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Abstract

This paper proposes a regime-switching recurrent network model (RS-RNN) for non-stationary time

series. The RS-RNN model emits a mixture density with dynamic nonlinear regimes that fit flexibly data

distributions with non-Gaussian shapes. The key novelties are: development of an original representation

of the means of the component distributions by dynamic nonlinear recurrent networks, and derivation of a

corresponding expectation maximization (EM) training algorithm for finding the model parameters. The

elaborated switching dynamic nonlinear regimes make the RS-RNN especially attractive for describing

non-stationary environmental time series. The results show that the RS-RNN applied to a real-world

wind speed time series achieves standardized residuals similar to popular previous models, but it is more

accurate distribution forecasting than other linear switching (MS-AR) and nonlinear neural network

(MLP and RNN) models.
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1 Introduction

Regime-switching (RS) models [18] become increasingly popular in practice for density forecasting in envi-

ronmental sciences. They are found useful for modeling the distributions of sequentially arriving data, like

meteorological time series [4,6,12,16,20,32], hydrological time series [42], wind power series [1,13,34,38,48],

etc.. These switching models are essentially mixture density models that can approximate well data having

distributions of various shapes, which makes them especially attractive for fitting real-world time series con-

taminated by large amount of noise with unknown character [24,40]. Similar tools generating probabilistic

predictions along with probabilistic of their uncertainty are the mixture density neural networks [30], and

the kernel density models [47].

The application of the switching models to wind speed time series is currently of particular importance

for the supply of renewable wind energy and its integration into the power systems. Wind speed forecasts

are required to provide information about future wind energy generation and to reduce instabilities in the

energy distribution. Finding accurate solutions to the task of short-term wind speed prediction addressed

here is also of special interest for improving power plant scheduling and grid operations management [25].

The main difficulty in this task is the continuous fluctuation of the wind speed due to the stochastic character

of the atmospheric processes [8,31]. It is known that pressure, frontline passages and cyclonic conditions

lead to variabilities, like nonstationarity and sudden changes in atmospheric series [1,34,35]. The problem

is to find good descriptions of such time-varying data distribution with which the wind dynamics can be

explained and reconstructed adequately. Although a lot of research have been conducted on describing wind

series using various statistical, neural network and hybrid approaches [15,17,47], many of them do not have

enough potential for capturing complex variabilities beyond simple periodicities.

The statistical approaches to wind speed prediction build models using time-lagged explanatory vari-

ables [14,21]. Popular approaches are the linear autoregressive moving average (ARMA) models [8,24,27,48].

Their enhancements include heteroscedastic variance (ARMA-GARCH ) models [40,49], and various switch-

ing models, like Smooth Transition AutoRegressive (STAR) [35], Self-Exciting Threshold AutoRegressive

(SETAR) [35], and Markov Switching AutoRegressive (MS-AR) models [1,13,34,38]. The ARMA-GARCH

models are useful for learning series with non-stationary mean as they use effects from the series variance

that help to describe volatile dynamics. The STAR are mixture models that simulate the temporal evolution

of the data through weighted averaging of the component regimes, so that their proportions depend on the

observed past data. The SETAR and MS-AR are even more attractive as they construct the model from

alternating regime submodels, thus leading to more versatile representations. While the regime changes in

STAR and SETAR are controlled by the lagged values of the series, the shifts in the MS-AR technology is

driven by computable external factors which actually may reflect relevant meteorological features. Hybrid

compositions of multiple models have been found to outperform some of the individual models, but they are

computationally intensive and have characteristics that are difficult to analyze rigorously [17].

The Markov switching models emit mixtures of Gaussians governed by hidden unobservable regime vari-
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ables, which helps to fit flexibly data distributions with non-Gaussian shapes. These models explain well

shifts in time series because their regimes are controlled in a more sophisticated manner through an ex-

ogenous switching variable independent from the lagged observations. The regime-switching models evolve

as transitions between regimes and their effect on the full mixture is controlled by specific transition prob-

abilities. The environmental research investigates autoregressive MS-AR models that incorporate mainly

linear submodels [1,13,34,38]. They are found particularly suitable for tracking environmental processes

with temporally varying structure and non-stationary characteristics [2].

The neural network approaches build nonlinear models that feature elaborate relationships between

the selected variables. Some neural networks developed for processing wind series include: feedforward

multilayer perceptrons (MLP) [5,10,15,25,43] and recurrent neural networks (RNN) [3,7,26,33,44]. These

MLP networks take lagged inputs passed with tapped-delay lines. However, their training does not handle

directly the time dimension of the data, rather such time-delay neural networks are still trained with static

learning algorithms which yields suboptimal results. The RNNs are more convenient for describing time

series as they are dynamic models driven not only by external inputs but also by internal context signals

that carry temporal information. The rationale is that the context turns the network into a dynamic function

that reflects the time-dependencies in sequentially arriving data.

This paper proposes a Regime-Switching Recurrent Neural Network (RS-RNN) for accurate learning

of dynamic mixture distributions. The objective is to build a switching model with improved forecasting

potential using separate nonlinear neural networks for each distinct regime, such that they represent the

specific means of the distributions [37,39]. Since the widely used standard feed-forward neural networks are

static models that do not take into account directly the temporal relationships among the data, we consider

the dynamic recurrent neural networks (RNN) [46] as mechanisms for inference of time-dependent wind

models as suggested by relevant research [7]. During training the RNN become fitted to their full potential

of being dynamic machines which learn time-varying functions, and this is their advantage for modeling

environmental time series which exhibit fluctuations of changing magnitude.

The RS-RNN provides a novel mixture density model with dynamic nonlinear regimes that can capture

adequately time series and generate probabilistic forecasts. There are two main contributions in the presented

research: 1) design of an original switching model in which each regime component is made nonlinear

and truly dynamic with a recurrent neural network representation of the mean; and 2) development of

a maximum likelihood algorithm for estimation of all RS-RNN parameters formulated according to the

expectation maximization (EM) algorithm for mixture models [18,29]. This includes formulation of temporal

RTRL derivatives [46] for the recurrent network, likelihood gradients for the computation of the transition

probabilities and the regime variances. An essential novelty is that the temporal dimension of the model

is treated directly during training, while previous regime-switching models that account for spatiotemporal

information still treat the parameters with static estimation algorithms.
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This study relates the proposed RS-RNN to benchmark linear autoregressive (AR) models, other switch-

ing models with linear regimes (STAR, MS-AR) and nonlinear (MLP,RNN) tools on short-term forecasting

(from 1 hour up to 3 days ahead) of real-world wind speed time series. The research analyses the statistical

characteristics of the standardized residuals to demonstrate the importance of the nonlinearities and the

explicit treatment of the temporal dimension of the model. Using bootstrapped one-step ahead forecasts,

obtained with a methodology for neural networks [41], it is shown that RS-RNN achieves better density

predictions, which suggests that they are especially suitable for non-stationary time series according to the

fundamental literature [9,16,18].

This article is organized as follows. Section two introduces nonlinear regime-switching models and the

chosen recurrent Elman-type RNN architecture. Section three gives the EM algorithm for RS-RNN estima-

tion. The forecasting approach is explained in section four. Section five presents the experimental results on

time series modeling. Finally, a discussion is made and a conclusion is provided.

2 Nonlinear Switching Model Formulation

A regime-switching model [18] includes a number of component submodels with different parameters which

reflect alterations in the data characteristics. The shifts between the regimes are controlled by a discrete state

variable that follows an unobservable Markov process. Typically the state is assumed a realization of a two-

state Markov chain, that is the current state change depends only on the most recent state which carries all

the information from the past. The novelty here is elaboration of nonlinear submodels using recurrent neural

networks with internal memory processed by dynamical difference equations. Each component represents

a time-dependent density function, and their combination yields a mixture model with dynamic nonlinear

regimes that can approximate well non-Gaussian time series.

2.1 The Switching Regime Model

This research considers a regression model of time series data YT = {yt}Tt=1 with regime-dependent mean

µSt and noise variance σ2
St

where St denotes the regime (state). The state St ∈ {1, 2} is a discrete switching

variable representing the active regime at time t. The assumption is that there is a distinct submodel

associated with each regime, that is we have St = i for i = 1, 2 when two regimes are considered. The novel

mixture model developed here represents each of the regime mean components with a nonlinear function

fi(xt) generated by a dynamic recurrent network with autoregressive inputs xt = [yt−1, yt−2, ..., yt−l] where

l is the embedding dimension.
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The original nonlinear regime-switching model is given by the following equations:

yt = µSt + εt, εt ∼ N (0, σ2
St
) (1)

xt = [yt−1, yt−2, ..., yt−l]

µSt =

2∑
i=1

fi(xt)Ind(St = i)

σ2
St

=

2∑
i=1

σ2
i (xt)Ind(St = i)

where µSt is the mixture mean, εt is a zero-mean noise with mixture variance σ2
St
, fi(xt) and σ2

i (xt) are the

regime specific means and variances. The subscripts St specify dependence on a particular regime, which is

pointed to by the indicator function Ind(St = i), it returns one when St equals i and zero otherwise. The

notation fi,t = fi(xt) will be used as abbreviation for the mapping fi(xt).

The mean µSt and variance σ2
St

of the model depend on the unobserved state St. The state St is

conditioned on the past data with a certain regime probability ρi = P (St = i|Yt−1), 0 < ρi < 1. The regime

probability ρi accounts for the periods of time during which the chain has been in state i. The substitution

Yt−1 = {y1, y2, ..., yt−1} denotes the past information arrived up to time t.

The overall model emits a mixture of distributions each weighted by its corresponding regime probability:

p(yt|Yt−1) =

2∑
i=1

ρig(yt|St = i, Yt−1) (2)

where g(yt|St = i) is the density of the t-th observation for the i-th regime.

The probability density function g(·) conditional on the regime is chosen to be Gaussian:

g(yt|St, Yt−1) =
1√

2πσ2
St

exp

(
− (yt − µSt)

2

2σ2
St

)
(3)

where dependencies on the past inputs are omitted for clarity from the notation.

The latent state variable St is assumed to follow a first-order Markov chain specified by transition

probabilities. The transition probabilities specify how likely is the shift from one state to another, and thus

they navigate the evolution of the regimes. In an 2-state Markov chain the transition probability rij , i = 1, 2,

j = 1, 2, that the state St will take value i depends only on the most recent past state St−1:

rij = P (St = i|St−1 = j, Yt−1) = P (St = i|St−1 = j) (4)

where the probability rij should be restricted 0 < rij < 1 in order to avoid having an absorbing regime, and

all these probabilities should satisfy
∑2

i=1 rij = 1 [18].
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Figure 1. A graphical representation of the relationships between the variables in the regime switching RS-RNN

model with Elman topology. The grey nodes are discrete variables, and the remaining are continuous.

2.2 The Elman Recurrent Network

The original idea of this research is to represent the mean of each regime by a separate recurrent network.

Here Elman-type RNN [11] is considered as superior to feed-forward networks on temporal processing tasks

[23]. The Elman recurrent network has feed-back connections from every hidden node output to every hidden

node input via a context layer (Figure 1).

The RNN network is given as input a lagged vector of recent values xt = [yt−1, yt−2, ..., yt−l]. These

inputs are processed at the hidden nodes using the hyperbolic tangent activation function φ. The node

activations are memorized and serve as context from past information [c1,t, c2,t, . . . , cK,t], where K is the

number of hidden nodes. The output fSt,t is computed with dynamical equations using not only the given

time series data, but also previous information stored in the context layer.

The k-th hidden neuron, 1 ≤ k ≤ K, computes one element of the context according to the equation:

ck,t = φ

(
L∑

l=1

wklyt−l +

K∑
m=1

wkmcm,t−1

)
(5)

where wkl are the weights from the l-th input to the k-th hidden node, wkm are the weights from the m-th

context node (i.e., the feedback signal cm,t−1 from the previous step t− 1) to the k-th hidden node.

The RNN output is produced using the selected activation function φ as follows:

fSt,t = φfSt

(
K∑

k=1

vkck,t + v0

)
(6)

where vk are the weights from the k-th hidden node to the output node, and v0 is a bias term that feeds 1.
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3 RS-RNN Model Estimation

The learning problem [18,19,29] is formulated here as follows: given a training series of data YT = {yt}Tt=1,

find the RS-RNN model parameters: transition probabilities, regime network weights and variances θ ={(
(ri,j)

2
j=1, σ

2
i , [(wi,d)

L+K
d=1 , (vi,k)

K
k=0]

)2
i=1

}
which maximize the likelihood that the data have been produced

by a generator modeled by the network. Looking for solutions to this problem requires joint search for the

regime probabilities of being in a certain regime at a particular time, and for the transition probabilities,

weights and variances conditional on the regime characteristics.

The Expectation-Maximization (EM) algorithm [29] is recommended for estimation of mixture models

like the RS-RNN as it integrates out efficiently the latent state variable. This algorithm infers the unobserved

regimes during the expectation step (treating the parameters as known), and next updates the parameters

(transition probabilities, weights and variances) during the maximization step using the inferred regimes.

The EM formulation for switching models alternates the two steps seeking iterative maximization of the

expectation E[logL] of the total negative log-likelihood defined as follows [18]:

logL = −
T∑

t=1

[
log

2∑
i=1

ρig(yt|St = i, Yt−1)

]
(7)

where ρi = P (St = i|Yt−1) is the regime probability conditioned on the observed data.

3.1 Expectation Step

The E-step [18,29] calculates the expected total log-likelihood E[logL] via weighted averaging of the compo-

nent densities. During this E-step the model parameters θ =
{(

(ri,j)
2
j=1, σ

2
i , [(wi,d)

L+K
d=1 , (vi,k)

K
k=0]

)2
i=1

}
are

kept fixed, while the regime probabilities are computed using a filtering algorithm [18]. The Hamilton filter-

ing algorithm [18] involves three steps: generating the probabilities of being at each state, combining these

probabilities with the information available up to this moment, and updating the probabilities to account

for the most recently arrived data.

First, the particular regime probabilities ρi, i = 1, 2, are predicted using the chain rule for conditional

probabilities as follows:

ρi = P (St = i|Yt−1) =
2∑

i=1

P (St = i|St−1 = j)P (St−1 = j|Yt−1) =
2∑

i=1

rijP (St−1 = j|Yt−1) (8)

where the entries of the transition matrix rij , i = 1, 2, j = 1, 2, are set to the following predefined values

P (St = 1|St−1 = 1) = r11 and P (St = 2|St−1 = 2) = r22. Initially we have P (S1
1) = (1− r11)/(2− r11 − r22)

and P (S2
1) = (1− r22)/(2− r11 − r22).

Second, the joint density of the observation yt and the state St is obtained as follows:

g(yt, St = i|Yt−1) = g(yt|St = i, Yt−1)P (St = i|Yt−1) (9)

which uses the chosen conditional density g(yt|St = i, Yt−1) given that at time t the i-th regime occurs.
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Third, the probability of each regime is reevaluated (filtered) to account for the current observation:

P (St = i|Yt) =
g(yt, St = i|Yt−1)∑2
i=1 g(yt, St = i|Yt−1)

(10)

where g(yt|Yt−1) =
∑2

i=1 g(yt, St = i|Yt−1) is the density of the data.

3.2 Maximization Step

The M-step [18,29] computes the parameters that maximize the expected total log-likelihood E[logL] using

the inferred regime probabilities. The task to optimize the total log-likelihood suggests to take into account all

observations available for learning, before doing parameter estimation. This requires to perform a backward

pass over the data in order to improve the regime probabilities using subsequently arrived information, which

has not been available during the forward filtering pass.

3.2.1 Backward Smoothing

The smoothed regime probabilities should be conditioned on the full data sample. Efficient smoothing

recursions can be obtained according to the Kim’s algorithm [22]. It is based on the simplifying assumption

that P (St = i|St+1 = j, YT ) ≈ P (St = i|St+1 = j, Yt) although using the filtered state transitions may

lead to loss of information. Having this approximation allows us to compute efficiently improved smoothed

regime probabilities while moving backward over the series with the following equation:

P (St = i|YT ) =

2∑
i=1

P (St+1 = j|YT )P (St = i|Yt)P (St+1 = j|St = i)

P (St+1 = j|Yt)
(11)

which runs backwards in time t = T −1, ..., 1. Note that here the conditioning on the data in P (St+1 = j|Yt)

is denoted using Yt = {y1, y2, ..., yt}.

3.2.2 Parameter Estimation

Transition Matrix. The state transition matrix contains the probabilities P (St+1 = j|St = i) that govern

the movement from one regime to another. The entries of this matrix rij = P (St+1 = j|St = i) are obtained

with a technique using Lagrange multipliers [18]:

rij =

∑T−1
t=2 P (St+1 = j, St = i|YT )∑T

t=3 P (St = j|YT )
(12)

where i = 1, 2 and j = 1, 2 are indices running over the states.

Regime Means. The RNN weights are found by optimization using the derivatives of the expected total

log-likelihood. The key idea is to consider separately the log-likelihoods of each regime, that is to maximise

logLi conditioned on St = i (logLi = −
∑T

t=1 logLi,t). Here we compute the likelihood derivatives in the

Elman RNN model following the real-time learning (RTRL) algorithm [46] which takes advantage of the

full error flow through time. The RTRL calculates temporal likelihood derivatives by evaluating recursively
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and storing partial derivatives during a forward pass through the network. This is an online algorithm that

computes the approximate error gradient at every time step.

The differentiation of the instantaneous log-likelihood logLi,t = log g(yt, St = i|YT ) of an observation in

state St = i with respect to the hidden-to-output weights vk, 0 ≤ k ≤ K, of the concrete regime-specific

RNN network fi,t is carried out using the chain rule as follows (see Appendix):

∂ logLi,t

∂vk
=

∂ logLi,t

∂fi,t

∂fi,t
∂vk

=
(yt − µi)P (St = i|YT )

σ2
i

φ′
fick,t (13)

where φ′
fi

is the derivative of the hyperbolic tangent function at the output node φ′
fi

= (1− f2
i,t).

The RNN output derivatives with respect to the input-to-hidden node weights wnd, 1 ≤ n ≤ K, 1 ≤ d ≤

L+K, are formulated using a specific variable zd, 1 ≤ d ≤ L+K, which is necessary to distinguish between

weights on connections feeding inputs zd = yt−l, 1 ≤ d ≤ L, and weights on recurrent connections feeding

context signals zd = cd−L,t−1, L + 1 ≤ d ≤ L +K. These temporal output derivatives are obtained in the

following way (see Appendix):

∂fi,t
∂wnd

= φ′
fi

(
K∑

k=1

[
vk

∂ck,t
∂wnd

])
(14)

∂ck,t
∂wnd

= φ′

(
K∑

m=1

[
wkm

∂cm,t−1

∂wnd

]
+ δknzd

)
(15)

where δkn is the Kroneker delta function: δkn = 1 if k = n and 0 otherwise, and φ′ is the derivative of the

hyperbolic tangent at the particular hidden node. The initial derivatives are taken to be zero.

Regime Variances. The equations for the regime-specific variances are found analogously by differenti-

ating the expected total log-likelihood of each regime (logLi = −
∑T

t=1 logLi,t). After taking the derivative

with respect to the variance σ2
i of regime i, setting it to zero, and solving, we arrive at the following equation:

σ2
i =

∑T
t=2(yt − µi)

2P (St = i|YT )∑T
t=2 P (St = i|YT )

(16)

which accounts for the errors scaled by the smoothed regime probabilities.

4 Forecasting with RS-RNN

The challenge after learning the parameters of the RS-RNN model is to compute the predictive distribution

of the future, unseen data [18]. The predictive distribution can be obtained by weighted averaging of the

forecasted component densities:

p(yt+1|Yt) =
2∑

i=1

P (St+1 = i|Yt)p(yt+1|St+1 = i, Yt) (17)

which can be made after calculating the regime probabilities as follows:

P (St+1 = i|Yt) =

2∑
i=1

P (St+1 = i|St = j)P (St = j|Yt) (18)
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One-step ahead predictions of the overall mean can be generated using the regime-specific means com-

puted at the outputs of the recurrent neural networks E [yt+1|St+1 = i, Yt] = fi,t+1), i = 1, 2, by:

E [yt+1|Yt] =

2∑
i=1

P (St+1 = i|Yt)fi,t+1 (19)

which is actually a superposition of the network means.

5 Empirical Investigations

Empirical investigations with an implementation of the proposed regime-switching recurrent neural network

RS-RNN model were carried out to examine: 1) if it can fit well time series data and discover successfully

hidden, unobserved regimes; 2) how does its performance compare with related linear and non-linear models

for real-world wind time series processing, and 3) whether the obtained predictive distribution has sufficiently

good characteristics to motivate its practical usefulness.

5.1 Processing Simulated Series

The ability of the proposed approach to learn effectively was first tested over series generated by a two-regime

switching non-linear model with known parameters. Each regime submodel was represented by a recurrent

Perceptron network. The Perceptrons were given as inputs a constant, an autoregressive variable (the most

recent value from the series data with lag=1), and a simulated error term et which is a random variable

et ∼ N (0, σ2
St
). When training this error term is actually computed via the recurrent feedback connection

feeding the past network output. Overall we made an autoregressive Markov regime-switching recurrent

Perceptron model RS(2)-RP (1) defined as follows:

yt = µSt + εt, εt ∼ N (0, σ2
St
) (20)

xt = [1, et−1, yt−1], et ∼ N (0, σ2
St
)

µSt = f2(xt)St + f3(xt)(1− St), St = {1, 2}

σ2
St

= σ2
1(xt)St + σ2

2(xt)(1− St)

f1(xt) = φ(w1xt), w1 = [w11, w12, w13] (21)

f2(xt) = φ(w2xt), w2 = [w21, w22, w23] (22)

where the noise variances were σ2
1 = 0.1 and σ2

2 = 0.2, and the regime weight vectors were w1 = [0.2, 0.1, 0.8],

and w2 = [−0.2, 0.05, 0.6]. With these parameters the first regime features higher autoregressive term, lower

recurrent term and lower noise error variance. Note that since there are only two states we have labeled them

for clarity with 0 and 1, that is St = i(i = 1, 2). The transition probabilities were r11 = 0.9 and r22 = 0.8.

Using this switching model there were generated two groups of series with length respectively: T = 500,

and T = 1000. From each length we made 1000 replicas using sampling. Training was carried out starting
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with sensible initial weight values for the recurrent Perceptron selected as follows: w11 = 0.05, w12 = 0.05,

w13 = 0.2, and w21 = −0.05, w22 = 0.05, w23 = 0.1. The sensible weights were computer after conducting a

large number of preliminary random restarts by generating random weights from the interval [0, 1].

The RS(2)-RP (1) is a nonlinear model that was trained with the Extended Kalman Filter (EKF) [18,19]

implemented using the online RTRL derivatives obtained here especially for switching regime recurrent

networks (Eq. (13),(14),(15)). The EKF helps us to achieve stable and fast convergence of the neural

network training process. The filter was initialized with state variance 1.0e-3 and output noise variance 1.0.

The diagonal values of the covariance matrix were set to 1.0e1.

Table 1 gives the estimated average parameters and their Root Mean Squared Errors (RMSE) in paren-

theses. The values in Table 1 show that the learning algorithm finds adequate parameters, although the

precision varies with the sample sizes. These results indicate that the proposed approach has good learning

capacity to converge to the true parameters. Another confirmation of its potential is offered by Figures 2

and 3. Figure 2 offers a plot of the fitting one particular sample time series which shows that the curve

produced by the concrete learned switching recurrent Perceptron RS(2)-RP (1) model is really close to the

generated true series. Figure 3 shows that the evolution of the two regimes follows closely the changes in

the given true regime.

5.2 Processing Wind Time Series

A time series of wind speed measurements in ms−1, part of the ERA-40 atmospheric data archive, was

taken for experiments. The measurements have been recorded at a wind station located in Iceland. These

data are freely available from the European Centre for Medium-Range Weather Forecasts (ECMWF), at:

http://apps.ecmwf.int/datasets/data/era40-daily/levtype=sfc. The series contains data taken at

every 6 hours in years 2000 and 2001, there were no missing data and attempts to remove outliers were

not made. The whole series consists of 2928 points, which were divided into 1464 for training and 1464

for testing (this splitting was made to facilitate comparisons with similar research [1]). The midday values

recorded daily at 12:00 were used as targets, and previous values were taken to form input vectors1. The

data were scaled to the interval [0, 1] to enable neural network learning.

There were conducted experiments initially with autoregressive (AR) models to identify the proper lagged

input dimension, following recent developments on similar wind series [1]. Model selection was performed

using the Bayes Information Criterion (BIC): BIC = −2 logL + Θ log T , where Θ is the number of model

parameters θ. Starting with L = 1, and increasing the inputs up to L = 10, we found that optimal fit is

achieved using the three most recent lagged values in the series L = 3. That is why, in all of the following

empirical investigations we considered input vectors xt = [1, yt−1, yt−2, yt−3].

1This research considers univariate wind speed time series, and does not use additional atmospheric data which are prob-

lematic to handle and require additional expertise for achieving more accurate results [16].
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5.2.1 Studied Models and Algorithms

Reference Models. First we made a linear autoregressive model of order three AR(3). Second, we imple-

mented a Markov Switching linear Autoregressive Model (MS-AR) and a Smooth Transition Autoregressive

(STAR) model in order to make our results comparable to recent research [1,34,35]. The STAR was taken

as a mixture model that showed better accuracy than the alternative SETAR [35]. A version STAR(2, 3)

was made with 2 regimes each having a linear autoregressive model of order 3. The logistic function was

used to control the transitions between the regimes with slope parameter γ = 1.0, and midpoint parameter

c = 0.25. The switching RS(2)-AR(3) was elaborated assuming that the real cyclonic conditions lead to two

different types of wind: one with high wind speed, and another with low wind speed.

Next, we designed a non-linear feedforward Multilayer Perceptron MLP (3) neural network using 3 lagged

inputs (as well as bias terms) and 5 hidden nodes, selected after conducting preliminary model selection with

the BIC criterion. Since the MLP is a static model, we also made a dynamic recurrent network RNN(3)

[11] that reacts not only to the inputs but also to its temporal context. Finally, an RS(2)-RNN(3) model

with two regimes for high and low wind speed was built as proposed in this paper. The RNN(3) and

RS(2)-RNN(3) networks were constructed with 5 hidden nodes.

Estimation Algorithms. The linear submodels and the non-linear neural networks were treated using

Kalman (KF) and Extended Kalman Filters (EKF) [18]. Each run of the filter included 10 presentations of

the entire time series. The initial weight values were randomly generated from the interval (−0.5, 0.5). All

filters were initialized with the same plausible values: state variance 1.0e-3 and output noise variance 1.0.

The diagonal values of the covariance matrix were set to 1.0e1 [19].

The derivatives for EKF training of the MLP (3) model were obtained using the backpropagation algo-

rithm [36]. The derivatives for EKF training of the RNN(3) and RS(2)-RNN(3) were calculated using the

RTRL algorithm [46]. More precisely, the RS(2)-RNN(3) model was implemented using the novel online

RTRL derivatives obtained here especially for switching regime recurrent networks (Eq. (13),(14),(15)).

5.2.2 Experimental Technology and Measures

The training (in-sample) and testing (out-of-sample) performance of the studied models was examined using

rolling regression. The wind series was split into training and testing subseries. The training series was

used to infer the model parameters. The out-of-sample accuracy was examined by computing one-step-

ahead forecasts, and rolling sequentially by one-step foreword over the testing subseries. After predicting

the future points the model was retrained, and this algorithm repeated till the end of the testing series. Note

that due to the rolling procedure the parameters continuously stabilize because of the repeated retraining

over the future series data, and it is reasonable to obtained lower testing errors.

First, we calculated recommended measures for in-sample and out-of-sample evaluation of wind models

[28], namely the Mean Squared Error (MSE), the Mean Absolute Error (MAE), the Normalized Mean

Squared Error (NMSE), the Standard Deviation of Errors (SDE), and the coefficient of determination
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(R2). Second, we carried out statistical diagnostics using standardized residuals ϵ̂t = (yt− µ̂St)/σ̂St in order

to assess their deviation from normality. We computed the coefficients of skewness and kurtosis, the Durbin-

Watson (D-W ) and the Box-Pierce (Portmanteau) (B-P ) autocorrelation statistics. The results provided

in Tables 2, 3 and 4 below offer diagnostic results computed over the wind time series normalized to the

interval [0, 1].

5.2.3 Experimental Results

Tables 2 and 3 provide results from fitting the training and predicting the testing wind speed subseries (the

reported values in these tables are calculated over the normalized data illustrated in Figure 5). One can see

that the regime-switching RS(2)-AR(3) network model has lowest MSE, MAE, NMSE and SDE errors

on both the training and the testing subseries. Overall, we found that RS(2)-RNN(3 achieves improvements

in accuracy as follows: it is 16% better than AR(3), 4.5% better than STAR(2, 3), 13% better than MS(2)-

AR(3), 7% better than MLP (3) and 4% better than RNN(3). The values of the R2 coefficient from the

RS(2)-RNN(3) model are closer to 1 which means that it explains better than the other competing models

the variance in the data.

The results from the neural networks given in Tables 2 and 3 indicate that the recurrent networks achieve

lower errors compared to feedforward networks. The reason for this is that the recurrent networks have richer

potential for learning from dynamic data. This is the explicit handling of the temporal dimension that allows

us accurately to model the dynamic evolution of the fluctuations in time series, which confirms the theoretical

suggestions [11,19] and the practical findings from relevant research [3,7,33,44].

Table 4 reports the results from statistical diagnostics with the standardized residuals from the models.

It shows that all studied approaches lead to models with close skewness and kurtosis. All models have similar

values of the Durbin-Watson statistics close to 2.0, which means that there is no significant autocorrelation

in their residuals, and this finding is confirmed by the Box-Pierce tests. The nonlinear RS(2)-RNN(3)

mixture model demonstrates highest likelihood. Overall, however, the nonlinear neural network models

including the proposed RS(2)-RNN(3) are comparable but not better than the linear AR(3), STAR(2, 3)

and MS(2)-AR(3) models with respect to these statistical characteristics.

Figure 4 offers a plot of the wind series and its approximation by the studied models. It shows that RS(2)-

RNN(3) fits better the given series than the competing linear autoregressive (AR(3), switching STAR(2, 3)

and MS(2)-AR(3)) models, as well as the nonlinear MLP (3) and RNN(3) neural models. One can see that

the RS(2)-RNN(3) curve approximates more precisely the directional changes in the series.

Figure 5.a illustrates the curves of all observations, the mixtureRS(2)-RNN(3) network output computed

by µ̂t =
∑R

i=1 P (St+1 = i|Yt)fi,t+1, and the piecewise line of the maximally probable regime at each time

step. The curves in Figure 5.a demonstrate that the output values from the mixture network wrap closely

the observations. The computed maximally probable regimes indicate changes in the wind speed that can

be explained as follows: from high wind speed in January and February to low wind speed in March, next
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again to high wind speed in April, next to low wind speed in May and June, as well as in July and August,

and finally high wind speed till the end of the year.

Figure 5.b presents a plot of the probability distribution of the two regimes outputs, which are generated

by the corresponding recurrent networks, estimated using the transition matrix. It can be seen that actually

the means of the outputs from the regime networks are very close. Figure 5.c gives a quantile-quantile (Q-Q)

plot of the standardized residuals, which indicates that there is no significant deviation from normality in

them. Figure 5.d presents a correlogram of the standardized residuals. The correlogram of the residuals

shows that the autocorrelation in the residuals up to 30 lags is small and close to zero.

5.3 Evaluating the Predictive Distribution

When analyzing mixture models, like RS(2)-AR(3) and RS(2)-RNN(3), one has to judge their usefulness

through evaluation of the density forecasts, since they give more precise quantification of the model adequacy

compared to point forecasts especially when learning from noisy time series. We use the probability integral

transform (PIT) [9,37] which is a general measure for estimating forecasts that can be computed with the

empirical cdf of the variable of interest (here yt+1) without relying on distributional assumptions. The idea

is to produce a sequence of density forecasts
{
P̂ (yt|xt)

T
t=1

}
and relate it to the true but unknown sequence{

P̂ (yt|xt)
T
t=1

}
. When the generated density forecasts coincide with the true density the values of the PIT

are i.i.d uniform, that is:

{Zt}T+h
t=T+1 =

{∫ yt

−∞
P̂ (u|Ct)du

}T+h

t=T+1

∼i.i.d. U(0, 1) (23)

where h is the forecast horizon, xt ⊆ Ct, and yt are one-step ahead forecasts (actual realizations). That is,

the PIT is actually the value of the cdf at the forecast.

5.3.1 Bootstrap Sampling

The effectiveness of the RS(2)-RNN(3) network model on forecasting was investigated using bootstrap

sampling. We followed a bootstrapping methodology especially for nonlinear neural network models [41].

After fitting the network model to the given training subseries we obtained parameter estimates θ̂ and used

them to compute residuals ε̂t = yt− µ̂St(θ̂). Next, samples ε̂∗t from these residuals ε̂t were drawn, in order to

produce replicates of the observations {y∗1 , y∗2 , ..., y∗T } with the equation: y∗t = µ̂St+ ε̂∗t , 1 ≤ t ≤ T . After that,

the network model was re-estimated over the replicated series leading to a new set of adapted parameters

θ̂∗. Thus, we generated 1000 bootstrap copies of the RS(2)-RNN(3) model with different parameters. One-

step ahead forecasts were produced from each of these 1000 models in order to study the model predictive

performance. Since we operate on time series, this bootstrap methodology was implemented using block

resampling with blocks of preselected size 10. Figure 6 demonstrates the 95% prediction intervals computed

using bootstrapped one-step ahead forecasts from the RS(2)-RNN(3) model.
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5.3.2 Model-checking Analysis

The interpretation of the bootstrapped one-step ahead forecasts is made using a histogram of the computed

PIT values, followed by calculating some additional statistics for uniformity and independence. The PIT

measures whether the forecasted cdfs at every future time step are uniformly distributed. In other words, it

tells us that if the forecasted cdfs are a random sample U(0, 1) and i.i.d. then the model is correct.

Figure 7 gives a histogram of the calculated PIT values over the testing wind speed time series recorded

in year 2001. This histogram shows that the density forecasts from both studied models are good, because

they are approximately uniformly distributed between 0 and 1, since there are no significant deviations in

the different regions. One can observe that the deviations in the different regions in the histogram in figure

7.c are smaller than these in figure 7.a which indicates that the nonlinear RS(2)-RNN(3) model is better

in predicting the density than the linear RS(2)-AR(3) model.

The correlograms of the (Z − mean(Z)) series of PIT values from the investigated models plotted in

figures 7.b and 7.d provide a support for their independence. One can see that there are no significant

autocorrelations in the (Z − mean(Z)) series from the RS(2)-RNN(3) model, which suggests that these

PIT values are independent identically distributed. It should be noted that there are some short-term

autocorrelations in the PIT values from the RS(2)-AR(3) model.

6 Discussion

The presented work confirmed findings from similar studies that recurrent RNN models can generate highly

accurate predictions on wind time series [7]. Although the proposed enhancement with switching regimes used

an RNN architecture with hidden-to-hidden node feedback connections (Elman recurrencies), it can be taken

to improve Zipser networks with output-to-hidden recurrencies, because they have the same representation

potential [46]. The developed switching formalism (Sections 2 and 3) can be made also to use feedforward

MLP networks [10,25]. In both cases one simply has to replace the node activations (Eq.(5)), the equations

for the regime means (Eq.(13)) and the derivatives (Eq.(24),(25),(26)) with the ones from the corresponding

(feedback or feedforward) backpropagation training algorithm [36,46]. Our idea to use nonlinearities through

connectionist modeling allows also to modify and upgrade linear regime-switching models [1,13,34,38] by

accommodating nonlinear neural network regime submodels.

The suggested switching mechanism can be implemented to operate on data coming from multi-regime

sources by making several regimes (St = {1, ..., R}) according to the given formulae (sections 2.1,3.1 and

3.2). Such ensembles can eventually improve further the results because having multi-mixtures allows us

to describe more complex density shapes, but this depends on the characteristics of the given data. An

arbitrary increase of the number of regimes may not improve much the results on some data [29]. The

number of regimes can be determined with a preselection procedure using bootstrap sampling and the PIT

measure given here (Section 5.3), or using ranked scoring [16] as in previous research [30].
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7 Conclusion

This paper presented an original regime-switching recurrent network (RS-RNN) and related it to some

popular techniques for wind time series modeling. It was found that the RS-RNN model: 1) fits accurately

the data and features lower residuals than all other models on the training and the testing subseries; 2)

attains statistical characteristics (of the standardized residuals) which are better than these of the linear

models; 3) achieves more accurate density forecasting as it approximates better the distribution of the data.

This allows us also to obtain plausible confidence intervals that quantify the model uncertainty. The overall

conclusion is that RS-RNN provides a framework for probabilistic density modeling especially convenient for

describing non-stationary time series.

The RS-RNN offers a useful alternative not only for wind speed modeling as demonstrated in this paper,

but also for modeling various non-stationary real-world time series as well (such as environmental series,

medical series, etc.). Future research will use the regime-switching recurrent network to learn the stochastic

behavior of temperatures for valuation of weather derivatives.
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Appendix: Calculation of the RS-RNN Temporal Network Derivatives

Following the RTRL approach [46] to obtain the RS-RNN training rules involves the calculation of the

derivatives of the instantaneous log-likelihood with respect to each weight. Let assume that the i-th regime-

specific RNN network generates output fi,t = φfi (oi,t), where oi,t =
∑K

k=1 vkck,t. The derivative of the

instantaneous log-likelihood logLi,t = log g(yt, St = i|YT ) of an observation in state St = i with respect to

the hidden-to-output weights vk, 1 ≤ k ≤ K, in this RS-RNN is taken as follows:

∂ logLi,t

∂vk
=

∂ logLi,t

∂fi,t

∂fi,t
∂oi,t

∂oi,t
∂vk

=
(yt − µi)P (St = i|Yt−1)

σ2
i

φ′
fi

∂
[∑K

k=1 vkck,t

]
∂vk

=
(yt − µi)P (St = i|Yt−1)

σ2
i

φ′
fick,t (24)

The derivatives of the output with respect to input-to-hidden weights are taken in two steps:

∂fi,t
∂wnd

=
∂fi,t
∂oi,t

∂oi,t
∂wnd

= φ′
fi

∂
[∑K

k=1 vkck,t

]
∂wnd

= φ′
fi

K∑
k=1

[
vk

∂ck,t
∂wnd

+ ck,t
∂vk
∂wnd

]

= φ′
fi

(
K∑

k=1

[
vk

∂ck,t
∂wnd

])
(25)

where ∂vk/∂wnd = 0 because the hidden-to-output weights do not depend on the input-to-hidden weights.

Let assume that the k-th hidden node in the recurrent network produces output ck,t = φ (ok,t), where

ok,t =
∑L

l=1 wklyt−l +
∑K

m=1 wkmcm,t−1. Then we have:

∂ck,t
∂wnd

=
∂ck,t
∂ok,t

∂ok,t
∂wnd

= φ′
∂
[∑L

l=1 wklyt−l +
∑K

m=1 wkmcm,t−1

]
∂wnd

= φ′

(
L∑

l=1

[
wkl

∂yt−l

∂wnd

]
+ yt−l

∂wkl

∂wnd
+

K∑
m=1

[
wkm

∂cm,t−1

∂wnd

]
+ cm,t−1

∂wkm

∂wnd

)

= φ′

(
K∑

m=1

[
wkm

∂cm,t−1

∂wnd

]
+ δknyt−i + δkncm,t−1

)
(26)

which uses the fact that ∂yt−i/∂wnd = 0 because the inputs do not depend on the weights.

Both Eq. (25) and (26) for the derivatives of the dynamic variables are similar in that their rightmost

multipliers in the parentheses contain two similar terms. The first term accounts for the implicit effect of

the weight wnd on the hidden node activations ck,t and cm,t−1, while the second term is the explicit effect

of the weight wnd on the particular n-th network node.
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Table 1. Estimated average parameters and their RMSE errors in parentheses obtained after independent runs

over 1000 simulated series of increasing sizes T (500, 1000) generated with the chosen true parameters for the switching

recurrent Perceptron model RS(2)-RP (1).

Parameter True RS(2)-RP (1)

T = 500 T = 1000

w01 0.2 0.1922 0.2065

(0.0361) (0.0244)

w02 0.1 0.1176 0.1052

(0.0278) (0.0233)

w03 0.8 0.7924 0.8061

(0.0385) (0.0396)

σ2
0 0.1 0.1042 0.0927

(0.0110) (0.0156)

r00 0.9 0.8924 0.9071

(0.0451) (0.0467)

w11 −0.2 −0.2102 −0.1985

(0.0285) (0.0304)

w12 0.05 0.05516 0.0499

(0.0249) (0.0258)

w13 0.6 0.5838 0.6023

(0.0355) (0.0321)

σ2
1 0.2 0.2032 0.2154

(0.0157) (0.0129)

r11 0.8 0.7856 0.7926

(0.0445) (0.0482)
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Figure 2. Curves of a segment from a sample simulated time series and its approximation by an estimated

switching recurrent Perceptron RS(2)-RP (1) network.

200 300 400
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Reg
ime

t

 regime1
 regime0
 given

Figure 3. Filtered regime probabilities P (St = i|Yt) (shifts between the two regimes) within a segment from a

sample simulated time series given in Figure 2.
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Figure 4. A segment from the given wind speed time series recorded daily at 12:00 in 2000 and its approximation

with the studied linear and non-linear models. The MS(2)-AR(3) curve is lowest, slightly above is the STAR(2, 3)

curve, next is the AR(3) curve, and higher are the MLP (3), RNN(3), and RS(2)-RNN(3) curves.
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Table 2. Training (in-sample) errors of different linear and non-linear neural network models obtained over the

training wind speed subseries of 1464 data points recorded in year 2000.

Model MSE MAE NMSE SDE R2

AR(3) 3.4592 1.4506 0.3011 1.5814 0.8353

STAR(2, 3) 3.4669 1.4871 0.2974 1.6355 0.8218

MS(2)-AR(3) 3.4725 1.5122 0.3126 1.6123 0.8251

MLP (3) 3.1242 1.4127 0.2913 1.4486 0.8724

RNN(3) 2.9843 1.3862 0.2898 1.4294 0.8729

RS(2)-RNN(3) 2.8828 1.3514 0.2607 1.3812 0.8729

Table 3. Testing (out-of-sample) errors of different linear and non-linear models computed with one-step-ahead

forecasts, obtained via rolling regression over the testing subseries of 1464 future data recorded in year 2001.

Model MSE MAE NMSE SDE R2

AR(3) 2.6978 1.2694 0.2487 1.2954 0.8722

STAR(2, 3) 2.6681 1.2547 0.2462 1.2856 0.8718

MS(2)-AR(3) 2.6587 1.2496 0.2451 1.2811 0.8723

MLP (3) 2.7024 1.2915 0.2512 1.3398 0.8715

RNN(3) 2.6209 1.2536 0.2416 1.2972 0.8793

RS(2)-RNN(3) 2.5603 1.2362 0.2359 1.2654 0.8794

Table 4. In-sample statistical diagnostics calculated with standardised residuals computed after fitting RS(2)-

RNN(3) to the training wind speed series.

Model Skewness Kurtosis D-W B-P Log-lik.

AR(3) 0.3588 3.3816 1.9554 0.0617 319

STAR(2, 3) 0.2631 3.3125 2.0129 0.0753 350

MS(2)-AR(3) 0.2176 3.2652 2.0437 0.0742 348

MLP (3) 0.3427 3.3561 1.9216 0.0758 325

RNN(3) 0.3460 3.3627 1.9124 0.0740 351

RS(2)-RNN(3) 0.3415 3.5714 1.9580 0.0497 364
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Figure 5.a. Wind speed training series recorded daily at 12:00 from 1 January to 31 December 2000, and their

approximation by the mixture RS(2) − RNN(3) model, and changes in the regimes of high speed and low speed

(these are values normalized to [0, 1]).
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Figure 5.b. Estimated probability distribution of the outputs from the two regime recurrent networks, obtained

after learning from the training wind series.
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Figure 5.c. Quantile-quantile plot of the standardized residuals from the mixture RS(2) − RNN(3) model,

obtained after learning from the training wind series.
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Figure 5.d. Correlogram of the standardized residuals from the mixture RS(2)−RNN(3) model, obtained after

learning from the training wind series.
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Figure 6. Prediction intervals (95%) of of one-step ahead forecasts obtained by re-estimating the RS(2)−RNN(3)

model over 1000 bootsrapped samples of the wind speed time series.
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Figure 7.a. Histogram of the Z-values (probability integral transform) calculated with one-step ahead predictions

from the MS(2)−AR(3) model obtained via rolling regression over the testing wind speed time series.
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Figure 7.b. Correlogram of the (Z−mean(Z)) series calculated with one-step ahead predictions from the MS(2)−

AR(3) model obtained via rolling regression over the testing wind speed time series.
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Figure 7.c. Histogram of the Z-values (probability integral transform) calculated with one-step ahead predictions

from the RS(2)−RNN(3) model obtained via rolling regression over the testing wind speed time series.
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Figure 7.d. Correlogram of the (Z−mean(Z)) series calculated with one-step ahead predictions from the RS(2)−

RNN(3) model obtained via rolling regression over the testing wind speed time series.
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