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Abstract

The resistance indices, namely the Kirchhoff index and its generalisations, have undergone

intense critical scrutiny in recent years. Based on random walks, we derive three Kirchhoffian
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of (i) hitting times and (ii) the trace and eigenvalues of suitable matrices associated to the

graph, namely the asymmetric Laplacian, the diagonally scaled Laplacian and their Moore-
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1. Introduction

On a simple connected graph G “ pV,Eq, it is possible to define a multitude of descrip-

tors aimed at characterising and quantifying its structural properties, which are preserved

by a graph isomorphism. These descriptors, often referred to as graph invariants or topo-

logical indices, are particularly useful in practical applications. Amongst these descriptors,

the resistive indices — namely the Kirchhoff index and its generalisations, such as the

multiplicative and the additive Kirchhoff indices — have received considerable attention in

e.g. chemical applications, because they have proven to be useful in discriminating among

chemical molecules (=undirected graphs), with their atoms (=vertices) and bonds (=edges),

according to their cyclicity (see [1–8]).

A natural extension motivated by the node/edge structure of real networks is to think

of Kirchhoff-type descriptors defined on strongly connected and weighted digraphs. In this

context, there are ways to define effective resistances between nodes so as to provide a

possible generalisation of the Kirchhoff index (e.g.[9],[10]), even though it may be argued

that the physical interpretation of these generalised effective resistances remains elusive (for

instance: these effective resistances do not satisfy the triangular inequality).

Following the probabilistic approach to the Kirchhoff index based on the random walk on

a graph [1], this paper aims at providing different expressions of the Kirchhoff-type descrip-

tors in terms of (i) hitting and commute times and (ii) the trace and eigenvalues of suitable

matrices associated to the graph, namely the asymmetric Laplacian, the diagonally scaled

Laplacian and their Moore-Penrose inverses. Moreover, interesting relationships interlacing

these indices are derived.

It is worth pointing out that the Kirchhoff index for undirected and weighted graphs

gives a measure of the robustness of a network, i.e. the capacity of a network to maintain

functionality — through back-up paths — in the presence of node failure. In particular, it

is important to stress the monotonicity of the Kirchhoff index within this context. Indeed,

adding an edge, or increasing the weight of an edge, yields a graph with a smaller total

effective resistance, i.e. a smaller Kirchhoff index (see Theorem 2.7 in [11]).
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On the other hand, the additive and multiplicative Kirchhoff indices are not monotonic

even in the case of undirected graphs. Thus, the minimum requirement for an index to be

a suitable robustness measure is not satisfied.

Following the presentation of our analytical results, we show that, in the case of directed

networks, the Kirchhoff index can no longer correspond to a robustness measure (as defined

above), and we suggest an alternative interpretation within the framework of random walks

on graphs. Moreover, we further argue about the usefulness of the Kirchhoff-type descriptor

proposed with an empirical illustrative application to the World Trade Network.

2. Notation and preliminaries

We quickly recall some standard definitions and results about graph theory and random

walks on graphs; for more details the reader is referred to [12], [13] and [14].

A graph G “ pV,Eq is a pair of sets pV,Eq , where V is the set of n vertices and E is the

set of m pairs of vertices of V . Let us denote with |V | and |E| the cardinality of the sets V

and E, respectively. An undirected graph is a graph in which pj, iq P E whenever pi, jq P E,

whereas a directed graph (digraph, hereinafter) is a graph in which each edge (arc) is an

ordered pair pi, jq of vertices. Moreover, a weight wij is possibly associated to each edge

pi, jq, in this case we will have a weighted (or valued) graph.

By simple graph we refer to an unweighted, undirected graph containing no self-loops or

multiple edges [12].

A non-negative n-square matrix A, representing the adjacency relationships between

vertices of G, is associated to the graph (the adjacency matrix); the off -diagonal elements

aij of A are equal to 1 if vertices i and j are adjacent, 0 otherwise; if the graph has self-

loops the corresponding diagonal elements of A are equal to 1. If G “ pV,Eq is a digraph,

its adjacency matrix is in general asymmetric. In the sequel we denote by W “ rwijs the

weighted adjacency matrix of a weighted digraph G.

For an undirected graph G, the degree di of vertex i ( i “ 1, ¨ ¨ ¨ , n) is the number of edges

incident to it. In a digraph the in-degree d
pinq
i of a vertex i, is the number of arcs directed

from other vertices to i and the out-degree d
poutq
i of a vertex i is the number of arcs directed
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from i to other vertices. For weighted graphs we have d
poutq
i “

řn
j“1wij and d

pinq
i “

řn
j“1wji,

for i “ 1, ..., n. In general d
poutq
i ‰ d

pinq
i but

n
ÿ

i“1

d
poutq
i “

n
ÿ

i“1

d
pinq
i “

n
ÿ

i“1

n
ÿ

j“1

wij

and we refer to this quantity as the volume VolpGq of the weighted digraph G. For simple

graphs, we have VolpGq “ 2|E|.

In the sequel we deal with the general case of weighted digraphs and we focus on out-

degrees underlining that all the results can be carried out also for in-degrees taking the

transpose of the weighted adjacency matrix.

Let us assume that every vertex has at least one out-going edge which can include self-

loops, i.e d
poutq
i ‰ 0 for every i. In this case, the matrix D “ diagpd

poutq
i q is non singular

and we can define P “ D´1W as the transition probability matrix of the Markov chain

associated with a random walk on G. Thus pij “ wij{d
poutq
i is the probability of transiting

from vertex i to vertex j and it is different from zero when pi, jq P E.

If the graph G is strongly connected, i.e. for any pair of vertices there is a directed path

leading from one vertex to the other, P is irreducible and the associated Markov chain is

said to be ergodic. By the Perron-Frobenius theorem, there exists a unique positive vector

of stationary probabilities π “ rπjs such that πTP “ πT and πTe “ 1, where e denotes the

nˆ 1 vector consisting of all ones.

Recall that for any ergodic chain the matrix pI´P`eπT q is non singular and its inverse

Z is known as the fundamental matrix of the chain ([13], [14]). In case of a regular chain,

i.e. a chain for which P is primitive, we have

Z “
8
ÿ

k“0

pP´ eπT
q
k
“ I`

8
ÿ

k“1

pPk
´ eπT

q (1)

Another useful matrix associated to the graph G is the (ordinary) asymmetric Laplacian

matrix L “ ΠpI ´ Pq, where Π “ diagpπiq. It is well known that rankpLq “ n ´ 1, and

Le “ LTe “ 0.

Moreover, L`ππT is non singular, and its inverse rZ is related to the fundamental matrix

Z by the formula rZ “ ZΠ´1.
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If we denote by M the Moore-Penrose inverse of L, it can be proved that

M “ pI´ E{nqrZpI´ E{nq

where E “ eeT (see, for instance, [15], Lemma 14). Note that Me “ eTM “ 0.

The matrices M and Z play a central role in defining the expected hitting time. The

hitting time Tj is the number of transitions needed by a random walker on G to reach j

for the first time and its expected value, also known as mean first passage time (MFPT,

hereinafter), when she/he starts at i, is denoted by Hpi, jq. By convention Hpi, iq “ 0, @i

while for i ‰ j it is well known that

Hpi, jq “
zjj ´ zij
πj

. (2)

We recall from [15], Theorem 15, the following expression to obtain the expected hitting

time in terms of the Moore-Penrose inverse M of the Laplacian matrix L:

Hpi, jq “ mjj ´mij `

n
ÿ

k“1

pmik ´mjkqπk.

In contrast with the expected hitting time Hpi, jq, which is in general not symmetric, the

commute time, defined as

Cpi, jq “ Cpj, iq “ Hpi, jq `Hpj, iq “ mjj `mii ´mij ´mji (3)

is a symmetric measure.

In what follows, we will be interested in partial sums of hitting times. The Random

Target Lemma ([13],[16]), states that

n
ÿ

j“1

πjHpi, jq

is a constant K not depending on i, usually called Kemeny’s constant. It can be expressed

in terms of the eigenvalues νi ‰ ν1 “ 1 of the matrix P as

K “

n
ÿ

i“2

1

1´ νi
. (4)
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3. Kirchhoffian descriptors: Analytical properties

In this section we present a generalisation of the Kirchhoff-type indices, namely the

Kirchhoff index, the multiplicative and the additive Kirchhoff indices, for strongly connected,

directed and weighted (DW- hereinafter) graphs, both in terms of suitable Laplacian matrices

and their eigenvalues.

3.1. DW-Kirchhoff index

For a simple connected graph G “ pV,Eq, the Kirchhoff index was defined by Klein and

Randić in [2] as

RpGq “
n
ÿ

i“1

n
ÿ

j“i`1

Rij,

where Rij is the effective resistance as defined by Ohm’s law when a battery is placed between

i and j so that the current entering at i is 1 and the voltage at j is 0. An algebraic approach

to RpGq (see [3] and [4]) yielded the representation

RpGq “ n
n´1
ÿ

i“1

1

λi
, (5)

where the λi’s are the non-zero eigenvalues of the Laplacian L “ ∆´A , with ∆ “ diagpdiq

and A being the adjacency matrix of G. There is also an obvious connection between RpGq

and expected hitting times that was noticed first in [1]:

RpGq “
1

2|E|

n
ÿ

i,j“1

Hpi, jq.

This probabilistic definition of RpGq allows us to define for strongly connected, weighted

digraphs the DW-Kirchhoff index as follows:

SpGq “
1

VolpGq

n
ÿ

i,j“1

Hpi, jq. (6)

In what follows we derive two different equivalent formulas for the DW-Kirchhoff index.

The first one gives SpGq in terms of the trace of M, while the latter generalises formula (5).
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Proposition 1. For any strongly connected, weighted digraph G, we have

SpGq “
n

VolpGq
TracepMq; (7)

or equivalently,

SpGq “
n

VolpGq

n´1
ÿ

i“1

1

µi
, (8)

where the µi’s are the non-zero eigenvalues of the asymmetric Laplacian L.

Proof. Formula (7) derives easily from (2) taking into account that Me “ 0, while the proof

of (8) follows the same line of Corollary 2 of [17].

First of all, from the properties of the fundamental matrix Z, we get

pI´ E{nq “ pL` ππT
qZΠ´1

pI´ E{nq “ pL` eπT
qZΠ´1

pI´ E{nq.

Since pL` eπT q is non singular,

ZΠ´1
pI´ E{nq “ pL` eπT

q
´1
pI´ E{nq

and

SpGq “
n

VolpGq
TracepUT

pL` eπT
q
´1
pI´ E{nqUq

where U is an orthonormal matrix with 1?
n
e as its first column. Standard computations on

block matrices, show that the trace of the matrix pUT pL` eπT q´1pI´E{nqUq is given by

the sum of the non-zero eigenvalues of the asymmetric Laplacian matrix L.

Note that even if some of the eigenvalues of the Laplacian matrix L might be complex,

the sum in (8) is real since the complex eigenvalues are always present in conjugate pairs.

3.2. DW-Multiplicative Kirchhoff index

On a simple connected graph G “ pV,Eq, the multiplicative degree-Kirchhoff index,

proposed by [7] was defined as

R˚pGq “
n
ÿ

i“1

n
ÿ

j“i`1

didjRij, (9)
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where di is the degree of the vertex i and Rij is the effective resistance between vertices i

and j. An algebraic approach to R˚pGq yielded the representation

R˚pGq “ 2|E|
n´1
ÿ

i“1

1

λ˚i
, (10)

where the λ˚i ’s are the non-zero eigenvalues of the diagonally-scaled Laplacian Ld
“ ∆1{2L∆´1{2

(see [7]), or equivalently λ˚i “ 1 ´ νi, where the νi’s are the eigenvalues not equal to 1 of

the transition probability matrix P “ ∆´1A of the random walk on G (see [18]). Also, in

terms of expected hitting times, we get

R˚pGq “ 2|E|
n
ÿ

i,j“1

πiπjHpi, jq. (11)

where πi “ di{2|E|, for the case of simple graphs.

According to the expression above, we can define the DW-multiplicative Kirchhoff index

as

S˚pGq “ VolpGq
n
ÿ

i,j“1

πiπjHpi, jq. (12)

Note that by the Random Target Lemma,

S˚pGq “ VolpGq
n
ÿ

j“1

πjHpi, jq, for any i. (13)

Thus, up to a multiplicative constant, S˚pGq represents the average of the expected hitting

times with weights given by the elements of the stationary distribution vector π (see [16]).

In the next proposition we give alternative expressions of the DW-multiplicative Kirchhoff

index.

Proposition 2. For any strongly connected, weighted digraph

S˚pGq “ VolpGq TracepMd
q

where Md is the Moore-Penrose inverse of the diagonally scaled asymmetric Laplacian Ld “

Π1{2LΠ´1{2, or, equivalently,

S˚pGq “ VolpGq TracepΠMq ´ π TMπ. (14)

8



Moreover,

S˚pGq “ VolpGq
n
ÿ

i“2

1

1´ νi
, (15)

where the νi’s are the eigenvalues (not equal to 1) of the transition probability matrix P.

Proof. Formulas (13) and (2) give

S˚pGq “ VolpGqpTracepZq ´ 1q.

Taking into account Definition 9 and Lemma 14 in [15], setting
?
π “ p

?
π1, ¨ ¨ ¨

?
πnq

T and

Zd “ Π1{2
rZΠ1{2, we get

S˚pGq “ VolpGq pTraceprZΠq ´ 1q “ VolpGq pTracepΠ1{2
rZΠ1{2

q ´ 1q “

“ VolpGq pTracepZd
q ´ Tracep

?
π
?
π

T
qq “

“ VolpGq TracepMd
q.

Now, by the calculus rules of the Moore-Penrose inverse,

Md
“ pI´

?
π
?
π

T
qΠ1{2MΠ1{2

pI´
?
π
?
π

T
q,

by the idempotent property of pI´
?
π
?
π

T
q, and the equality Π1{2

?
π “ π we get

TracepMd
q “ TracepΠ1{2MΠ1{2

pI´
?
π
?
π

T
qq “

“ TracepΠ1{2MΠ1{2
q ´ TracepΠ1{2MΠ1{2

?
π
?
π

T
q “

“ TracepΠMq ´ Tracepπ TMπq “ TracepΠMq ´ π TMπ

Therefore expression (14) follows. Finally, the third expression is a direct consequence of

(4).

3.3. DW-Additive Kirchhoff index

On a simple connected graph G “ pV,Eq, the additive degree-Kirchhoff index, proposed

by [8] was defined as

R`pGq “
n
ÿ

i“1

n
ÿ

j“i`1

pdi ` djqRij, (16)
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where di is the degree of the vertex i and Rij is the effective resistance between vertices i

and j. By the random walk approach, it is known that 2|E|Rij “ Hpi, jq `Hpj, iq “ Cpi, jq

(see for instance, [17]). Thus recalling that di “ 2πi|E|, we can rewrite (16) as

R`pGq “
1

2

n
ÿ

i,j“1

pπi ` πjqCpi, jq

and this definition makes sense in any strongly connected, weighted digraph G. Thus we

introduce the directed weighted additive Kirchhoff index (DW-additive Kirchhoff index, for

brevity) as a weighted average of the commute times between each pair of nodes, with

weights given by pπi ` πjq{2:

S`pGq “
1

2

n
ÿ

i,j“1

pπi ` πjqCpi, jq. (17)

In the next Proposition we put in evidence an interesting link between the DW-additive

Kirchhoff index and the DW-Kirchhoff index, already noted by Yang and Klein for un-

weighted undirected graphs (see Theorem 3 in [19]), and, in addition, we give also a link

with the DW-multiplicative Kirchhoff index.

Proposition 3. For any strongly connected, weighted digraph

S`pGq “
VolpGq

n
SpGq ` nTracepΠMq. (18)

Moreover,

S`pGq “
VolpGq

n
SpGq `

n

VolpGq
S˚pGq ` nπTMπ (19)

Proof. Equation (18) follows from (3) and (7). To prove (19) we relate the last summand

in (18) with the DW-multiplicative Kirchhoff index. Indeed, by (14),

TracepΠMq “
1

VolpGq
S˚pGq ` π TMπ

and the assertion follows.

In the next Proposition we give an expression of the DW-additive Kirchhoff index in

terms of the sum of eigenvalues of suitable matrices (for the case concerning simple graphs,

see [20]).

10



Proposition 4. For any strongly connected, weighted digraph

S`pGq “
n
ÿ

i“1

1

αi
` n

n
ÿ

i“2

1

1´ νi
´ n (20)

where the αis are the eigenvalues of the modified laplacian matrix L ` ππT and the ν 1is the

eigenvalues (not equal to 1) of the transition probability matrix P.

Proof. Starting by (19), let us consider the term

VolpGq

n
SpGq ` nπTMπ “ TraceppI` nππT

qMq

Inserting the expression of M “ pI´E{nqZ̃pI´E{nq and taking into account the relations

Z̃ “ ZΠ´1 and πTZ “ πT , after some algebra we get

TraceppI` nππT
qMq “ TracepZ̃q ´ n.

The assertion follows by the definition of the matrix Z̃ “ pL ` ππT q´1 and by Proposition

2.

As a summarising device, we report in Table 1 below alternative expressions for the

Kirchhoff-type descriptors derived so far. Recall that the µi’s are the non-zero eigenvalues

of the asymmetric Laplacian L, the νi’s are the eigenvalues (not equal to 1) of the transition

probability matrix P while the αis are the eigenvalues of the modified Laplacian matrix

pL` ππT q.

Table 1: Alternative expressions of Kirchhoff-type descriptors

Index Hpi, jq or Cpi, jq Moore-Penrose Eigenvalues

SpGq
1

VolpGq

n
ÿ

i,j“1

Hpi, jq
n

VolpGq
TracepMq

n

VolpGq

n´1
ÿ

i“1

1

µi

S˚pGq VolpGq
n
ÿ

j“1

πjHpi, jq VolpGqTracepMdq VolpGq
n
ÿ

i“2

1

1´ νi

S`pGq
1

2

n
ÿ

i,j“1

pπi ` πjqCpi, jq TracepMq ` nTracepΠMq
řn
i“1

1
αi
` n

řn
i“2

1
1´νi

´ n
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4. Kirchhoffian descriptors: discussion and empirical application

The Kirchhoff index for the case of weighted, undirected graphs has been advocated as

a suitable measure of network robustness [21]. The fact that the index decreases mono-

tonically when an edge is added (or the weight of an existing link increased) allows us to

unambiguously associate a decrease in total effective resistance to a higher network robust-

ness. This monotonicity property, however, does not automatically extend to the additive

and multiplicative indices or to the DW-Kirchhoff index introduced in section 3.5

In this section we discuss the monotonicity property for (i) the multiplicative and additive

Kirchhoff indices (for undirected graphs) and (ii) the DW-Kirchhoff index, providing an

alternative interpretation for SpGq as a closeness centrality index. Such an interpretation is

illustrated with an empirical application to the World Trade Network, comparing also SpGq

with S˚pGq and S`pGq, within this context.

4.1. Discussion: Undirected graphs

The following example shows that the monotonicity property does not hold for the mul-

tiplicative and additive Kirchhoff indices, already within the context of undirected graphs.

Figure 1 reports first the adjacency matrix of graph G1. We then represent graphs G2 and

G3: G2 is identical to G1 with an added link between nodes 1 and 5, whereas G3 is identical

to G2 with a further edge between nodes 1 and 6.

Given the added paths between vertices, we would expect the additive and multiplicative

Kirchhoff indices to decrease. However, as can be seen from Table 2, while total effective

resistance RpGq decreases as links are added, R˚pGq and R`pGq do not follow a monotonic

trend: both indices increase (when considering the change between G1 and G2) and then

decrease (when considering the change between G2 and G3).

Thus, already in the undirected case the monotonicity property only holds for the Kirch-

hoff index and not for the additive and multiplicative variants. Taking this result into

account, we concentrate on the DW-Kirchhoff index in what follows.

5We wish to thank an anonymous referee for his insightful comment, directing our attention to this issue.
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Adjacency Matrix (Graph G1) Graph G2 Graph G3

»

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 0 0

0 0 1 0 0 0

1 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

●

●●

●

● ●

1
●

●●

●

● ●

1

Figure 1: Behaviour of RpGq, R˚
pGq and R`

pGq. Adjacency matrix of G1; G2 is equal to G1 with an

additional edge between nodes 1 and 2, whereas G3 adds a further edge to G2 between nodes 1 and 5.

Nodes in the adjacency matrix go from 1 to 6, nodes in graphs are numbered counter-clockwise, starting

from node 1 (labelled); added edge with a dashed line type.

Table 2: Behaviour of RpGq, R˚pGq and R`pGq

G1 G2 G3

RpGq 25 21 12.7

R˚pGq 81 107.6 85.6

R`pGq 92 95.3 66.1

4.2. Discussion: Directed, weighted graphs

In the examples below we analyse three possible outcomes for the behaviour of SpGq when

an edge is added with progressively higher weight: SpGq is (i) monotonically increasing, (ii)

conditional upon the weight of the new link or (iii) monotonically decreasing. Figure 2

depicts three strongly connected graphs G1, G2 and G3, one corresponding to each of the

cases (i)-(iii).

To grasp the behaviour of the relevant magnitudes of each example in some detail, Table

3 reports (for varying link weights) SpGq and its components, according to (6), noting that

it may be written as:

SpGq “
1

VolpGq

n
ÿ

i,j“1

Hpi, jq “
n

VolpGq

n
ÿ

j“1

H̄pjq, where H̄pjq “ p1{nq
n
ÿ

i“1

Hpi, jq
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i.e. H̄pjq is the average hitting time to reach node j, averaging over possible source nodes

in the network.

Behaviour of SpGq for varying levels of w P r0, 1.5s:

monotonically decreasing conditional upon w monotonically increasing

Graph G1 Graph G2 Graph G3
»

—

—

–

0 1 0

1 0 1

0 1 0

fi

ffi

ffi

fl

Ñ

»

—

—

–

0 1 0

1 0 1

w 1 0

fi

ffi

ffi

fl

»

—

—

–

0 1 0

0 0 1

1 1 0

fi

ffi

ffi

fl

Ñ

»

—

—

–

0 1 0

w 0 1

1 1 0

fi

ffi

ffi

fl

»

—

—

–

0 1 0

0 0 1

1 0 0

fi

ffi

ffi

fl

Ñ

»

—

—

–

0 1 w

0 0 1

1 0 0

fi

ffi

ffi

fl

●

●

●

1
●

●

●

1
●

●

●

1

Figure 2: Behaviour of SpGq for varying levels of an additional link w P r0, 1.5s. Graphs and adjacency

matrices of G1, G2 and G3. Nodes in the adjacency matrix go from 1 to 3, nodes in graphs are numbered

counter-clockwise, starting from node 1 (labelled); added edge with a dashed line type.

Table 3: Behaviour of SpGq

(column #) [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Graph G1 G2 G3

New Link 3 Ñ 1 2 Ñ 1 1 Ñ 3

Link Weight w 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50 0.00 0.50 1.00 1.50

SpGq 4.00 3.13 2.70 2.40 3.13 2.72 2.70 2.75 3.00 3.50 4.00 4.50

VolpGq 4.00 4.50 5.00 5.50 4.00 4.50 5.00 5.50 3.00 3.05 3.13 3.20
ř

i,j Hpi, jq 16.00 14.08 13.50 13.23 12.50 12.25 13.50 15.13 9.00 10.67 12.50 14.40

H̄p1q 2.33 1.58 1.33 1.21 2.33 1.58 1.33 1.21 1.00 1.00 1.00 1.00

H̄p2q 0.67 0.78 0.83 0.87 0.83 0.83 0.83 0.83 1.00 1.67 2.33 3.00

H̄p3q 2.33 2.33 2.33 2.33 1.00 1.67 2.33 3.00 1.00 0.89 0.83 0.80

In graph G1, nodes 1 and 3 are originally only connected through node 2, and setting up
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an edge from 3 to 1 decreases SpGq, irrespective of the link weight w. In graph G2, adding

a link from node 2 to 1 makes it possible to reach the latter without necessarily passing

by node 3. In this case, there is a switchover in the behaviour of SpGq (first decreases and

then increases) as w varies at some point between w “ 0.5 and w “ 1.5. Finally, an edge

from node 1 to 3 is added in the cycle graph G3, and SpGq increases, irrespective of the link

weight w.

Thus, there is no unambiguous behaviour for the DW-Kirchhoff index SpGq when adding

an edge or increasing the weight of an existing link. In order to understand the determinants

of this outcome, we focus on the general pattern of behaviour of average hitting times H̄pjq.

In all three graphs, the average hitting time of the source node in the new link remains

unaltered (possible paths to be reached as a target have not changed), whereas the average

mean first passage time of the target node in the new link decreases (possible paths to be

reached increase). Interestingly, the average hitting time of the remaining node(s) increases.6

Hence, the uneven behaviour in H̄pjq determines the outcome observed: when the decrease

in the target node is higher than the increase in other nodes, the DW-Kirchhoff index

decreases. Therefore, SpGq as formulated in (6) does not behave monotonically when a new

edge is added, hindering its use as a measure of network robustness for the case of directed

graphs.

4.3. Random Walk on Graphs and Kirchhoffian descriptors in the World Trade Network

A meaningful alternative interpretation of the DW-Kirchhoff index consists in considering

the mean of Hpi, jq from all source nodes i to a given target node j — denoted above by

Hpjq — as providing a local measure of closeness centrality (labelled random-walk centrality

in [22]):

Crwpjq “
1

Hpjq

conveying the notion of how immediately, on average, every node reaches node j.

6Examples involving networks with a higher number of nodes confirm this pattern.
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Under this light, SpGq´1 can be interpreted as a measure of average closeness centrality

across nodes:

SpGq´1 “
VolpGq

řn
i,j“1Hpi, jq

“
VolpGq

n2
ˆ

˜

n
řn
j“1Crwpjq

´1

¸

(21)

i.e. an harmonic average (up to a multiplicative term) of random walk centrality scores for

each target node j.7

Interpreting SpGq as a global measure of closeness centrality in a context of weighted,

directed graphs becomes useful when available indicators require to transform the original

graph into an undirected network, discarding crucial information as regards the direction of

flows. One such example within the field of economic networks is the World Trade Network

(WTN, hereinafter) (see, e.g.[24, ch. 2]).

The WTN is the graph representation of the recorded set of trade transactions in goods

and services between countries. Nodes represent trading partners and the outgoing and

incoming links stand for export and import flows, respectively. In its original form, it can be

interpreted as a weighted (by the flow value in USD), directed (asymmetric import/export

links) graph. However, applications usually transform original data to obtain either a binary

and/or symmetric network, in order to fit the indicators readily available [25, 26].

Our aim is to show that, by recourse to our DW-Kirchhoff index SpGq it is possible to

depict the evolution of global random walk closeness centrality of the WTN more accurately

than the picture portrayed by indicators computed on undirected and/or unweighted data.

Moreover, the standard formulation of the concept of random walk centrality from an

operational perspective (e.g. [22]) relies on the application of absorbing chain techniques

[27, pp. 128-130] to compute hitting times. On the contrary, by specifying SpGq in terms

of elements of the Moore-Penrose inverse of the asymmetric Laplacian in (7), there is a

reduction in computer execution time: absorbing chain techniques are based on the iterative

inversion of as many matrices as there are nodes in the network. Instead, our approach

7Note that SpGq´1 is not a measure of harmonic centrality (see [23]), as our harmonic mean is based on

Crwpjq scores, which are the reciprocal of node distances H̄pjq, i.e. the expected hitting times associated to

each target node j.
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allows to obtain all relevant magnitudes by computing only one (generalised) inverse matrix

for the whole network.

As an illustration, we depict the evolution of SpGq for the WTN throughout 1997-2015,

comparing it to effective resistance indices computed on undirected and unweighted WTN

setups. Data comes from the OECD Bilateral Trade by Industry and End Use (BTDIxE)

database.8 We considered a subset of 93 countries continuously present within the time-

span analysed.9 The transition probability matrices obtained from the WTN are irreducible,

thus, our graphs are strongly connected. Moreover, in order to allow for consistency in our

temporal analysis, we rescaled weights by setting VolpGq “ 1 when dealing with weighted

networks (see [26]).10

Table 4 and Figure 3 report the results. Columns [4]-[9] of Table 4 show the Kirchhoff-

type descriptor and its reciprocal for three different data setups: (i) weighted, directed;

(ii) weighted, undirected and (iii) unweighted, undirected WTN. The second graph on the

right-hand side panel of Figure 3 plots columns [5], [7] and [9], comparing random walk

closeness centrality across setups. Note from the Table that the coefficient of variation

(CV) of (the reciprocal of) our DW-Kirchhoff index (column [5]) shows the highest relative

variability, as is evinced from the graph. On the contrary, the CV associated to the index for

the unweighted/undirected case (column [9]) is only 0.023, i.e. the range of change in the

index has been only 1/10 of the change in 1{SpGq.11 The weighted/undirected index, though

evincing similar direction of change to that of the DW-Kirchhoff index, has a comparatively

8Data can be accessed at:

http://www.oecd.org/trade/bilateraltradeingoodsbyindustryandend-usecategory.htm.

The empirical exercise has been implemented using the R statistical programming environment. Data and

source code for reproducibility purposes are available from the authors upon request.
9These 93 countries represent at least 93.7% of the volume of world trade in all years considered. The

remaining countries have been gathered in a residual ‘Rest of the World’ region.
10Thus, our focus is on capturing changes in the structure of the trading network, separating these from

the evolution of aggregate trade volumes. Moreover, by normalising VolpGq “ 1 and keeping the number of

nodes constant, SpGq´1 precisely corresponds to a global measure of random walk (closeness) centrality.
11Note that column [9] is plotted in a secondary y-axis, to visually inspect its evolution in the same plot.

However, its range of change is comparatively limited.
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reduced amplitude of fluctuations (its associated CV being only 40% that of SpGq´1).

Table 4: World GDP growth, Trade Volumes and Kirchhoffian Descriptors (1997-2015)

[1] [2] [3] [4] [5] [6] [7] [8] [9]

Graph weights: Weighted Weighted Unweighted

Graph direction: Directed Undirected Undirected

Year gGDP Trade Vol. SpGq 1{SpGq SpGq 1{SpGq RpGq 1{RpGq

(in p.p.) (in 109 USD) (in 106) (in 10´8) (in 106) (in 10´8) (in 10´2)

1997 3.73 5363.9 26.72 3.74 28.31 3.53 102.33 0.977

1998 2.54 5347.3 22.93 4.36 26.48 3.78 100.78 0.992

1999 3.22 5614.7 27.51 3.64 29.37 3.40 101.11 0.989

2000 4.34 6398.1 31.51 3.17 32.05 3.12 99.04 1.010

2001 1.97 6178.7 29.51 3.39 32.23 3.10 98.92 1.011

2002 2.21 6438.3 30.17 3.31 32.69 3.06 98.56 1.015

2003 2.95 7526.0 27.30 3.66 33.76 2.96 98.14 1.019

2004 4.33 9176.3 25.85 3.87 33.30 3.00 98.02 1.020

2005 3.83 10406.0 25.09 3.99 31.87 3.14 97.64 1.024

2006 4.30 12019.2 24.38 4.10 31.78 3.15 96.72 1.034

2007 4.21 13815.0 22.10 4.52 30.63 3.26 96.23 1.039

2008 1.79 15922.7 22.28 4.49 33.04 3.03 95.79 1.044

2009 -1.72 12195.7 17.68 5.66 27.96 3.58 95.89 1.043

2010 4.30 15006.3 19.96 5.01 30.32 3.30 95.77 1.044

2011 3.16 17875.9 19.60 5.10 27.81 3.60 95.42 1.048

2012 2.45 18033.5 19.96 5.01 27.64 3.62 95.33 1.049

2013 2.59 18402.1 24.92 4.01 32.37 3.09 94.84 1.054

2014 2.83 18347.3 18.02 5.55 28.37 3.52 95.08 1.052

2015 2.77 16080.9 14.94 6.69 24.94 4.01 94.85 1.054

Descriptive Statistics

Min -1.72 5347.28 14.94 3.17 24.94 2.96 94.84 0.98

Max 4.34 18402.12 31.51 6.69 33.76 4.01 102.33 1.05

Mean 2.94 11586.73 23.71 4.38 30.26 3.33 97.39 1.03

STDev 1.41 4995.40 4.58 0.92 2.59 0.30 2.27 0.02

CV 0.480 0.431 0.193 0.211 0.086 0.089 0.023 0.023

Source: Authors’ computation based on OECD BTDIxE Database and UNSD National Accounts Database.
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The importance of these differences in capturing the volatility in the structure of world

trade becomes clear when comparing average random walk (closeness) centrality to the

dynamics of world GDP (column [2] in Table 4). The first graph on the right-hand side

panel of Figure 3 depicts columns [2] and [5] of the table. It evinces how the build-

up of increasingly higher (average) closeness centrality up to the Great Recession of 2009

was followed by a sharp decline, which only returned (close) to its pre-crisis level in 2014.

Thus, while an asset in good times, having a relatively low value of SpGq may render the

world economy more fragile on a trade cycle downswing because countries are, on average,

faster to be reached. Such a depiction could not have been portrayed with either the

weighted/undirected or unweighted/undirected indices.12

Understandably, by taking into account all available information on inter-country flows

(weight and direction), the DW-Kirchhoff index captures demand weaknesses in some spots

of the world economy that become blurred when trade flows are rendered symmetric (by

averaging import and export bilateral links) or binarised (by ignoring their relative im-

portance). Thus, as this empirical illustration shows, the DW-Kirchhoff index may have a

meaningful interpretation as a synthetic indicator of closeness centrality across nodes, within

the context of random walks on graphs.

Differently from the DW-Kirchhoff index SpGq— which is intended to provide a synthetic

global measure — the DW-multiplicative Kirchhoff index S˚pGq may be used to uncover

node-specific features. To see this, departing from (13), noting that it is valid for any i

(thus, also for their average), and recalling that VolpGq “ 1 in our WTN application, we

write:

S˚pGq “
n
ÿ

j“1

πjHpi, jq “
n
ÿ

j“1

πj

ˆřn
i“1Hpi, jq

n

˙

“

n
ÿ

j“1

πjHpjq “
n
ÿ

j“1

Hpjq

p1{πjq
(22)

Inspecting (22), note that the DW-multiplicative Kirchhoff index can be recognised as

an expression for Kemeny’s constant [13]. More interestingly, it is the sum of individual

node contributions. Each such contribution represents a ratio between the average hitting

12As can be confirmed by inspecting their almost uninterrupted upward trend or mild fluctuations.
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time Hpjq and the mean recurrence time 1{πj [27], i.e. how immediately reachable a target

node j is from all other source nodes, with respect to the time a random walker employs to

depart from and return to node j.

Thus, within the WTN, a node contribution which is smaller than one (Hpjq ă 1{πj)

indicates that the country is immediately reachable from other nodes, on average, relatively

faster than from itself, implying a lower aggregate indicator S˚pGq. On the contrary, a

value greater than one (Hpjq ą 1{πj) indicates that a country has a relatively lower mean

recurrence time with respect to how immediately may be reached from other source nodes,

implying a higher aggregate descriptor. Intuitively, the faster a country is reachable from

other partners rather than from itself conveys the idea of dense interconnectedness amongst

economies, and is reflected in a lower aggregate value of S˚pGq. Therefore, the addenda of the

DW-multiplicative Kirchhoff index allow, for example, to build country rankings according

to their individual contribution and compare these through time.13

The preference of SpGq over S˚pGq as a global descriptor stems from the fact that each

country’s contribution to S˚pGq is of the same order of magnitude, so a single node may

have a crucial influence on the resulting aggregate score. Moreover, the range of variability

of S˚pGq through time is bound to be limited when compared to SpGq, as evinced by figure

4 and columns [5]-[6] from table 5: when measured as a ratio with respect to the average

across years, SpGq depicts clear-cut yearly changes, whereas deviations of S˚pGq from unity

are negligible.

Finally, note that the decomposition of the DW-additive Kirchhoff index S`pGq in (19)

has SpGq and S˚pGq as key components. In the WTN application, for VolpGq “ 1, SpGq{n

is of the order 1ˆ105, whereas nS˚pGq and nπTMπ are each of the order 1ˆ103. Thus, the

evolution of SpGq dominates over the other two additive components, and the correlation

between S`pGq and SpGq is almost 1,14 allowing us to focus on SpGq as the global indicator

of interest in this WTN application.

13Though an interesting avenue for further research, such an exploration would take us beyond the scope

of the present paper, mostly focused on global Kirchhoffian descriptors.
14As may be corroborated by inspecting columns [5] and [7] of Table 5.
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Table 5: Comparison of Kirchhoffian descriptors, World Trade Network (1997-2015)

[1] [2] [3] [4] [5] [6] [7]

Original units Ratio with respect

to average

Year SpGq S˚pGq S`pGq SpGq S˚pGq S`pGq

(in 106) (in 104)

1997 26.72 93.95 29.61 1.13 1.0025 1.12

1998 22.93 93.84 25.54 0.97 1.0014 0.97

1999 27.51 93.77 30.46 1.16 1.0006 1.15

2000 31.51 93.74 34.77 1.33 1.0003 1.32

2001 29.51 93.70 32.62 1.24 0.9999 1.24

2002 30.17 93.70 33.32 1.27 0.9999 1.26

2003 27.30 93.74 30.24 1.15 1.0002 1.15

2004 25.85 93.74 28.68 1.09 1.0002 1.09

2005 25.09 93.75 27.85 1.06 1.0004 1.06

2006 24.38 93.74 27.09 1.03 1.0002 1.03

2007 22.10 93.80 24.64 0.93 1.0009 0.93

2008 22.28 93.77 24.84 0.94 1.0006 0.94

2009 17.68 93.67 19.89 0.75 0.9995 0.75

2010 19.96 93.66 22.34 0.84 0.9994 0.85

2011 19.60 93.67 21.95 0.83 0.9995 0.83

2012 19.96 93.60 22.34 0.84 0.9988 0.85

2013 24.92 93.62 27.67 1.05 0.9990 1.05

2014 18.02 93.58 20.26 0.76 0.9986 0.77

2015 14.94 93.54 16.94 0.63 0.9981 0.64

Descriptive Statistics

Mean 23.71 93.71 26.37 1.00 1.0000 1.00

Source: Authors’ computation based on OECD BTDIxE Database.

5. Concluding remarks

We have provided a generalisation of three Kirchhoff-type global indices — namely the

Kirchhoff index, the multiplicative and the additive Kirchhoff indices — for strongly con-

nected, weighted digraphs. Following a probabilistic approach, we specified the generalised

indices in terms of hitting and commute times, elements of the Moore-Penrose inverses and

22



Figure 4: Ratio with respect to average across years: SpGq and S˚pGq, World Trade Network (1997-2015)

trace-cum-eigenvalues of alternative graph Laplacian matrices. We showed that, for the

directed case, the Kirchhoff index can no longer correspond to a robustness measure, sug-

gesting an alternative interpretation. In fact, by means of an empirical application to the

World Trade Network, we showed how SpGq, the generalised Kirchhoff-type descriptor intro-

duced, provided a useful tool to study closeness centrality within the framework of Random

Walks on graphs. Complementarily, within our empirical application, we compared the syn-

thetic global indicator SpGq to a generalised multiplicative Kirchhoff index S˚pGq, which

instead may be used to uncover node-specific features. We also noted, within this context,

how the evolution of the generalised additive Kirchhoff index S`pGq is crucially determined

by the Kirchhoff-type descriptor SpGq.

At least two avenues of further research could be pursued.

On the one hand, a deeper exploration into Kirchhoff-type descriptors for directed,

weighted networks that evince a monotonic behaviour when adding an edge (or increas-

ing the weight of an existing link) is in place. Numerical examples considered depict an

interesting pattern: in the event of adding a new link, the average hitting time of the nodes

to which no new link was added increases. Formal exploration of this (and other) patterns

for the case of weighted, directed graphs is a challenging issue we expect to tackle in future
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work.

On the other hand, due to the continuously growing volume of empirical networks which

are weighted and directed, applications of these Kirchhoff-type descriptors may include eco-

nomic networks of different sorts (e.g. inter-industry production relations, firms’ ownership

structures, banks’ financial balance sheets). If the analytical framework holds, applications

in these directions (and others) may suitably follow.
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