be hence constructed from these ‘state and measurements’. This almost localizable
channel is hence provably non-localizable, since it channel-defines Bell correlations beyond what quantum
theory allows, and completes the picture of the hierarchy of channels in theorem 44.

Finally, while proposition 6 tells us that almost localizable channels channel-define the almost quantum
correlations, does this mean the correlations in equation (5) that are generated by an almost localizable channel
A, nwill necessarily be almost quantum correlations? The answer does not follow immediately from the
statement of proposition 6, but the proof of this theorem can be slightly extended to give an answer in the
affirmative. To sketch this extension, first note that all states P, and measurements M, can be made pure and
projective, respectively, by introducing a large enough auxiliary system for each party. That is, Py, can be replaced

bya pure state |¢),) in alarger space, and then we can rewrite these states tobe [1),) = V.| wé> for some fixed
state |1)o). Now if we apply an almost localizable channel to (part of) these input states, the whole process can be
modelled as preparing the state |1)); Q| 4), then applying V;, to the input states, followed by the unitaries in the
almost localizable channel. Finally, a projective measurement is made on the output qubits. This whole process
is equivalent to applying the inverse of the unitaries to these projective measurements to form new projective
measurements which act on the state |1)); &)|1)}). These new projective measurements, due to the definition of
the almost localizable channel, will ‘commute’ for the particular state | )z )|}, and thus will generate almost
quantum correlations by definition. Note that due to proposition 6, given almost quantum correlations, we can
always find states and measurements and an almost localizable channel that reproduce these correlations.

3. Steering from the scope of quantum channels

Steering refers to the phenomenon where one party, Alice, by performing measurements on one half of a shared
state, seemingly remotely ‘steers’ the states held by a distant party, Bob, in a way which has no classical
explanation [8]. This resembles the phenomenon of non-locality presented in last section, but with a slight
change: now one party describes its system as a quantum system. In this section, we discuss an approach to
studying steering via quantum channels. Here, we review the traditional notion of a steering scenario, while its
relevant sets of assemblages are presented in appendix C.

In a bipartite steering scenario, the actions of one party (here Alice, also referred to as ‘untrusted’ or
‘uncharacterized’'") are described solely by m possible classical inputs to her system, labelled by x € {1 ... m},
each of which results in one of d possible classical outputs, labelleda =€ {1 ... d}. The second party (Bob, also
referred to as ‘trusted’ or ‘characterized’) fully describes the state of his share of the system by a subnormalised
quantum state o, € L(Hp), where Hj is the Hilbert space associated with Bob’s quantum system with
dimension dp. The set of subnormalised conditional states Alice prepares on Bob’s side { o },,x is usually called
assemblage, and p(alx) = tr{o,,} denotes the probability that such a subnormalised state is prepared, i.e. the
probability that Alice obtains a when measuring x.

In this work we go beyond the bipartite definition of steering, and consider a setting with N untrusted parties
and a single trusted party, still called Bob, who has some associated Hilbert space Hg. Now, we have N Alices,
where for the jth Alice, her inputisx; € {1...m} and outputisa; € {1 ...d}. Asaresult Bob obtains an
assemblage {05, ayjx .. xn ) a1 anoxy...xy With elements op oy 1x .. xy € L£(Hp) such that
play...anlxi ... xn) = tr{0, . aylx...xy }- As With Bell scenarios, for the case of N' < 2 we will use the same notation
of inputs being x and y and outputs being a and b.

3.1. Steering via quantum channels

Here we extend the ideas of section 2.1 to steering scenarios, which provides a novel way to understanding the
phenomenon. First we introduce the formalism and then characterize the channels that give rise to each set of
assemblages.

A steering scenario is characterized by N untrusted parties, each of which generate one of m possible inputs,
of d possible outcomes each, and a trusted party Bob with Hilbert space Hp with dimension dp. Consider now all
(N + 1) parties (including Bob) to have input and output Hilbert spaces. For the N untrusted parties, these
Hilbert spaces are HJ, = Hfl; = H,and M/, = HJ,, = Hyforall j = j’, where H,, has dimension mand Hy

10 . . . . . . .
The sense in which the parties are untrusted is that whatever is used to produce classical data is some black box.
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Figure 5. An assemblage o, seen as generated by a quantum channel A4 ..

Oalz

dimension d. Denote by {|x)} y—1.,, an orthonormal basis of H,,, and by {|a)} ,—1.4 an orthonormal basis of
‘H,. For Bob, he has Hilbert spaces Hp, and Hp,,, which are taken to be equal1 !, In what follows, we relate
channels of the form A,y 5: L(HEN @ Hp,) — LHFN @ Hp
figure 5.

) to assemblages in a steering scenario as in

out:

Definition 9. An assemblage {0, 4y|x..xy € P(Hp)}inasteeringscenario is channel-defined if there exists a
channel A,y p: L(HEN @ H B,) — LHN @ H Boo)» S0me choice of orthonormal bases {|x;) € Hy} x=1:m
and {|a;) € Hg} 4—1.4 for each party j,and astate|0) € Hp,, such that

in

Tay..anl oy = 1 NS lak) (ak|®1p Ai v [®F_, |xk) (x| ©]0) (01}, (6)

where the partial trace is taken over all N untrusted systems.

Note that the main difference between the correlations and assemblages from the point-of-view of channels
is that one of the outputs of the channels is left unmeasured, and Bob has a fixed input state |0). We now relate
channels to the families of assemblages presented in appendix C, starting with the LHS assemblages.

Proposition 10. An assemblage { 04, . ay|x,... xy )} 15 @ LHS assemblage if and only if there exists a local channel

A- Nt LCHEN ® Hp,) — LOHEN @ Hp,,) such that the assemblage is channel-defined by AR N.B-

out

In the literature, most of the focus has been on detecting whether an assemblage has a LHS model, thus
revealing entanglement in a shared resource. It is therefore reassuring that the LHS assemblages do not involve
entanglement when viewed through the channels that define them. Note that it is possible to have an assemblage
which does not have a LHS model, yet the correlations resulting any measurement Bob makes on the assemblage
can belocal. In other words, steering is a distinct phenomenon from non-locality.

Proposition 11. An assemblage { 04, . ay|x,... xy | 15 non-signalling if and only if there exists a causal channel

AC N LCHEN @ Hp,) — LOHGEN ® Hp,,) such that the assemblage is channel-defined by AS N.B-

Given this definition, if one is given a non-signalling assemblage then it is straightforward to find a causal
channel that channel-defines the assemblage if the input states and output measurements are fixed. In factitis an
SDP that is a slight modification of the SDP that decides whether a channel is causal as outlined in appendix A.
Given elements of the assemblage, since they are channel-defined, this just results in linear constraints made on
the channel.

A consequence of the above proposition and the unitary representation of causal channels is the following

theorem.

Theorem 12 (Unitary representation of non-signalling assemblages). Let {0, . ay|x,... x| b€ a non-signalling

assemblage. Then, the assemblage is channel-defined by a channel AC NB: LHIN @ Hp ) — LOHGN @ Hp,,)
ifand only if there exist

11 . . . . . C e
For the specific purposes of studying steering, we could equally take H g, tobe C, i.e. the scalars, but for the sake of simplicity in our
presentation, we have this more symmetric set-up.

10
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Figure 6. Unitary representation of non-signalling assemblages for N = 2.
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Figure 7. A quantum assemblage in a bipartite steering scenario resulting from a localizable map.

« auxiliary systems E and E' with input and output Hilbert spaces, HE, and HE,, for E, with Hﬁ: = Hpand
HE . = Hp,, for E', thatis the output Hilbert space of E' and B coincide;

- quantum state|R) € HE, @ HE;
« unitary operator V : H3" @ HE — HIN @ HE,

which produce a unitary representation of the channel A® N,B Via
AP N5 = e, {V ® Ip(trg, () ® [R) (Rles) V' @ L),

Furthermore, the unitary V can be decomposed into a sequence of unitaries Uy p : H,, @ HE — Hy @ HS for
appropriately chosen Hilbert spaces HY and HE, where for any given permutation T of the set {1, ..., N'}, we have
that

V= U77rT(1),E U;rr(z),E U;(N),E)
where U{', is not necessarily the same as U }5 for two different permutations w and ’.

A pictorial representation of this theorem for N = 2 is given in figure 6.
Given this characterization of the set of non-signalling assemblages, we now turn to the set of quantum
assemblages.

Proposition 13. An assemblage { 04, _ay|x, ... xy )} 15 quantum if and only if there exists a localizable channel

AQ N LOHEN @ Hp,) — LOHGN ® Hp,,) such that the assemblage is channel-defined by AS N.B-

In figure 7 we give a pictorial representation of a channel-defined quantum assemblage. At this point we
should point out the following corollary of this proposition along with the previous theorem, which was first
proven by GHJW. We note that our proof is structurally very different from the previous proofs, and is a simple

11
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consequence of the fact that, for N = 1, the unitary Vin theorem 12 acts only on the input Hilbert space of the
untrusted party and the ancillary register. The full proof of this corollary can be found in appendix F.

Corollary 14. For N = 1, all non-signalling assemblages are also quantum assemblages.

Itis important to note that this is only true for the case of N = 1, i.e. a single untrusted party. In section 3.3,
we use causal channels to give examples of post-quantum steering, i.e. non-signalling assemblages that are not
quantum. We know that post-quantum correlations witness a non-localizable channel, then any assemblage that
gives post-quantum correlations must have an associated non-localizable channel. However, there exist non-
quantum assemblages that will never give rise to non-quantum correlations [18]: there are assemblages that
cannot be channel-defined by a localizable channel, but for any measurement made on the Bob’s system the
corresponding Bell correlations are channel-defined by a local channel. This highlights that post-quantum
steering is distinct from post-quantum non-locality, and indeed from non-locality itself.

For N > 2, aspointed outin [18], characterizing the set of quantum assemblages is difficult, and at least as
hard as characterizing the set of quantum correlations. However, the almost quantum assemblages are a superset
of the quantum assemblages, and for the former there is a characterization in terms of a semi-definite
programme. In the next result we give a physical interpretation for the almost quantum assemblages.

Theorem 15. An assemblage { 0, . gy, ... xy } 1S almost quantum if and only if there exists an almost localizable

channel A?M N LCHEN @ Hp,) — LOHGN @ Hp,,) such that the assemblage is channel-defined by A?” N.B-

The full proofis in appendix G, but is essentially a consequence of the following lemma, which is also proven
in appendix G. Given this lemma, one can essentially use the proof of proposition 6 to obtain the result in
theorem 15.

Lemma 16. An assemblage { 0, ay|x,...xy } 18 almost quantum if and only if there exists a Hilbert space
H = K ® Hp, quantumstate |1)) € H, and projective measurements {11, € L(K)} for each jth party where

Ea,» gy, = Landfor all permutations w of {1, ..., N}, Hj-\]:l Ha,(j)lxmlw = Hj-\]:l Ha]|xj|¢>, such that

N
O, ...an|x .. xn — tric H Hajlxj & ]I-Blz/}> <¢| .

j=1

3.2. Connections between channels and assemblages
In section 2.2, we indicated the general way to obtain correlations given a channel, and then we gave a canonical
way of constructing a channel from correlations. In this section, we will do exactly the same for the case of
steering.

In analogy with the case of Bell non-locality, we will first describe a general way to generate an assemblage
from a channel. As in the case of Bell non-locality, the N untrusted parties can prepare a state
Py, € D(Hijn ® HJ,,) indexed by their input xjforj € {1,..., N}, putone of its subsystems (living in H{'n) into
the channel, and jointly measure the output of the channel and other subsystems associated with initial state p, .
The measurements then are the operators M, € L(H),, ® Hj,), which have outcomes a;. The novelty in
steering is the trusted party, and there is a potential ambiguity in how to generate an assemblage from a channel
with Ninput portand N output ports. We could restrict to channels that trace out the input of the trusted party
(or, equivalently, there is no input port), or the trusted party just always inputs the same quantum state into the
channel. The second approach is more general when one considers the possibility that the trusted party has an
auxiliary system with Hilbert space Hp_ , and prepares the state oy € D(Hp,, ® Hp, ); there could be
correlations between the input system and auxiliary system that would be destroyed by tracing out the input
system. This more general approach results in the assemblage being a set of operators that act on the Hilbert
space Hp,, ® Hp,,andisin the spirit of channel steering [32], which we touch upon later.

To summarize this discussion, given a causal channel A |y p, each jth untrusted party will prepare the state
Py, € D(Hijn ® Hl,,), and obtain measurement outcomes corresponding to the operators

M, € E(H{;ut ® ngx). The trusted party with Hilbert space H;, will prepare the state oy € D(Hp, ® Hg, )
and thus generate assemblage elements o, _ 415y € P(H3p,,, ® Hp,, ), which can be obtained as

out aux

N N
Oaycanlrory = 1Ny @My, @ g, | Al N3 ® laux[®pxj ® GB] , (7)
j=1 j=1

where 1,y is the identity operator acting on all Hilbert spaces HJ,,,.

12
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Figure 8. A schematic of the sets of causal channels. We have set out the hierarchy in the paper, where the set of local-limited channels
(those that do not result in Bell non-locality) intersects all families of channels; this results from knowing that there are non-almost
localizable channels that are local-limited, and by taking convex combinations.

Let us now move on to the case of constructing a generic channel from an assemblage. That is, given an
assemblage with elements 0y, 4y |x...xy € D(Hp), we specify a canonical channel ¥ : LHEN @ H B,) —
LHGN @ Hp, ), with Hp = Hj, that will reproduce that assemblage, given appropriate choices of
preparations and measurements. This canonical channel is defined as

SLonsO = >0 D0 @ an) (xe xltrs, (1% xn) (@1 anl @ 0 aylx.. o
an

Xly oo XN 15 «ees

out

and can be seen as a channel which completely decoheres the input and output systems with respect to a basis,
traces out the trusted party’s input, and then produces assemblage elements in the trusted party’s output of the
channel. Notice that the assemblage elements o, _ 4| .. x are channel-defined by X _ 3, aslongas appropriate
elements of an orthonormal basis are chosen.

The channel 3] 3 can moreover be used to generate correlations, and not just assemblages. This is done
by the method outlined in section 2.2, where the correlations are obtained as

N N
/ T, N c
pay, ..., ans aglxys ..., Xy, Xp) = tr ®Mu]/ Q@ M X7 np ® laux ®ij’ @ Pl ¢
j=1 j=1

from the local measurements M, and states p,/, where xj and aj represent the trusted party’s inputs and
]

7
outputs, respectively. We can now ask when this channel gives non-local correlations, or conversely, when is a
channel ¥}y glocal-limited. The following result addresses this, and is proven in section E.3 of the appendix.

Proposition 17. Given Y] _ y (-) from assemblage elements 0, 4 |x, .. xy» this channel is local-limited if for all
measurements Py |, € L(Hp) indexed by the choice xg and outcomes ag, the correlations

p(as, ... an, aplxy, .., %N XB) = tr{ Py, 0 . ay|x,...xy ) Ar€ local.

A direct consequence of this result is that the canonical channel that one would construct for the post-
quantum assemblage given in [18] is a local-limited, yet non-localizable channel. Furthermore, this channel is
actually not even almost localizable [18]. We summarize all of these observations in figure 8.

One can define moreover the set of channels restricted to producing only quantum correlations, and call
them the quantum-limited channels, where these correlations can be non-local, therefore defining a larger set
than the set of local-limited channels. We can then take, for instance, the post-quantum assemblages from [33]
that can result in non-local but quantum correlations, and from their canonical channels give quantum-limited
channels that are not almost localizable.

3.3. Examples of post-quantum steering

In this section we have outlined a constructive way to understand post-quantum steering: assemblages that
cannot be channel-defined by localizable channels. We give a couple of examples of post-quantum steering that
are a simple consequence of theorem 12.

13
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Figure 9. A causal channel that generates a non-signalling assemblage given particular input states and measurements. A tripartite

ancilla state p, = 100001 £ TINKL] ) 10)(O1 : DItIER generated by preparing the pure state | R) and tracing out part of it. Charlie’s

2
output is his part of the ancilla system, which is in the state M Alice and Bob then implement, on their ancillary systems,
the channel that generates PR box correlations for given particular measurements. Therefore, the assemblage prepared in Charlie’s lab

is Oub|xy = Ppg (ablxy) %

The first example of post-quantum steering is depicted in figure 9, and is in a tripartite scenario where Alice

and Bob steer Charlie, whose Hilbert space has dimension dc = 2. There, an ancilla is initialized on state
pr = 100)¢00 | z DI |AB L1+ 11 lc’ where AB and Cdenote Alice and Bob’s and Charlie’s share of the
ancilla system. Then, the part of the ancilla shared by Alice and Bob is used as the ancilla in the channel that

[0)(0 1+ 1)(1]

generates PR box correlations, while the qubit on state is output by Charlie. This map is causal
since it has exactly the same form as described in theorem 12 (after one locally dilates all processes to be unitary).
Once that Alice and Bob input qubits in the computational basis and measure their output systems, the

following assemblage elements are then prepared in Charlie’s lab:
Oablxy = Ppg (ablxy) %

This assemblage is a non-signalling one which has no quantum realization [18]. However, note that we can have

post-quantum steering without any entanglement (across any of the bipartitions) in the shared ancilla state pg in
the causal channel. In our next example, the ancilla in the channel does consist of entanglement, and the channel
generates pure state entanglement between three parties.

The second example of post-quantum steering also comprises a causal channel that is not localizable, and
relies on the results of [26]. The steering scenario consists of Alice and Bob, who by performing two dichotomic
measurements, steer Charlie, whose Hilbert space has dimension dc = 2. The channel used by the three parties
is depicted in figure 10. Each party’s input system is given by a qubit labelled by A, Band C, respectively. Then,
the channel makes use of a five qubit ancilla (X, Wy W W Xp) initialized on the state:

_ 100)x, x5+ | 11)

[Y) = TXAXB ® (Va [000)w,wywe + V1 — a [111)w, wyw)-

First, Alice (Bob) makes a controlled swap on the input and X, (Xp) qubits, with W, (Wp) being the control
qubit. Then, both the X, and X3 qubits are measured in the computational basis, and their logical AND
computed. Finally, if this measurement result is 1, a controlled-NOT is performed by Alice on qubit A, with W,
as the control qubit. The output systems are then a ququart AW, for Alice, another one BWj for Bob, and a
qubit W for Charlie. Since the marginal channel for Alice and Bob is causal [26], this tripartite extension is also
causal. To construct an assemblage, { 0;p|x, } for x, y, a, b € {0, 1}, from this channel, we prepare states |x) and
|y} in the computational basis for Alice and Bob, respectively, and then measure in the computational basis,
where Alice’s outcome is a and Bob’s is b. To check that this resulting assemblage is post-quantum, one can
check that if we trace out Charlie’s system, the correlations between Alice and Bob violate the CHSH inequality
beyond Tsirelson’s bound. Since we trace out Charlie’s output system, the ancilla’s state for Alice and Bob is
given by

~ (100)x,x, + [11)x,x,)({00]x,x, + (11]x,x,)

Pancilla = ) ®

(|00) (00w, w, + (1 — ) [11) (11|, w;)-

For a choice of parameter o = é, the correlations can be shown to give a value of 3 for the CHSH inequality,

which is larger than Tsirelson’s bound 2+/2 . Therefore, the map is definitely not localizable for that choice of a.
This channel can hence be used for Alice and Bob to channel-define a post-quantum assemblages on Charlie’s

14
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Figure 10. A tripartite causal channel that is not localizable. The ancilla is initialized in the state 1)) = |[®%)x, x; @ |d, )wywawes
where | &%) = 1/42(|00) + |11))and |¢,) = v@]000) + VT — a|111). Alice (Bob) performs a controlled swap E on the qubits
Aand X, (Band Xp), where W, (Wj) is the control qubit. Then, qubits X, and X are measured in the computational basis and the
logical AND of the results computed. Whenever this is 1, Alice performs a controlled-NOT gate on qubit A, with W, as the control
qubit. The output systems are two quqarts: AW; for Alice and BWj for Bob, and a qubit W for Charlie.

subsystem. Not only this, but since almost quantum correlations cannot violate Tsirelson’s bound either [25],
then this assemblage is not even almost quantum, and thus the channel is not almost localizable.

Finally, we discuss how certifying the post-quantumness of the Bell correlations that are channel-defined by
a causal map is not a necessary condition for such a channel to be non-localizable. For this, consider the
post-quantum assemblage given in the main result of [ 18]. We can construct a canonical channel that is not
localizable and that channel-defines this post-quantum assemblage. Now, this particular assemblage has the
property that the Bell correlations it produces are quantum, or more precisely, local [18]. Hence, we can
construct a provably non-localizable channel that can only channel-define local correlations in Bell scenarios.

4. Teleportation and Buscemi non-locality

Inspired by the connection between forms of non-locality and quantum channels, in this section we initiate the
study of post-quantum non-classical teleportation, and post-quantum Buscemi non-locality. Non-classical
teleportation [24] and Buscemi non-locality [23] (or semi-quantum non—localityl %) have been introduced very
recently within the quantum information community as generalizations of steering and Bell non-locality,
respectively. We will review each of these notions, and then relate their study to our study of channels, and this
will naturally give a framework in which to study their post-quantum generalizations.

4.1. Buscemi non-locality
The pioneering work by Buscemi consisted in defining a semi-quantum non-local game and arguing that any
entangled state is more useful than a separable one for winning at it [23]. It should be noted that the kind of game
Buscemi describes is subtly distinct to the one hinted by Leung, Toner and Watrous [34]. In this section, we will
study the kind of non-locality that is witnessed in these games, and we begin by presenting the general setup.
Consider N parties, each of which has a quantum system with Hilbert space KC; and can prepare it in one out
of m quantum states. For eachj < N, the states in which party j may prepare their system are Py, € DK, with
x; € {1, ..., m} being the classical label of the particular preparation. The parties then locally plug the system

12 . . .
We do not use this terminology so as not to confuse between semi-quantum and post-quantum.
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into some device (it can be a black box in analogy with Bell non-locality), and then receive a classical output from
the device. Let ai€{1,..., d} denote the classical output for the jth party, where d is the total number of possible
outputs the device can locally produce.

Effectively, this whole process just described is a measurement on the preparations made by the N parties.
By means of a set of tomographically-complete preparations at each site, the parties can hence generate a
description of this measurement. For convenience, we now introduce a new piece of terminology to describe
this measurement.

Definition 18. In a Buscemi non-locality experiment, for a set of classical outputs {(ay, ..., ay)}, a distributed
measurementis {M, ., € £(®]N:1 Kd}Ya, ..., ay where M, >0and>, M, o a=L N

< AN , aN a,

Given this distributed measurement, it is straightforward to generate conditional probabilities from its
elements and certain state preparations { Px,} as

p(ab [EES} alelr (R xN) = tr{Mal, ey aprl® @ pr}‘

For the purposes of Buscemi’s original work, we need to define the set of distributed measurements that result
from the set of local operations and shared randomness, which we call the local distributed measurements.

Definition 19. A distributed measurement is local if there exist N auxiliary systems R; for j € {1, ..., N} with
Hilbert spaces @, Hg, such that

N
Mﬂl» way = TR, . Ry PR, ..., Ry ®Hﬂj >
j=1

where {II,, € L(K; ® Hg)} 4 isacomplete projective measurement,and pp € DQ®H r;) is a separable
state, i.e. for |¢>i) € Hg,

PRy,

vens

Ry = 22 PAOY) (D3R @ 183) (D ® e @ 16}) (&) Iry»
A
with py > 0and >, p, = 1.

Without loss of generality the local measurements can be taken to be projective, since the dimension of the
Hilbert spaces R; is finite, but not constrained. Clearly, the state p,  , could, in principle, be entangled, and
thus we now define the set of quantum distributed measurements.

Definition 20. A distributed measurement is quantum if there exist N auxiliary systems R; for j € {1, ..., N}
with Hilbert spaces @%_, H, such that

N
Mﬂb woay = TR, Ry PRy, ..., Ry ®Hﬂj >
j=1
where {II,, € L(K; @ Hg)},isa c-omplete projective measurement,and pp € D(QHpg)isany
quantum state, entangled or otherwise.

The main result of Buscemi in [23] can then be restated as: for every non-separable state pp , there
exists a set of projective measurements {IL,, € LK@ H R)} o such that the distributed measurement is not
local. A corollary of this is that the set of local distributed measurements is strictly contained in the set of
quantum distributed measurements.

In complete analogy with the study of Bell non-locality and steering, we can ask what are the most general
distributed measurements that do not permit superluminal signalling. The following definition formalizes the
answer to this.

Definition 21. Given a bipartition S; U S, = {1, ..., N}of Nparties where S; = {i, ..., i;} and
Sy = {is11 ..., in}, adistributed measurement { M, _,,} does not permit signalling across this bipartition if
there exist sets of complete measurements {M,, .. . € L(K; ®...® K;)}and

{My, ., .., ay € LK, ®..® Ki,)}suchthat
Z Ma,'l, ey a;s = 'Ilil, eey is (8)
Aips wees Qi
Z M“is+1> o Qi ]I'is+1’ N (9)
a,'SJrl, ey u,-N
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Figure 11. A distributed measurement M,, ., viewed asa causal channel A.

Z Mal, vy AN Mail, o i & ]I-isﬂ, NS (10)

ai5+l‘ ooy a,N

Z Mal, vy AN ]lil, A ® M“is+1v s it (11)

ﬂ,‘l, ey A

A distributed measurement { M, _,,} belongs to the set of non-signalling distributed measurements if and only
ifit does not permit signalling across any bipartition of the N parties.

Ifa distributed measurement is non-signalling but not quantum then we refer to this as post-quantum
Buscemi non-locality. We are not the first to describe the set of non-signalling distributed measurements, Supié et
al[35] defined this set in the bipartite setting, although the terminology ‘distributed measurement’ is of our
creation. We believe we are, however, the first to point out the possibility of post-quantum Buscemi non-
locality. Indeed, in the next section we point this out in a clear fashion.

4.2. Buscemi non-locality via quantum channels

In this section we take our channels-based perspective and apply it to the study of Buscemi non-locality. This
indeed proceeds similarly to the study of steering and Bell non-locality. The Buscemi non-locality scenario
consists of N parties, where party jth (for each j < N) acts on the Hilbert space KCj, and outputs dataa; € {1, ...,

d}. To study such a Buscemi scenario, consider N parties to have input Hilbert spaces an = Kj,and output
Hilbert spaces H. , = H, forall j, where H,; has dimension d. Denote by {|a)} ,—;.4 an orthonormal basis of

‘H 4. We now consider channels A; _y : £(®jH{n) — L(HN) and relate channels of this form to distributed
measurements.

Definition 22. A distributed measurement {M, ., € £(®?]:1 Kj)} is channel-defined if there exists a

channel A} _y: E(®ijn = QK — E(@;‘:l H! = HIY), and some choice of orthonormal bases
{la;) € Ha}a=1.q for each party, such that

N
My, oy = N(® |ax) (al )’
k=1
where A]  isthe dual of A, _ .
Figure 11 presents a pictorial representation of distributed measurements as quantum channels. Given this

definition, as before, we can now give alternative definitions oflocal, quantum, and non-signalling distributed
measurements.

Proposition 23. A distributed measurement is local if and only if there exists a local channel
A e LQHI) — L(HGN) such that the distributed measurement is channel-defined by AL

Proposition 24. A distributed measurement is quantum if and only if there exists a localizable channel
AQ LQiHL) — LHEGN) such that the distributed measurement is channel-defined by AS .

Proposition 25. A distributed measurement is non-signalling if and only if there exists a causal channel
AC LQHL) — LOHEN) such that the distributed measurement is channel-defined by AC .
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Given these definitions of distributed measurements, it is straightforward to see that if each party were to
prepare pure states from an orthonormal basis, then we recover the Bell non-locality setting. This then implies
thatlocal, quantum, and post-quantum non-locality implies a local, quantum, and post-quantum distributed
measurement. A simple consequence of this is that the set of non-signalling distributed measurements is strictly
larger than the set of quantum distributed measurements. For example, we can take the channel that produces
the PR box correlations, and generate a post-quantum distributed measurement. However, do there exist post-
quantum distributed measurements that will never produce post-quantum correlations? We leave this question
as open, but in this direction we now define the set of almost quantum distributed measurements as the analogue
of almost quantum correlations and assemblages.

Definition 26. A distributed measurement is almost quantum if there exists an almost localizable channel
AR v 0 LIQiHL) — L(HEN) such that the distributed measurement is channel-defined by Af .

Given that the set of almost quantum correlations is larger than the set of quantum correlations, it follows
that the set of almost quantum distributed measurements is larger than the set of quantum distributed
measurements. In future work we will investigate whether this set has a useful characterization in terms of semi-
definite programming. Given such a characterization, we should be able to address the question of whether post-
quantum Buscemi non-locality implies post-quantum Bell non-locality.

4.3. Non-classical teleportation

The final scenario we consider is a generalization of the steering scenario as first outlined by Cavalcanti et al [24]. In
this scenario the original motivation was to consider two parties, and have one party ‘teleport’ quantum
information to the other, even if their resources are noisy. In particular, Alice is given one out of m possible
quantum states p;forj € {1, ..., m}, and produces some classical data (using a measurement on this input state
and some other shared resource with Bob), and Bob has a quantum system upon which he can perform state
tomography. Importantly, the set of states { p;} is known to all parties, unlike in conventional teleportation where
there is a single unknown state that is to be teleported. Once Bob knows the choice of state p; and the classical data
(that resulted from Alice’s measurement), Bob can deduce their (subnormalised) state conditioned upon this
information. This is analogous to the assemblage in a steering scenario, which is a collection of (subnormalised)
states conditioned on the classical information generated by the untrusted party. In the case where Alice and Bob
share a maximally entangled state, Alice can make an entangled measurement on her input state p;and her half of
this maximally entangled state. Conditioned on the outcome of the measurement, the state in Bob’s laboratory will
be p; with some unitary applied that depends on the outcome. In general, given Bob’s conditional (subnormalised)
quantum state, they wish to establish if ‘non-classical teleportation’ took place.

We now extend this scenario to mimic closer the case of multipartite steering experiments. Consider N
parties, each of which has a quantum system with Hilbert space K; and can prepare it in one out of m quantum
states. For eachj < N, the states in which party j may prepare their system are Py, € D(Kj), withx; € {1,...,m}
being the classical label of the particular preparation. In addition, consider another party, Bob, who hasa
quantum system with Hilbert space K and can perform quantum state tomography on his part of his system.
The first N parties generate classical data locally from their system, and we denote by a; € {1, ..., d} the classical
output obtained by party j, for eachj < N.

Since the first N parties could prepare their input system in an arbitrary state before plugging it into their
unknown device, they could each choose states from a tomographically-complete set of states, as with the
Buscemi non-locality scenario. That is, enough states that span the space D(K)). The difference now in this
scenario from the Buscemi non-locality scenario is that we have Bob’s quantum system with Hilbert space K,
and upon which he can perform any quantum operation he likes. Therefore if we consider the whole process in
terms of known quantum systems, we have the input Hilbert spaces K; and an ‘output’ Hilbert space Kz in Bob’s
laboratory. Therefore the process of producing classical data and a (subnormalised) quantum state in Bob’s
laboratory can be described in terms of an object, which we call a teleportage. This object can be characterized as a
map from space of operators over ®]N:1 KC; to the space of operators on K, and it is characterized by the fact
that a tomographically-complete set of input states can be generated, and a tomographically-complete
measurement can be made on Bob’s system.

Definition 27. For a set of classical outputs {(ay, ..., ay)} and the Hilbert space /s of Bob’s system, a teleportage
isaninstrument {T, . ,, € E(@?’ZIK]-) — L(Kp)}a, ..., ay such that, for all quantum

states p € DIQY, K, {0, o Ton o g ()} = tr{p}.
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We note that one can obtain an assemblage { g, ..., ayx,
{p}in the following way:

€ D(Kp)} for any set of input quantum states

cey XN

N
Oay, ... an|xty .o XN — Tm, N ®pxj .

This is actually slightly distinct from the assemblages in the standard steering scenario, since the states Py, have
some quantum information, and so the classical labels x; do not capture everything.

As with the study of Buscemi non-locality and steering, we can define the physically meaningful sets of
teleportages.

Definition 28. A teleportage is local if there exist N auxiliary systems R; for j € {1, ..., N} with Hilbert spaces
QL) Hp such that

N
T;?b cay = UL L NR, .., RN{pRl, ..., R\,B ®Haj ® 13}’
=1

where {II,, € L(K; ® Hg)},isacomplete projective measurement, and p R,
separable state, i.e. for |¢£> € Hpg and |q§f) € K

PR ks = 2 DAOY) (B\IR © 183) (D3R, ® ... @ 18Y) (&) Ry @ 163) (&5,
A

Ry,B € D(®HR)» ® Kp)isa

cersy

with py > 0and >, p, = L.

Definition 29. A teleportage is quantum if there exist N auxiliary systems R; for j € {1, ..., N} with Hilbert
spaces @}, Hp, such that

i=1

N
Tab LLaNy — trl, .. N,Ry, ..., RN{pRl, ..., Rn,B ®Hﬂj ® 'I'B}’

where {II,, € L(K; ® Hg)} 4 is ac.omplete projective measurement,and pp  p € D(QH R, ® Kp)isany
quantum state, entangled or otherwise.

Definition 30. Given a bipartition S; U S, = {1, ..., N}of Nparties where §; = {i, ..., i;} and
Sy = {is11 ..., in},ateleportage {T, . 4 : £(®§V:11Cj) — L(K3p)} does not permit signalling across this
bipartition if there exist further teleportages

{Toyy .0y E(@jzlle) — LK)}, {T, ay £(®]N:S+1/Cj) — L(Kp)}, and quantum state p, € D(Hp)

o1

such that
Z Tu,-l, vr a,'s(') = PB
Z Ta,'SJrl, s a,’N(') = pB
Aigppp o iy
Z Tal, o aN(') - Ta,-l, . als(')
iy o iy
Tal, s aN(') = Tu,sﬂ, s a,vN(')-
Ateleportage { T, ., } belongs to the set of non-signalling teleportages if and only if it does not permit signalling

across any bipartition of the N parties.

We say a teleportage demonstrates post-quantum non-classical teleportation if it is a non-signalling
teleportage that is not a quantum teleportage. As far as we know, we are the first to define the set of non-
signalling teleportages, in addition to introducing the nomenclature.

4.4. Non-classical teleportation via quantum channels

Finally, we look at non-classical teleportation through the lens of channels. Recall that we have a black box device
with Ninputs for quantum systems, and N classical outputs aj € {1, ..., d} forj € {1, ..., N}.Forthe Nports of
the black box device we associate input and output Hilbert spaces with each party such that ’an = Kjand

Hi. = ) = Hyforallj,j € {1,...,N},where H, s a Hilbert space of dimension d. For Bob, we have an
input and output Hilbert space denoted H2 and H2, respectively, where we have that H{, = 5, = Kp.

Therefore the channels of interest willbe A,y : £(®jH{n ® Kg) — LHFN @ Kp), and as before we can
define teleportages in terms of these channels.
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Figure 12. A Teleportage T, . 4 viewed as a causal channel A.

Definition 31. A teleportage { T, .. oyt T, .. ay € E(®§":1]Cj) — L(Kp)}a, ..., ay is channel-defined if there
existsachannel A}y : £(®j’Hijn = QiK; ® Kp) — E(®]’?:1 HGN ® Kp),and some choice of orthonormal
bases {|a;) € H4} a—1.4 for each party, such that

’1—;11, L aN(’) = trouy, ..., outN,B{®kN:1|ak> <5lk| A N(®|0> <0|B)}’
where [0)z € Kp.

Figure 12 depicts a teleportage as a quantum channel. Given this definition, as before we obtain the following
results:

Proposition 32. A teleportage is local ifand only if there exists a local channel AL - £(®j'Hijn = QiK; ® Kp) —
L1 HIN @ Kp) such that the teleportage is channel-defined by AR

Proposition 33. A teleportage is quantum if and only if there exists a localizable channel A2 : £(®jHijn =
KK ® Kp) — LIQ]-1 HEN @ Kp) such that the teleportage is channel-defined by A2 .

Proposition 34. A teleportage is non-signalling if and only if there exists a causal channel AC_; : £(®jH{n =
RiK; © Kp) — LIQ)—1 HiN © Kp) such that the teleportage is channel-defined by AC L.

It should be clear that post-quantum steering implies post-quantum non-classical teleportation, since if an
assemblage is post-quantum then it is channel-defined by a non-localizable channel, this non-localizable
channel will then channel-define a teleportage that is post-quantum.

For the study of steering we had an alternative characterization of non-signalling assemblages in terms of a
unitary representation. This result can be generalized to the set of non-signalling teleportages as follows.

Theorem 35. Unitary representation of non-signalling teleportages Let { T, . ,..} be a non-signalling teleportage.
Then, the teleportage is channel-defined by a channel A NB: E(@ﬂ-{{n ® Kp) — LHGN @ Kp) ifand only if
there exist

« auxiliary systems E and E' with input and output Hilbert spaces, HE, and HE , for E, with Hfi = Kgand

HE = Ks for E/, that is the output Hilbert space of E' and B coincide;
. quantumstate|R) € HE ® 7‘(5,/;

* unitary operator V : @iHl, @ HE — HGN @ HE,,
which produce a unitary representation of the channel AlcmN, 5" £(®jH{n ® Kp) — LHGY @ Kp)via

AP () = trg, (V(trp,() @ [R) (Rlge) VY.

Furthermore, the unitary V can be decomposed into a sequence of unitaries Uy g: H,, @ HE — Hy @ HE for
appropriately chosen Hilbert spaces HE and HE, where for any given permutation w of theset {1, ..., N'}, we have
that
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V= U77rr(1),E U77rr(2),E U:TT(N),E’
. . ! . .
where U{", is not necessarily the same as U, for two different permutations  and .

Given this last result about non-signalling teleportages, we can actually generalize the GHJW theorem from
the case of steering to the study of non-classical teleportation.

Corollary 36. For N = 1, all non-signalling teleportages are also quantum teleportages.

That s, for the original context in which non-classical teleportation was studied, the bipartite setting, the no-
signalling principle is already enough to characterize exactly everything that can be done quantum mechanically
in the experiment.

Finally, in analogy with everything that has gone before, we can define the set of almost quantum
teleportages as follows.

Definition 37. A teleportage is almost quantum if there exists an almost localizable channel A?n N £(®j'Hijn =
Rk ® Kp) — £(®;’:1 HGN @ Kp) such that the teleportage is channel-defined by A?" N-

4.5. Connections between all forms of post-quantum non-locality

The relationship between entanglement, steering, and non-locality is now well-studied within the scope of
quantum states. Since non-locality implies steering the non-trivial question is which entangled states
demonstrate steering, but not non-locality. It has been shown that for all possible measurements on a quantum
state, entanglement, steering, and non-locality are all inequivalent [30]. In post-quantum non-locality,
obviously we cannot automatically associate a process with measurements on a quantum state. Furthermore,
due to the GHJW theorem, post-quantum steering cannot be demonstrated when there are only two parties,
although post-quantum non-locality can be demonstrated with only two parties. Therefore, the relationship
between post-quantum non-locality and post-quantum steering is somewhat subtle. The resolution is, of
course, to consider a steering scenario with two (or more) uncharacterized parties and then generate correlations
by making a measurement on Bob’s system. If these correlations demonstrate post-quantum non-locality then
this implies post-quantum steering, since the whole process cannot be associated with local measurements on a
quantum system. However, post-quantum steering does not imply post-quantum non-locality, as demonstrated
in[18].

The relationship between post-quantum non-locality and post-quantum Buscemi non-locality was
discussed at length in the previous section. In particular, if we take a distributed measurement and for a
combination of local preparations of states, we obtain post-quantum correlations, then this implies post-
quantum Buscemi non-locality. As mentioned above, we leave it open whether there are post-quantum
distributed measurements that do not result in post-quantum non-locality for all possible preparations.

The next point to consider is the relationship between post-quantum Buscemi non-locality and post-quantum
non-classical teleportation. As in the relationship between non-locality and steering, if we take a teleportage and
make a measurement on Bob’s system, we obtain a distributed measurement. If the distributed measurement is
post-quantum, then clearly the teleportage was itself post-quantum. Likewise, one can obtain an assemblage from a
teleportage by preparing certain quantum systems for each of the uncharacterized parties. If the assemblage
demonstrates post-quantum steering then the teleportage was post-quantum. We see then that all these different
forms of post-quantum non-locality are somehow related to each other as summarized in figure 13.

What is the relationship between post-quantum steering and post-quantum Buscemi non-locality? At first
sight it seems difficult to relate the two, since in one scenario measurements are made, but preparations are made
in the other. However, given our picture of non-locality from the perspective of quantum channels we can find a
resolution. One way of generating an assemblage from a distributed measurement would be the following (see
figure 14): encode the classical inputs {|x;) } as elements of an orthonormal basis H,, for j € {1, ..., N},and
take a localizable channel A : L(HEN ® Hp) — ®§\]:1 K; ® Hp where K; is the Hilbert space associated with
the jth party’s input to a distributed measurement, and Hp is an auxiliary Hilbert space associated with Bob’s
system; apply the channel A to the input states {|x;%, ..., xy) }, and then apply the distributed measurement to
the systems now living in the Hilbert space ®§\’:1 IC;, which results in an assemblage {0, .. ayx,... xy }> -€-
operators acting on Bob’s system. Since this extra element is a localizable channel, it will not introduce any post-
quantum elements in its own right. Therefore, if we take a distributed measurement and turn it into an
assemblage in this fashion, if the assemblage is post-quantum then the original distributed measurement itself
was post-quantum.
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Post-quantum Post-quantum
Bell Non-locality Steering

U1 i

:> Post-quantum
Non-classical

Teleportation

Post-quantum
Buscemi Non-locality <:7

Figure 13. Implication relations among the different forms of post-quantum non-locality. Where there is a question mark next to an
implication, this means that it is open whether there is an implication. One can also infer from the diagram that post-quantum Bell
non-locality infers post-quantum non-classical teleportation, but the reverse implication definitely does not hold.

O-ah..‘,aN Ty N = R | ........ A I ........... :

Figure 14. A steering experiment constructed from a Buscemi non-locality one. The distributed measurement is depicted within the
dotted box.

Given figure 13, we immediately see that post-quantum non-classical teleportation cannot imply post-
quantum non-locality, since post-quantum steering does not imply post-quantum non-locality. That is, if post-
quantum non-classical teleportation and post-quantum non-locality were equivalent then, post-quantum
steering would imply post-quantum non-locality, which is not true. Furthermore, this also implies that either
post-quantum Buscemi non-locality does not imply post-quantum non-locality, or post-quantum non-classical
teleportation does not imply post-quantum Buscemi non-locality, or both. In figure 13 we indicate these main
open questions between all forms of post-quantum non-locality with a question mark next to the implication.
To prove, for example, that post-quantum Buscemi non-locality does not imply post-quantum Bell non-
locality, one would need to find a distributed measurement that cannot be realized via a localizable channel, yet
this channel does not give post-quantum correlations, e.g. it could be local-limited. We conjecture that all four
notions of post-quantum non-locality are inequivalent.

5. Discussion

In this work we have shown that the study of post-quantum non-locality and steering can be seen as two facets of
the study of quantum channels that do not permit superluminal signalling. We further showed that other
scenarios can be readily approached within this scope, and hence initiated the study of post-quantum Buscemi
non-locality and post-quantum non-classical teleportation. This general perspective allows us generate new
examples of post-quantum steering, and allow us to generate novel kinds of non-signalling, but non-localizable
channels. Furthermore, we have expanded the definition of almost quantum correlations to the domain of
quantum channels (with no reference made to measurements), allowing us to recover almost quantum
correlations and almost quantum assemblages in an appropriate domain.

Another channel-based perspective on the study of steering has led to so-called channel steering [32], as
briefly mentioned in section 3.2. Channel steering is a generalization of standard bipartite steering (involving
Alice and Bob), where now there is a third party, Charlie, that inputs a quantum system into a channel, and Alice
and Bob have systems that are the outputs of this channel. In a sense, this channel is then a broadcast channel.
Alice can perform a measurement on her system to demonstrate to Bob that she can steer his output of the
channel. Channel steering is distinct from the forms of non-locality considered here, but we can extend our
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channels to include this third party, and then study causal, but non-localizable, channels for post-quantum
channel steering. We leave this for future work.

The characterization of quantum non-locality is not only of foundational interest, but it is also of use in
quantum information theory. In particular, characterizing the set of quantum correlations is useful for device-
independent quantum information, since it allows for a way to practically constrain what, say, a malicious agent
can do in the preparation of devices. The study of Buscemi non-locality is of relevance to measurement-device-
independent quantum information, hence this paradigm may profit from the characterization of what is
quantum mechanically allowed in the setup, with direct consequences regarding randomness certification and
entanglement quantification [35, 36].

One of the main open problems of this work is to further probe the relationships between the different kinds
of post-quantum non-locality and steering. For example, as discussed, we know that post-quantum steering
does not always imply post-quantum non-locality, but does post-quantum Buscemi non-locality imply post-
quantum Bell non-locality? In figure 13 we summarized all the known relationships between all forms of post-
quantum non-locality. We conjecture that all of these different notions of post-quantum non-locality are
inequivalent, just as post-quantum non-locality is inequivalent to post-quantum steering.

On the way to proving our conjecture, it may be relevant to first study possible characterizations of all forms
of almost quantum non-locality in terms of a semi-definite programme. Such a connection was crucial in [18]
when showing that post-quantum steering does not imply post-quantum non-locality. Indeed, in this work we
gave an interpretation in terms of quantum channels to the original SDP characterization of almost quantum
asseblages, thus giving a physical underpinning of this set. This interpretation allowed us to generalize the notion
of almost quantum nonclassicality, hence now it would be interesting to relate back these general notions to
SDPs when possible.

Since we have shown that post-quantum non-locality and steering are two aspects of a more general study of
quantum channels, we hope this work motivates a resource theory of post-quantumness. This resource theory
could be approached from the point-of-view quantum channels, where the non-localizability of a channel is a
resource. This relates directly to the study of zero-error communication with quantum channels [37]. Given this
connection, we expect to find applications of post-quantum steering, just as we find that post-quantum non-
locality can be used to trivialize communication complexity. Furthermore, we might be able to find applications
of post-quantum Buscemi non-locality and post-quantum non-classical teleportation. Going further, there are
other possibilities for non-locality scenarios. In particular, one can consider scenarios where all parties’ outputs
are quantum systems.

Our work could fit neatly within the study of quantum combs [38], quantum strategies [39], quantum causal
models [40-43] and process matrices [20]. Indeed, since in certain scenarios in our work it is assumed that one
party has access to a quantum system but the global system may be incompatible with quantum mechanics, it has
asimilar motivation to the study of indefinite causal order [20]. It would be interesting to see how our non-
signalling processes interact with processes that could include signalling, and whether this interaction could be
used to understand the structure of post-quantum non-locality.

Last but not least, the resource theory of non-locality has been studied by only thinking of systems as black
boxes. That is, one does not need to consider Hilbert spaces, or other features of quantum mechanics, but only
consider the correlations associated with particular devices. The approach in this paper has been couched in the
language of quantum theory. Can we consider generalizing our framework further to consider trusted (and
characterized) devices that may not be quantum, but are objects that can be described within a broad family of,
say, generalized probabilistic theories [44]? Indeed, steering has already been studied within the broad
framework of these theories [45, 46]. The study of non-signalling channels in general theories is left for future
work and could then shed insight onto what is so special about quantum theory.
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Appendix A. Relevant concepts from quantum channels

In this section we review families of multipartite quantum channels which are pertinent when discussing non-
locality and steering. The general scenario we consider is that outlined in section 1.

Beckman et al[22] considered quantum channels in such a set-up of space-like separated laboratories,
especially those channels that are compatible with relativistic causality. That is, if two parties are space-like
separated, the channel mapping their input states to their output states do not permit communication between
them, called the causal channels. There are multiple equivalent mathematical definitions capturing this concept
[47], and we shall present the definition of semicausal and causal channels.

Definition 38 (Semicausal and Causal channels). Given a multipartite system and a bipartition
Sa U Sg = {1, ..., N} ofitselements,amap A : K(His;} ® Hisg) — LOH2, ® H3,)is semicausal from Sg to
Sy, denoted Sg >+ Sy, there exists a channel I': C(Hfg) — L(H3), such that for all states

out

P € DM @ M), trs,{ Alp,,]} = T(trs,[p;,])- A map that is semicausal for all bipartitions is called causal.

For every channel there exists a unitary operator U acting on a system and ancilla E, such that
Alp] = trz{U(p ® |0)(0]z) U} for somestate |0); € Hg. What is the form of a unitary dilation of (semi)causal
channels? For bipartite semicausal maps, works by Schumacher and Westmoreland [47], D’Ariano et al [26], and
Piani et al [27] provide the following characterization:

Theorem 39 (Unitary representation for bipartite semicausal channels [26, 27, 47]). Let Asp be a CPTP map,
with B == A. Then, there exists an auxiliary system E with input, intermediate and output Hilbert spaces,

HL, Hi and H,,, respectively, and quantum state |0) € HE, producing a unitary representation of the map as
Aaglp] = tz{ U (p ® 0)(0]g) UT}, where the unitary U can be decomposed as a unitary actingon A and E
followed by a unitary acting on B and E alone. That is,

U = Ugg Ung,
for Ugs: Hipe @ Hi) — Hiw @ Hiyand Uyp: Hiy ® HE, — How ® Hi,

The statement of this theorem is depicted in figure A1. When the map is fully causal, then there exist both a
decomposition in terms of U = Ugg Uyg and oneintermsof V = V,p Vg, where the U;and V;are unitaries,
for j € {AE, EB}.

This result can be generalized to multipartite causal channels. We now use notation where parties are
labelled by numbers going from 1 to N. Given a multipartite causal map Ay, there exist unitary operators
{ Uy} acting on local systems plus a global auxiliary system E such that A} y[p] = tz{U,(p ® 0)(0]g) U; }
where the unitary U, has the form of U, = HkN:1 Uz (e and 7 is a permutation of the parties {1,2, ..., N}. The
proofis presented in appendix D. 1.

A particular class of causal channels is the class of localizable channels [22]. These are channels implemented
by local operations performed by each party on their input and a share of a quantum ancilla (see figure A2). We
formalize this definition below.

Definition 40 (Localizable channels). A causal channel A,y islocalizable if there exists an N -partite ancilla
system R, with Hilbert spaces Hg := Hp, ® Hg, ® ... ® Hp, with R; labelling the jth subsystem of R, and state

or € D(Hp) such that, for all states p € D(®§\;1 ’Hijn),
A nlpl = @Y Ag [p ® orl,
where Ag, : L(HE, @ Hgr) — LOHEL.

Notice that in this definition for localizable channels, the ancilla oy is the same for all inputs to the channel
Ay N

Itis known that, already for bipartite systems, there exist channels that are causal but not localizable [22].
Furthermore, there are examples that are not entanglement-breaking [26], unlike the example given in [22].

Just as we considered the causal channels in terms of unitaries, we can consider localizable channels in terms
of unitary operators. Since there are only local maps in the localizable channels, it is straightforward to dilate
each of these maps if we increase the Hilbert space dimension of local systems R; in the ancilla. This gives the
following equivalent definition of localizable channels.

Definition 41 (Unitary representation of localizable channels). A causal channel A, __y islocalizable ifand
only if there exists an N-partite ancilla system E with input and output Hilbert spaces
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Figure Al. (a) A semicausal CPTP channel, where Bob does not signal Alice, has an equivalent representation where Alice performs a
unitary operation U, on her system plus an ancilla, and afterwards Bob performs a unitary operation Ugp on his system plus the
shared ancilla. (b) A causal map, where there exist a unitary decomposition for each ordering of the parties.
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Figure A2. A bipartite localizable channel, decomposed as local unitaries acting on a shared ancilla.

HE =HE o HE © . @ HE and HE, = HE, @ HE, © ... @ HEY, with jlabelling the jth subsystem of E,
and state [1); € HE such that, for all states p € D(®f]:1an),

Ar nIpl = tp{V (p @ [¥) (Ylp) VT,

where V = @, Uy, for unitary operators Ugs,: HE, @ HE — HE, © HE,.

In addition to the above unitary representation, there exists another equivalent representation. This
representation does not make reference to a tensor product structure in the ancilla, instead the unitaries in a
unitary representation of a causal channel are independent of each other, in a particular sense. Now we have a
global ancilla living in Hilbert space Hg and local ancillae Ey for each kth party, with input and output Hilbert
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spaces H;* and HJ%,, respectively. The local ancillae are introduced so that everything can remain unitary.
Therefore, the total input and output Hilbert spaces of all the ancillae are Hy @ HE @ HE ®...® HE¥ and
He @ HE, @ HE ®...@ HEN, respectively.

Definition 42 (Commuting unitary representation of localizable channels). A causal channel A _ v is
localizable if and only if there exists a global ancilla system E with Hilbert space Hg, alocal ancilla system Ej. for
each kth party, with input and output Hilbert spaces H1* and HE:,, respectively, and state

[V € He @ HE © HE ®...® H{Y such that, for all states p € D(®JN:1H{H),

j=1 k=0

N N-1
A ~lpl = trEEl,..EN{H U (p @ [0) (lp) [ ] U;,kE},

where Upz: HE, © Hp @ HEF — HE, ® He @ HE, is a unitary operator for all k, such that, for any
permutation 7 on theset {1, 2, ..., N}, HkN:1 Ui = HkN:1 Uz () E-

Since all the Hilbert spaces in this work are taken to be finite dimensional, these two unitary representations
oflocalizable channels are equivalent. This can be shown by a straightforward extension of lemma 4.1 in [48]. It
should be remarked upon that if we were to allow for infinite dimensional Hilbert spaces, then these two
definitions will not be equivalent, as pointed out by Cleve, Liu and Paulsen [49]. In full generality, since the first
unitary representation implies the commuting unitary representation, one could then take the commuting
unitary representation to be the most general definition of localizable channels when allowing for infinite
dimension Hilbert spaces.

Finally, from the point-of-view of non-locality and steering, the set of local channels is of interest.

Definition 43 (Local channel). A channel islocal if it is localizable, but with the additional constraint that the
ancilla state oy is a separable state, i.e.

OR = Zp/\|¢1>\> <¢1)\|R1 ® |¢)?\> <¢§\|Rz® - ® |¢§7> <¢§|RN>
A
for|¢§\)Rj S HR]..

It can be readily seen that localizable channels are more general than local channels. For example, the latter
set of channels cannot be used to generate entanglement between two parties, but a localizable channel can. We
can now summarize all the information about causal channels in the following theorem.

Theorem 44. Let C, Q, Q, and L be the set of causal, almost localizable, localizable, and local channels, respectively,
thenwehavethatC 2 Q 2 Q D L.

A natural question is given a channel A, can we decide if it belongs to C, Q, Q, or L. Wefirst restrict to the
bipartite setting, and we suppose that A is given a convenient representation, such as the Choi—Jamiotkowski
representation [50]. That is, for a bipartite setting channel A, the Choi state Q € D(H}, @ H, @ HE @ HE s
suchthat Q := (A ® 1) ® 1,2) (|®T) (D)), for

1 . .
———— i i oLk 1K)y s
N dHindH?n j k

with dy being the dimension of the Hilbert space . The Choi state € is positive semi-definite if only if A isa
channel. In order to decide if the channel A is causal, we can use the definition of causal channels along with this
property of Choi states to state the following result.

|®7) =

Proposition 45. A channel A is causal if and only if its Choi state Q satisfies the following:

1. Jadensity matrix ¥y € D(HY, ® Hyy,) suchthat tryp Q = 521 ® 1,2, and
out H'n n

1
dy

in

2. Jadensity matrix ¥, € D(Hi, @ Hay,) such that tryy @ =—1,1 ® %,

A consequence of this result is that there exist positive semi-definite matrices > and 3, such that the
conditions of the proposition are satisfied. In other words, one can decide whether a channel is in the set C using
asemi-definite programme (see [51]), and so one can efficiently decide this problem.

Deciding whether a channel belongs in the sets of Q and L is not as easily resolved as the case for C. For
example, while channels in L will have a Choi state {2 that is not entangled across the partition of party 1 and
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party 2’s respective Hilbert spaces, the converse is not true. That is, there are channels in C (but notin Q) whose
Choi state is also not entangled across this partition [22]. Furthermore, deciding membership in L (even up to
some error) is NP-hard, although it is possible to find conditions to test whether a channel is in the set L [51].

For case of deciding membership in Q (even up to some error), this is problem is also NP-hard [51]. In
addition to this, the set of localizable channels is not closed [34]. Gutoski has given a criterion for deciding ifa
channelis in Q, which is somewhat analogous to the condition of complete positivity for channels. However, in
general, there is no known way of deciding in finite time whether this criterion is satisfied. Indeed, as we will
pointout, this problem is deeply related to the problem of deciding whether certain correlations in a Bell test can
be realized by local measurements on a quantum state; a problem with deep connections to open problems in
mathematics [52]. For the case of deciding if a channel belongs to the set Q, we leave this to future work.

Appendix B. Bell non-locality

A traditional Bell experiment (sometimes called a ‘Bell scenario’) consists of N distant parties, each of them
having access to a share of a physical system. These parties input (in a space-like separated manner) classical data
into their device (labelled as x; € {1, ..., m} for party i), and obtain outputs (labelled as a; € {1, ..., d} for party
i) from the device. For simplicity, in a bipartite setting (i.e. for N = 2), we will use the notation of inputs being x
and y instead of x; and x,, with outputs being a and b instead of a; and a,.

The objects of interest in these Bell experiments are the correlations observed in the generated classical data,
i.e. the conditional probability distribution p(aj, ..., ay|x, ..., xy). Depending on the type of device that the
parties use (i.e. classical, quantum, possibly post-quantum), different correlations may be feasible in the
experiment. The sets of correlations that have been of main interest in the literature are the following.

Definition 46. Classical correlations, also referred to as ‘locally causal’ [1], are those allowing for shared random
variables A € A, and take the form

p(ay ..., anlxi, ..., xx) = > Dy(ailx1) ... DY (anlxn) p(N), (12)
AEA

where DA]‘ () € {0, 1}isadeterministic response function given A for the jth party,and p () is the distribution
over the variables A such that 3~ p(\) = 1.

Definition 47. Quantum correlations, arise if there exists a Hilbert space H, a state |¢)) € H, and (complete)

projective measurements {T1) }, . for each party i, such that the conditional probability distribution is given

ajlx;
by the Born rule:

play .. anlx, .o xy) = (WIS, L TIN), 0), (13)
and such that Hfil Hg?lxi = ?7:1 HE;:((]-];?;CWV for any permutation 7 of the parties {1, 2, ..., N}.

Definition 48. Given a bipartition S; U S, = {1, ..., N}of Nparties S; = {i}, ..., i} and S; = {isy1, ..., in}, @

conditional probability distribution p(a;, ..., an|xi, ..., xy) does not permit signalling across this bipartition if
p@iy oo Ailxiy s X)) = Z play, ..., anlxp, e XN) (14)
Aigiqsee> ain
PGy oo AigdXi oo Xiy) = Z pay, s anlx, s XN), (15)
Ay .oy A
forallinputs (x, ..., xy). Adistribution p(a;, ..., ay|x;, ..., xy) belongs to the set of non-signalling

correlations ifand only if it does not permit signalling across all bipartitions of the N parties.

There exist non-signalling correlations that do not have a quantum realization [17]. A relevant set of post-
quantum yet non-signalling correlations is that of the almost quantum correlations [25]. It is notable that, as
mentioned, the almost quantum correlations happen to comply with the physical information-theoretic
principles that have been proposed so far to characterize the quantum set [19]. We now present the definition of
the set of almost quantum correlations.

Definition 49. Almost quantum correlations, arise if there exists a Hilbert space H, a state [¢)) € H,and
()
ajlx;

(complete) projective measurements {II
distribution is given by:

} a,x; for each party i, such that the conditional probability

pay, .. anlx, ..o xy) = (YIS T ), (16)
such that Hf\i ) Hfjjxilw = Hﬁ-\]: . Hgf}?l)xﬂ])W),for any permutation 7 of the N parties.
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Appendix C. Einstein—Podolsky—Rosen steering

In analogy with the study of non-locality, in steering scenarios there are four sets of assemblages of particular
interest [18].

Definition 50. LHS assemblages (a.k.a. unsteerable assemblages) are those that take the form:

N
O, ...an|x1..xy — Z H D)x(ajlxj)a)n

X j=1

where ) is a shared random variable, Dy (ajlx;) € {0, 1} a deterministic response function for the jth party, and
oy € L(Hp)asubnormalised quantum state prepared by Bob as a function of A, such that Y, tr{gy} = 1.

Definition 51. Quantum assemblages arise when all N untrusted parties perform local measurements on a
shared (possibly entangled) quantum state that is also shared with Bob. That is, the elements of the assemblage
are

Oay...an|x..xy — trAl...AN[(Hal|xl & Ha2|x2® @ HaleN & ]I-B)p]r (17)

where for each jth party 3°, T4, = 1formsa complete projective measurement for each x;, and
p € D(H, ®...Q Hy ® Hp)is the state of the shared system between N parties (the jth party having Hilbert
space H;, for each j < N)and Bob (with Hilbert space Hj).

Definition 52. Given a bipartition §; U S, = {1, ..., N} ofthe Nuntrusted parties where S; = {i, ..., i;} and

Sy = {is+1 ..., in}, anassemblage {0, . axlx .. xy } dO€s Ot permit signalling across this bipartition if its elements
satisfy

04y s Qi Xigs o Xig — Z Oay, ..., an|xp, s XN (18)

Otig v Qig[Xigy o oo Xig = Z Oay, ..., an|xis ooy X80 (19)
iy e Qg

forallinputs (x;, ..., xn). Anassemblage {0y, . ay|x, .., xy} Delongs to the set of non-signalling assemblages if
and only if it does not permit signalling across any bipartition of the N untrusted parties, and

P = E : Oay, ..., an|x1, or XN
an

ap ...,

forallinputs (x;, ..., xn), where p; € D(Hp)is Bob’s reduced quantum state.

In complete analogy with the study of non-locality, we call post-quantum assemblages those assemblages that
are non-signalling yet are not quantum, and post-quantum steering is the demonstration that an assemblage is
post-quantum. Furthermore, one can now study more specific relaxations of the set of quantum assemblages;
this not only allows us to generate post-quantum assemblages, but if an assemblage does not belong to a set that
is a relaxation of the quantum set, it is definitely not quantum. A relevant set is that of almost quantum
assemblages [18], inspired by almost quantum correlations, and defined in [ 18] in terms of a semi-definite
programme (see [31]).

Before presenting the definition, we give a bit of simplifying notation. Givenasubset S C {1... N}, we define
the strings (ds|Xs) = (... ... ajlx; ... xi ... ;) such that j, k, I € S, i.e. strings of outputs given inputs for parties
in the subset S. The string of all N parties is denoted (d|x). To refer to particular inputs and outputs in the string
(dslXs), ifj € S, then [(as|xs)]; = (ajlx;), [as]; = aj,and [xs]; == x;. We then take the set of such strings, or
words, tobe W := {(ds|Xs) }s (which also includes the empty string & for when S is the empty set). In addition to
this notation we also define two words (ds|Xs) and (@¢/|X¢), to be orthogonal, denoted as (@s|¥s) L (@¢|X¢) if there
isaj € SN S suchthat[xg]; = [xslr]j but [as]; = [aS'/]j. We can now present the definition of almost quantum
assemblages [18].

Definition 53. An assemblage {0, . y|x ... xy} 1S an almost quantum assemblage if for the set of words
W = {(dg|¥Xs): S C {1...N}}with|W]|elements, there exists a matrix I" of dimension |W| x |W|, whose
elements are dg x dp matrices I{zz,), @,z indexed by words (ds|Xs) and (@4|X¢1), such that
@O»IT>=o,
(1) Tz, @z = 0 if  (@slXs) L (dg|%5),

(iii) Prz:,:a = Op»
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While this last definition is somewhat technical, section 3.1 presents an equivalent physical definition of the
almost quantum assemblages.

Appendix D. Proofs of the statements in section 1 and appendix A
In this section we provide the proofs of the theorems and propositions of section 1 and appendix A.

D.1. Unitary representation of multipartite causal maps

In this section we characterize multipartite causal channels (see figure D1). Consider an N-partite map that acts
onHiy, = QF HE ,, and denote by A, the N input systems (a.k.a. parties). The main theorem that we will prove
is the following.

Theorem 54 (Unitary representation for multipartite semicausal maps). Let A,y bea CP map, with
AN = ... =% Ay == Ay Then, there exist unitary operators Uy, g: HE ® Hﬁ,tk — HE,® Hﬁlt“ Jor

2< k<N -1, Upp: iy ® Hiy — Howe ® Hi and Uny: Hiy @ Hiyo — Howe ® Hoyo with Hiy,
being the kth Hilbert space of the system E between unitaries U, g and U g acting on the system plus an ancilla E
such that

A nlpl = tre{U(p @ 10)(0]g) U™},
whereU = Uy g... Uy

For bipartite maps this reduces to the result by [47]. To prove the multipartite statement, we need the
following lemma:

Lemma 55. Unitary representation for unitary semicausal maps [47]. Let Aypc be a unitary tripartite CPTP map. If
C > A themap can be decomposed as
Aupclpapcl = UpgpcUT,

with U = Ugc Uyp, where Ugc and Uyp are unitaries.

Now we can present the proof of the main theorem of the section.
Proof. Consider an N-partite map A,  y where Ay > Ay_; % ... > A}. Bytheorem 39, this channel can be
decomposed as:

Ay nlp) = tre{U(p @ |0) (0[x) U},

withU = UANE UAN71 . AE-
Now, the situation is the following: we have N — 1 input systems plus an ancilla E interacting via the unitary
Ua,_,..aE> and afterwards a unitary transformation Uy, g is applied to the ancilla Eand the last system Ay. The
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first part of this protocol, by lemma 55, can be decomposed as a unitary between 4; ... Ay_, and E, followed by a
unitary between Ay_jand E,i.e. Ua, | . e = Ua, ,gUa,_,..a k- Byapplying this way lemma 55 recursively,
onegetsUy, , .ar = Upy gUny, ,E-.. Ug k. It follows that the channel A;  y hasaunitary decomposition with
U= UANE UAN—lE"' UAIE- O

A multipartite map is then causal if it is semicausal for all possible orderings of the parties.

Appendix E. Assemblages, correlations, distributed measurements, and teleportages, and
the channels that define them

E.1. Proofs for correlations and assemblages

In this subsection we gives proofs of propositions 10, 11-13. Essentially the same proofs apply for the
propositions 3, 4, 5, since one can take Bob’s Hilbert space to be empty in a steering scenario, and for N > 2, we
recover a Bell scenario.

Proposition 10. An assemblage is a LHS assemblage if and only if there exists a local channel AL NB:
LHEN @ Hp ) — LHGY @ Hp

out

) such that the assemblage is channel-defined by AIf...N,B-

Proof. First we prove that if an assemblage has a LHS model, then it is channel-defined by alocal channel. The
first thing to note is that any LHS assemblage can be reproduced by the N untrusted parties making local
measurements { M., € L(H,)} (for the jth party) on a separable state p € ®]N: 1 Hj ® Hp, for H; being the jth
party’slocal Hilbert space. While some entangled states will only produce a LHS model assemblage, this means
that there exists another separable state that can produce the same LHS model assemblage. Without loss of
generality we can model this measurement as a projective measurement. This choice of local measurement
{M,)x,;} can then be simulated by preparing the input choice as the state |xj) € H,, where x; € {1, ..., m}. The
outcome of the measurement will be translated into a register with Hilbert space Hy, with outcomes |a;) € H,,
described by elements of an orthonormal basis; the register is initially prepared in the state |0) € H,. Therefore,
each jth party is associated with the Hilbert space H; ® Hy ® H,,, and to this system we apply the unitary

U= > My @ laj) {0l]aj) (xjl. (20)

xj,aj

After applying this unitary, the systems in the register associated with H; ® H,,, are traced out for each jth
system, leaving the system in Hy, which is then measured in the orthonormal basis |a;) € H,,,. Therefore, the
assemblage can be channel-defined by this whole local channel including the unitaries as the separable state p.

In the other direction, if given alocal channel then it channel-defines a LHS assemblage. This should be clear
since the local unitaries followed by a measurement acting on a share of a separable state, will only produce local
measurements on a separable state, and therefore the assemblage has a LHS model. O

Proposition 11. An assemblage { 04, . ay|x,... xy | 15 nOn-signalling if and only if there exists a causal channel

AP Np: LOHEN @ Hp,) — LOHGN © Hp,,) such that the assemblage is channel-defined by AC _y p.

in out

Proof. First we prove that an assemblage that is channel-defined by a causal channel is a non-signalling
assemblage. This follows immediately from the definition of causal channel. Given this channel-defined
assemblage {0y, . ayx... xy }» When we take a sum over outcomes aj, then this is equivalent to tracing out the output
system of a causal channel. This thus results in a new assemblage that is channel-defined by a causal channel
(with fewer output systems), and thus the initial assemblage is a non-signalling assemblage. It is also
straightforward to see, given the definition of a causal channel, that when tracing out the N untrusted parties, we
obtain a reduced quantum state for Bob that is independent of the inputs (xj, ..., xy).

We now proceed to the converse statement that given a non-signalling assemblage, then there exists a causal
channel such that the assemblage is channel-defined by it. First, if we fix orthonormal bases for the input and
output Hilbert spaces as {|x;) } and {|a;) }, respectively, then we construct the channel with Kraus decomposition

) = 3 Ko (trp{-} ® oap) Ky 1 1)

a:=(ay, ..., an),x:=(x, ..., Xn)
such that o,y € D(Hp),and
Koy = |a) (x1] @ |az) (0] ®...® |an) (xn] @ L. (22)

It can be readily verified that this is a channel, and when we prepare |x; ... xy) (x; ... xy| ® |0) (0| as input, act on
the input with I', and then measure in the basis {|4; ... ay) } on the N untrusted parties, we obtain an assemblage.
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It remains to show that channel I' is itself a causal channel given a non-signalling assemblage. This can be shown
inductively first tracing out the output system of party 1 as follows:

tr{I'()} = Z@hl[ > Kax(trp{-} ® Ualx)K:,x]la1> (23)

a az=(ay, ..., aN),x:=(xy, ..., XN)

:Z <x1|[ Z Ka,x (tr{-} ® Ualx)K:,x] |X1> (24)

a:=(ay, ..., an),x:=(x2, ..., XN)
=I"(tri{-}), (25)

where I : L(HY™' ® Hp) — L(HY ™' ® Hp) is another channel corresponding to parties 2 to N. The second
line above results from the fact that the assemblages are non-signalling, and new channel I'/ is written as

() = > Lax(trg{-} ® ou) Ly (26)
a:=(ay, ..., aN),X:=(x2, ..., XN)
for
Lax = |a) (%] ® |as) (x3] ®...® |an) (xn] @ 1p. (27)

The same argument works for any party j, and then given the new channel I/, one can trace out one or more of
the remaining parties’ outputs to get another channel, and so on. In this way, the channel I' channel-defines the
non-signalling assemblage, and is causal, thus concluding the proof. O

Proposition 13. An assemblage { 0,y |x,... xy )} 15 quantum if and only if there exists a localizable channel
AR Nt LCHEY @ Hp,) — LHGY ®@ Hp,,) such that the assemblage is channel-defined by AS N.B*

Proof. The proof of this is exactly the same as the proof for proposition 23, except the separable state in the proof
is replaced with an entangled state. O

As mentioned above, the proofs above easily generalize to the study of correlations. Indeed, one can run
through the above arguments and just have Bob’s system be the empty system, thus recovering the Bell scenario
forN > 2.

E.2. Proofs for distributed measurements and teleportages

In this subsection we gives proofs of propositions 32—34. Essentially the same proofs apply for the propositions
23-25 since, as with the connection between steering and Bell scenarios, one can take Bob’s Hilbert space to be
empty in a non-classical teleportation scenario, and for N > 2 we recover a Buscemi non-locality scenario.

Proposition 32. A teleportage is local if and only if there exists a local channel
Ay LQHL = QK @ Kp) — LIQ)—1 HiN @ Kp) such that the teleportage is channel-defined
by AT x-

Proof. The proof that a teleportage is channel-defined by alocal channel is a local teleportage is immediate from
the definitions, i.e. alocal channel sequentially combined with a local measurement is again a local measurement.
For the converse statement that given a local teleportage, there exists a local channel that channel-defines the
teleportage, the channel is constructed by havinglocal unitaries that ‘copy’ the outcome of alocal measurement
to alocal output register (with Hilbert space H ;) into an orthonormal basis of this register, which is then
measured in this basis. 0

Proposition 33. A teleportage is quantum if and only if there exists a localizable channel
AR v LML = ®iK; @ Kp) — LIQI_ HIN © KCp) such that the teleportage is channel-defined
by AIQ.,,N'

Proof. The proof of this follows the proof of proposition 44, except now with an entangled state instead of a
separable state. O

Proposition 34. A teleportage is non-signalling if and only if there exists a causal channel
AS LIQiH], = RiK; @ Kp) — LIQ-, HIN @ Kp) such that the teleportage is channel-defined
by AE..N'
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Proof. Given a teleportage that is channel-defined by a causal channel, the teleportage is non-signalling
essentially by definition: taking a sum over outcomes a; is equivalent to tracing out the jth output system of the
channel, resulting in a new teleportage for all systems not including j. For the other direction, of given a non-
signalling teleportage, we can construct a causal channel that channel-defines the teleportage. First, given the
elements T, ., oftheteleportage, since it is forms an instrument in general, we can straightforwardly
construct a channel from an instrument: we introduce output registers H, for each jth party and thus define a
channel I' : L(Q;K; ® Hp) — L(HGY ® Hp)in the following way:

rey= >  la)al @ Lt{), (28)

a:=(ay, ..., ay)

with [a) € H$N. Now with measurements on the register of the outputs 5", the teleportage is then channel-
defined by I'. It remains to show that I is causal. This follows from the definition of non-signalling
teleportages. O

E.3. Constructing channels from correlations and assemblages
Let us begin with proposition 8’s statement and proof.

Proposition 8. Given A{ _ () from p(ay ... an|x; ... xn), for all measurements M1, and all states p ', the
7 7
correlations

N N
P(all) a2/) ceo al/\flx1/> x2/) ceo xl/\f) =1tr ®Maj' AN ® Ly ®pxj' (29)
j=1 j=1

are local if the correlations p(ay ... an|x, ... xy) are local.

Proof. Given a distribution p(a; ... ay|x| ... x{;) of the form in equation (5) with A; _ y(-) being the channel in (4),
we first observe that this probability is invariant if for each state Pyl € D(H., ® Hi,,), wereplace it with P ;=
ij(]lguX ® |x;) (xil) Pyl (U, ® Ix;) (x;]), where 1], is the identity acting on HJ,,,. Therefore, for whatever state
P> the probabilities p(a; ... ay|x ... x;) are unchanged if we replace it with a state p’, = 2 O] © Ix;) (xils

: ,
where oy, € D(H],,) andis equal to tri,( px]/ngux ® |x;) (xjl). Furthermore, we apply a similar argument to the

general measurement M/, such that the distribution is conserved by replacing it with
7

My =3 Qua @ laj) (ajl, (30)

]

aux

such that Qo) = tryn (U, ® (ajhM, a]{), which lives in D(Hiux). Taking p;j, and {M ;]/ } jasour state and
measurements, we obtain the correlations

N
! !/ ! ! ! !
plals ay . aylx), x5 hx) = D>, > play..anlx .. xy)tr & Qaja! O ! (31)
aj...aN Xi...XN j=1
N
/

= Z Z p(al...aN|x1...xN)H q(ajlaj, xj, x;). (32)

ay ... AN X] .o XN j=1

Hence, the correlations p(a{, a2’, . a,(,lxl', x2’, . x{\,) can be seen as the correlations p (g ... ay|x; ... xy) acted
on by some local stochastic processing in the form of a conditional probability q(a;|a;, x;, x; ). Since local
stochastic processing cannot turn local correlations into non-local ones, the distribution

{p(al, ajy, ..., allxl, x7, ..., x{;)} will belocal provided that { p(a; ... ay|x; ... xx) } is. O

We now present proposition 17, and its proof.

Proposition 17. Given 33|y (-) from assemblage elements 0y, .. o\ |x,... xy» this channel is local-limited if for all
measurements P, € L(Hp) indexed by the choice xp and outcomes ag, the correlations
p(as, ... an, aplxy, .. %N XB) = tr{ Py, 0 . ay|x...xy ) A€ local.

Proof. Firstly, since the channel 33{ _ y s traces out the partof p/ thatis input into the channel, without loss of
generality, we canreplace p ' with oy ® o/, where oy € D(H3,) is some fixed state,and o,/ € D(Hp,,).
Therefore, the preparation of o/ following by the measurement M,/ can be incorporated into a single
measurement { Py » € L(Hp,,)},such that >a Paylg = g, This then simplifies the correlations to be

out:
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j=1 j=1

N N
p(aly .. aly aplxt . xh xp) = tr ®Mu]' ® Pag|xg[2f.__N,B ® lau,{®px]' ® Po)] . (33)
By expanding out this expression and using identical reasoning to the proof of proposition 8, we arrive at

N
! ! ! ! ! ! !
plals .. an, aglx)s . xhs Xg) = D > t{Pyl Oy aylnxd L] dCajlag, xj, x)), (34)
ay...aN X1...XN j=1
where g(ajla;, xj, x]-/ )is alocal conditional probability. Therefore, if tr{ P |/ 0y, ... ay|x,... xy } 18 10cal for all
measurements P/, the correlations are local, and the channel is local-limited. O

Appendix F. Unitary representation of non-signalling assemblages and teleportages

In this section we discuss the unitary representations of non-signalling assemblages and teleportages as outlined
in theorems 12 and 35. As outlined in the main text, the GHJW theorem [53, 54] can also be seen as a corollary of
theorem 12, and our generalization of the GHJW theorem is a corollary of theorem 35. We will only present the
proof of theorem 35 since theorem 12 is a special case.

Theorem 35 Unitary representation of non-signalling teleportages. Let { T,, ., } be a non-signalling teleportage.

Then, the teleportage is channel-defined by a channel A NB: E(®jH{n ® Kp) — LHGN @ Kp) ifand only if
there exist

- auxiliary systems E and E' with input and output Hilbert spaces, HE, and HE,, for E, with HE. = Ky and
HE = K for E/, that is the output Hilbert space of E' and B coincide;

- quantum state|R) € HE ® HE;

* unitary operator V : ®1an ® HE — HIN @ HE,

which produce a unitary representation of the channel AC_ NB: E(®ﬂ'{{n ® Kp) — LHGN @ Kp)via
AL xp0) = T, {V (g, () @ IR) (RIgp) V).

Furthermore, the unitary V can be decomposed into a sequence of unitaries Uy g: H,, @ HE — Hyq @ HE for
appropriately chosen Hilbert spaces Hy and H5, where for any given permutation 7 of the se { 1, ..., N}, we have that

V= Ura,eUreye - Uron, e
. . ! . .
where U} i is not necessarily the same as U i, for two different permutations wand 7'.

Proof. First of all, we can treat all N untrusted parties as a single party called ‘Alice’ (or A for short) that produces
an N-length string a := (ay, ..., ay). This treatment of N untrusted parties, and 1 trusted party is summarised in
figure D2, where the N parties are treated as a single Alice. This allows us to then consider a bipartite non-
classical teleportation scenario and a causal map A,p. First, write the map in its unitary representation with
A > B, this first equivalence then gives part of the statement of the theorem where Vis the unitary Vg, and the
state on g is the state of the right-hand system of |R). The second equivalence shows that the whole channel can
be seen as a localizable channel across the bipartition between Alice and Bob.

In order to prove the remainder of the theorem, it remains to decompose Vinto a sequence of unitaries. To
do this, we use the fact that among the N parties (that make up Alice) there cannot be any signalling. Therefore,
using theorem 54 we arrive at the full statement of the theorem. O

Appendix G. Almost quantum assemblages
Here we provide the proofs of lemma 16 and theorem 15, respectively.

Lemma. An assemblage {0, . ax|x...xy } S almost quantum if and only if there exists a Hilbert space H = K ® Hp,
quantum state [v) € H, and projective measurements {ILx; € LK)} foreach jth party where Zuj ), = Land

for all permutations wof {1, ..., N}, Hjil o, 1, 10) = Hjil Iy 110), such that

N
Oay...an|x;..xy — trK{H Hajlxj & ]lBlw> <7/)|} (35)

j=1
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By defining U := Vg, and the new ancilla R and map Ugp as follows

7
\|B|/:: . (Ump) = SWAP :

we obtain
Alice Bob Alice Bob Alice Bob

Il

-
3
=
O

( Vag

=

sy

U
1

Figure D2. This is an explanation of the essence of theorem 35, where N untrusted parties are treated as a single party called ‘Alice’.
This shows us that with respect to these collective parties, the unitary representation of the channel can be simplified to the statement

of theorem 35.

Proof. Consider a steering scenario where N parties steer one, by performing  measurements of d outcomes
each. Let D be the dimension of the Hilbert space of the characterized party, denoted by Hp.

We will first prove the ‘if’ direction.
Take an assemblage { o7z}, generated by the uncharacterized parties performing measurements Hfz’z)lxk on

the state p, which without loss of generality we can consider to be a pure state p = 1)) (¢)|. Let Wbe the set of
words as in definition 53. Now define the matrix I, with size |W| x |W|and whose elementsare D x D

matrices, as follows:
+
= trl’ o N H Ha;lx,' H H“}I"j’ P>

Lz, @150 ¢
i=1:S] j=1:5|

=, LN 11 Hayx p g

Io@uzl)
j=1:size(x')

Tasigne =t Ny [ e

i=1:size(x)

Fg’@ = OR.

By definition, this I satisfies (iii) and (iv) of definition 53. Since the measurements II, |, are projective, I
also satisfies condition (ii). The commutation relation of the projective measurements Il,,|,, on the state p

further imply (v).

Westill need to show that I" > 0. We hence need to show that I as an element of M,y (Mp) (i.e. of the set of
|[W| x |W]matrices whose entries are D x D matrices) is positive semi-definite, which is equivalent to showing
that I' as an element of M,y p (i.e. of the set of [W|D x |W|D matrices whose entries are complex numbers) is
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positive semi-definite [55]. We will hence show that I' € My p is a Gramian matrix (i.e. it can be written as
I' = V'V for some matrix V'), and since all Gramian matrices are positive semi-definite the claim follows.
First observe that entries of I" are of the form

Lastzoniasizon = Ul Tagzo.@aizn 1D
where [(ds]Xs)];, [(d@4|X$)]); denotes the (j, [) component of the matrix [ %), @0 |%4)> With

Lz, @izt € {Tuv: u, v € W},and|j), |I) elements of an orthonormal basis of H;.
By cyclicity of the partial trace we can also write

_ = T
Lagzo.@iizy = . vEFapizp) (Y1 Gayzg)

for Fayis1) Gaglzy) € {la} U {IL,: v € S}, where we have identified Il gz = IT;_ 5 Hax-
By defining H, as the Hilbert space of the uncharacterized parties, note that

(I Tasizsn@siznl) = > (1] Fapzolt) (@1 Gz ) 1D

ly)EHA
= Z (¥l G(Es|gs)|y>|l> (711 Fagizplv)
ly)EHaA
=1 > @1 GL YD X GH Fausple) 1y)
[y')EHA |y)EHa
=3 & iasizon V' Do ayraiiinly)
y' y

= (uliastzon [V ias1z0;»

where {|y)} isan orthonormal basis in H, such that (y'|y) = ¢}, and v, @10, = (il (7 F(a@{|%4) 1)) is some
scalar. Now we can further define the set of vectors

@iy @l%) € W,j =1 ... D, Whagiziy = Y Qpni@slsinly) o
y
and define the matrix V as that whose columns are each one of these vectors. We see then that I' = V1V, i.e. the
elements of I are all the inner product of vectors associated with a row and column. Therefore, I" is Gramian.

This proves the first part of the claim: an assemblage that arises from performing those types of
measurements on a quantum state are almost quantum assemblages.

For the converse, take an almost quantum assemblage {05z }. Let I' € M,y,(Mp) be its moment matrix
from definition 53. Let {|): i € W} be the Gram vectors of that matrix, i.e. I} ; = (i| j). Note that these vectors
have as entries elements of Mp (i.e. D x D matrices on complex numbers). For each uncharacterized party k,
define the subspace V%) := span{|(a; a'lxpX")): (@')1X") € Sg}, where Sg C W is the subset of words that do

ag| Xk

not involve party k. Note for clarity we have dropped the index indicating the subset of the parties. Now define:

Eg:l)xk = proj(Véfl)xk), Vx=1m, VYa=1:d-1, (36)
d—1
k k
E;p)ck =1- Z ‘gk|)xk' (37)
a=1

By definition, E®)_ are projection operators. Condition (ii) of definition 53 implies that E*) E;:fl) =0 if

ag|xx arl X al|x

a = a'.Hence, {E(X) }, defines a complete projective measurement for each x; for each party.

alxk
Now we will see the action of any sequence HkN:1 E a(fl)xk on |@). Let us start with just one projector:
k k k
EQ 12) =EN. [(alx0) + EX, (12) — [(adxp)

= |(axlx))
since by definition E éi‘l)xk| (arlxx)) = |(ak|xx)) and condition (v) implies that
((axd'|xi X, @) = ((axd’|xxX"), (aklxi))
forall (a'|x") € Sg.

The same reasoning can be applied to E®)

q actingonan arbitrary |v) with v € Sg:

E® 1v)=ERX |(arlxo) v) + EE (1v) — (arlxe) v)

ag|xe ag|x ag|xi
= |(axlxx) v) (38)
since |(aglxp) v) € Véfl)xk and condition (v) implies ((ax|xx) v, v) = ((ax|xx) v, (a|xx) v).
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Therefore,

oagzs = (@] ] ESJ2) =t [T EX, 12) (2]} (39)
k

=1:n k=1:n

This motivates the following definition: p = | @) (.

The next ingredient is to check that commutation relations of the projective measurements { E ;fl)xk} onthe
state p satisfy the conditions stated in the Lemma. This follows immediately from (38).

To conclude the proof, notice that the trace in equation (39) can actually be interpreted as a partial trace on
the Hilbert space of the uncharacterized parties Hy. This follows from understanding the set M;s;(Mp) as the
tensor product algebra Mjs; ® Mp [55]. First, invoke the isomorphism between projection operators
E € M5 (Mp) and projection operators E ® lp with E € M| 5|13 . Then, notice that an orthonormal basis {|¢) }
for Mjs(Mp) canbeseenas {|$) (¢| = |¢) (¢| @ Ip}, where {| )} in an orthonormal basis for H,. O

Theorem. An assemblage { o, . ay|x,...xx } S almost quantum if and only if there exists an almost localizable channel

A v LOHGN @ Hp,) — LOHGY © Hp,,) such that the assemblage is channel-defined by Alo___ N.B-

out

Proof. Given an assemblage channel-defined by an almost localizable channel, it is immediate that is an almost
quantum assemblage due to lemma 29. To show that an assemblage as defined in lemma 29 can be channel-
defined by an almost localizable channel, we can use exactly the same constructive argument as in proposition
17. That is, given projectors as in lemma 29, we can construct local unitaries that act on a register in the state |))
as in the proof of proposition 17. O
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