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We discuss the effect of the time evolution of extra dimensions on CMB anisotropies and large-
scale structure formation. We study the impact of scalar fields in a low-energy effective description
of a general class of brane world models on the temperature anisotropy power spectrum. We show
that when the coupling between these scalar fields and matter evolves over cosmological timescales,
current observations of the CMB anisotropies can constrain primordial values of the fields in a
manner complementary to local, late-time tests of gravity. We also present the effect of these fields
on the polarization anisotropy spectra and the growth of large-scale structure, showing that future
CMB observations will constrain theories of the Universe involving extra dimensions even further.
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I. INTRODUCTION

The dominant force in the universe is gravity. According to modern cosmological theories, primordial density
perturbations were generated in the very early universe by quantum fluctuations, whereas gravity shaped the structures
of the universe [1]– [3]. This standard picture of structure formation by gravitational instability has gained remarkable
support from observations of the fluctuations in the cosmic microwave background (CMB) radiation [4]. In addition,
predictions of hierarchical clustering on scales up to 1000 Mpc in the context of cold dark matter theories (CDM)
are in very good agreement with observations of the large scale structures in the universe. These observations may
be used to determine the present cosmological parameters, such as the density of cold dark matter, the age of the
universe and the equation of state of dark energy among others.

These observations allow us not only to determine cosmological parameters, but also to test our theories of gravity
itself. So far, no observation of a deviation from General Relativity (GR) has been reported, but, as we shall see,
observations in the CMB and the large scale structures (LSS) provide important complementary tests to experiments
on Earth or in the Solar System which constrain deviations from GR. The growth of perturbations predicted by a
given theory of gravity is sensitive to the details of the theory; therefore, the study of perturbations can give important
insights about any deviations from GR at different cosmological epochs.

One well-known class of models where deviations from GR are predicted is that of scalar–tensor theories, in which
the gravitational sector contains not only a tensor field but also scalar fields. The Brans–Dicke theory is an example
of such a scalar–tensor theory (see [5] for a recent review on scalar–tensor theories). One particular feature of
these models is that Newton’s constant is no longer constant in the cosmological evolution; alternatively, in the
so–called Einstein frame, which can be obtained from the original theory after a conformal transformation and field
redefinitions, Newton’s constant is truly constant, but the masses of particles are no longer independent of the space-
time coordinates. Calculations of CMB anisotropies in scalar–tensor theories [6]– [8] show that the positions and
amplitudes of the acoustic peaks usually depend on the parameters of the theory. There is no general trend on
how the peaks are affected, because the dynamics of the fluctuations depend critically on the evolution of the scalar
field and its coupling to matter; but the positions and amplitudes of all peaks are affected. Similarly, the slope and
amplitude of the matter power spectrum are affected. In [6], [7] and [8] certain models of scalar–tensor theories and
their cosmological consequences are discussed in considerable depth. In [9] and [10] models are discussed in which the
scalar field plays the role of dark energy and couples to dark matter. In [11] it is shown that CMB anisotropies can
probe deviations from the standard Friedmann equation.

The studies of scalar–tensor theories and their cosmological consequences are of considerable interest, because
theories beyond the Standard Model of particle physics imply that GR is not fundamental. Prime examples of theories
in which deviations from GR are expected are those involving supergravity and superstrings (or their extension: M–
theory) [12]. In particular, models which predict the existence of extra dimensions can at low energies usually be
described as scalar–tensor theories. Typically, the low energy effective description of higher dimensional theories
contains many light scalar fields (so–called moduli fields), which couple to matter in a manner dependent on the
details of the higher dimensional theory. In this paper we shall discuss the scalar fields appearing in brane world
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models and their effect on the evolution of cosmological perturbations (for recent reviews on brane worlds see, for
instance, [13]– [15] and references therein). The brane world model we consider is of the two brane kind. The model
is quite generic and contains the well–known Randall–Sundrum brane world model (RS I) [16] as a special case. As
it turns out (see section II below), the model predicts the existence of two scalar fields at low energies. One of the
scalar degrees of freedom is associated with a bulk scalar field, i.e. a scalar field which can propagate in the higher
dimensional spacetime between the branes. The other scalar degree of freedom is related to the physical distance
between the branes. The two scalar fields couple to matter differently and thereby affect the growth of perturbations
in the universe each in their own way.

In the theory to be discussed, the coupling function of one of the scalar fields is constant, its value depending on
only one free parameter of the higher-dimensional theory. This parameter has to be chosen to be small in order for
the theory to be consistent with local (Solar System) experiments. The other coupling function, however, depends on
the second field itself. Barring any stabilising mechanism, this field evolves in time due to the cosmological evolution.
Thus, even though the coupling must be small today, it could have been larger in the early universe – in particular at
the epoch of matter–radiation decoupling. Interestingly, in our theory the matter coupling of the second field is driven
toward small values during the matter dominated epoch, meaning that the theory can easily be made consistent with
experiments in the solar system1.

In this paper we discuss the impact of the moduli fields on the evolution of cosmological perturbations. We compare
the predictions to the ΛCDM model. We furthermore assume that there is no potential energy for the scalar fields,
so that the energy density of the scalar field is always much smaller than radiation or matter energy density. In the
models used in this paper, the reported acceleration of the universe at low redshift is always caused by a cosmological
constant. This ensures that the distance to the last scattering surface and the time of matter–radiation equality is
only marginally affected by the presence of the scalar fields. Furthermore, in order to distinguish between the traces
of the different fields we study them individually.

The paper is organised as follows: In section II we briefly review the five dimensional setup of a brane world
theory and discuss the effective theory in four dimensions; readers familiar with brane worlds or not interested in the
details may skip this part. In section III we write down the action to be discussed in this paper and derive the field
equations. We also study the cosmological background evolution of the fields. In section IV we derive the perturbation
equations and discuss the influence of the individual fields on CMB anisotropies and the matter power spectrum, and
we conclude in section V. This paper is addressed to readers with different backgrounds, so we have attempted to be
comprehensive, and have included some pedagogical explanations to highlight salient points; interested readers should
of course consult the various cited review articles for further clarification and discussion.

II. A FIVE DIMENSIONAL THEORY AND ITS EFFECTIVE FIELD THEORY AT LOW ENERGIES

As an introduction to the theory studied in this paper, we begin with a discussion of a higher–dimensional theory
motivated from brane worlds. In these kind of theories, the standard model particles (and maybe also some other, ex-
otic, form of matter) are confined on a four2–dimensional object (called a brane), which moves in a higher–dimensional
space (known as the bulk). The brane itself carries some intrinsic tension as well. In our model, the bulk spacetime is
five–dimensional. This setup is well motivated by recent developments in string theory and provides a useful starting
point for more complicated models [18]. Also extracted from string theory is the fact that there is a second brane
somewhere in the bulk. Confined on this second brane, which has an intrinsic tension too, can be some form of matter
whose only direct interactions with the matter on first brane are mediated via gravity. This matter is a potential dark
matter candidate.

The physical spacetime stretches between the two branes, so that the branes form the boundary of the five–
dimensional spacetime. The space between is not empty; in general, some form of matter is expected to propagate
through the bulk: in the model under consideration, a scalar field is present. Taking this scalar field into account, the
overall model setup is presented in figure 1.

1Attractor–like behaviour has been found in other scalar–tensor theories as well [17].
2Three space and one time.
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FIG. 1. The setup of the two brane model. ψ denotes the bulk scalar field (with potential energy U(ψ)), which can propagate
between the branes. ρ1 and ρ2 denote the total (i.e. tension + matter) energy density confined on the individual branes. D is
the physical distance between the branes.

For energy densities much higher than the brane tension it has been noted [19] that the expansion of the four
dimensional brane universe is not governed by the usual four–dimensional Einstein equations, according to which the
expansion rate H is proportional to the matter density ρ; instead, it was found that the dependence of H on ρ is
H ∝ ρ. This behaviour was observed in one–brane scenarios [19] but was shown to hold in two–brane scenarios as
well (see in particular [20] and [21]). However, for densities much less than the brane tension, the usual law H ∝ √

ρ
can be recovered, albeit with some corrections coming from the scalar fields associated with the bulk dynamics.

As already mentioned in the introduction, the effective field theory at low energies (i.e. at energies much less than
the brane tension) can be written as a scalar–tensor theory with two scalar fields. The action of the theory was
derived in [22] and reads

SEF =
1

16πGN

∫

d4x
√−g

[

R− 12α̃2

1 + 2α̃2
(∂ϕ)2 − 6

2α̃2 + 1
(∂R)2 − V (ϕ,R)

]

. (1)

In this equation, R is the Ricci scalar, ϕ and R are the two scalar fields and V is the total potential energy of the
fields. α̃ is a parameter of the higher-dimensional theory, which will be left free, though note that models of particle
physics, in general, will make predictions about its value [23]. In the Einstein frame, each individual matter form on
the branes usually couples to the fields ϕ and R, so that the action has the general form

SMatter = SMatter,1(ψ1, A(ϕ,R)gµν) + SMatter,2(ψ2, B(ϕ,R)gµν), (2)

where ψ1 denotes the matter form on brane 1 and ψ2 the matter form on brane 2. The functions A and B in general
depend on both fields and are not equal.

The interpretation of ϕ and R is not straightforward, but the fact that there must be two scalar degrees of freedom
at low energies can be understood as follows: first, the bulk scalar field can propagate along the brane directions,
because it depends on all spacetime coordinates. The other degree of freedom which appears in the low energy effective
action is related to the distance between the branes, which is a scalar function of the four spacetime coordinates. We
note furthermore that the case where α̃ is zero (corresponding to the second, field-dependent coupling we consider
below) subsumes the Randall–Sundrum two brane model, where there is no bulk scalar field.

The matter couplings are determined by the functions A and B, or, to be more precise, by their derivatives with
respect to ϕ and R. For the brane world model we consider, the coupling functions are given by (see [22] for details)

β(1)
ϕ ≡ ∂ lnA

∂ϕ
= − 2α̃2

1 + 2α̃2
, β(2)

ϕ ≡ ∂ lnB

∂ϕ
= − 2α̃2

1 + 2α̃2
, (3)

β
(1)
R ≡ ∂ lnA

∂R
=

tanhR

1 + 2α̃2
, β

(2)
R ≡ ∂ lnB

∂R
=

(tanhR)−1

1 + 2α̃2
. (4)
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The functions β depend on the details of the higher dimensional theory, as they provide all information about the
nature of the higher–dimensional space (such as its geometry or curvature) relevant at low–energy. Throughout this
paper we shall consider coupling functions of the form above.

There are different ways of obtaining the effective theory at low energies. In [22], the moduli space approximation
was used, in which one integrates the heavy Kaluza–Klein like excitations out. Strictly speaking, the action above
is only valid if the Kaluza–Klein excitations, corresponding to massive particles in four dimensions, are negligible.
For example, massive partners of the gravitational zero mode, described by gµν , are neglected. Another method to
derive the low–energy effective action was used in [24]– [27], which is based on solving the five–dimensional Einstein
equation to linear order, and then projecting onto the brane on which the standard model particles are confined. The
theory is then written in the Jordan frame. This method is widely used in works on brane cosmology and has the
advantage in that it provides a geometrical framework for the full five–dimensional problem3. However, it should be
noted that the action with the two methods lead to the same low–energy effective theory: after a transformation to
the Einstein frame, the action obtained by the projective approach is equivalent to the action (1).

In practical terms, the use of the moduli space approximation limits the backwards extrapolation in time; for the
use of the moduli space approximation to be valid, we require that the Hubble scale be much greater than the scale
under consideration. So, H(z) ≈ (1 + z)2H0 must be much less than k−1, the size of the extra dimension, so we can
see for instance that millimetre (about 1013GeV−1) scales can be dealt with using this approximation to redshifts
of about 1015 (while numerical integration, of which more discussion in section IV, typically starts at redshifts of
109). As already said, in deriving the action above, one assumes that Kaluza–Klein excitations are negligible at these
redshifts. For example, the bulk scalar field in this approximation does not depend on the extra dimension. We
further assume that such excitations are not produced at the epochs which we are interested in. This should be valid
because any excitation corresponds to a heavy particle.

Clearly this theory, described by the action in equation (1), is different from GR, and therefore gravitational
experiments constrain parameters of the theory. In order for the theory to agree with experiments on earth and
observations in the solar system, the parameter α̃ has to be rather small (α̃ ≤ 10−2) and the field R today, should be
small (R ≤ 10−2), too. However, whereas the parameter α̃ has to be chosen small from the beginning, the field R is
dynamical and so one has to choose its initial condition such that it is small today. Given this, there is another, more
intriguing possibility: that during the cosmological history the field is driven towards small values. The cosmological
evolution of the system was discussed in [22], where it was shown that R is indeed driven toward small values in
a stable fashion. Apart from local experiments, the theory is constrained by cosmological considerations. Firstly,
nucleosynthesis bounds have to be respected, which put constraints on both α̃ and the initial value of the field R. It is
beyond the scope of the paper to constrain the theory by nucleosynthesis as a detailed analysis with two fields involved
has to be performed. The second important cosmological constraint on the fields is enforced by CMB anisotropies and
large scale structure considerations. We will in this paper develop an understanding of the how the CMB is influenced
by the fields.

Before we discuss perturbations in models of the form above, we comment on the frame to be used. The issue of the
frame and its physical relevance is not new, and has been hotly discussed in the literature (see e.g. [30]). The reason
for choosing the Einstein frame instead of the Jordan frame is that, written in the Jordan frame, one the of the scalar
fields has a negative kinetic energy [22] (the metric in the Jordan frame is the induced metric of the first brane, where
the standard model particles live). However, this is not a signal of an instability, because in the Einstein frame the
kinetic term is positive. The fact that the energy density of the scalar field is not positive definite in the Jordan frame
is not unique to field theories derived from brane worlds but appears often in scalar–tensor theories. Several authors
have used this as an argument for using the Einstein frame as the physical frame (which is unique), and we follow
this argument here. We would like to point out, however, that in the case of the field with non–constant coupling,
the matter coupling of this field is very small today, so that at the present epoch the theory is indistinguishable from
General Relativity.

III. COSMOLOGY AND MODULI FIELDS

As discussed in the last section, there are usually several scalar fields in the low–energy effective action, each of
which couples to matter. The goal of this paper is to understand the effects of the individual fields on the evolution

3In Ref. [28] this formalism was used to calculate the CMB anisotropies in the one–brane scenario of Randall and Sundrum
[29].
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of perturbations. We shall henceforth discuss them separately, dealing with only one scalar field at a time. We shall
see in the next section that there are differences in the predicted CMB power spectrum due to the fact that the field
coupling function is in one case constant whereas in the other case depends on the field. We shall study two cases
individually: the matter coupling will either be of the form (3) or (4).

The toy model we consider in this paper is described by the following action:

S =

∫

d4x
√−g

[ R
2κ2

− gµν(∂µφ)(∂νφ) − V (φ)

]

+ SV (ψV , A(φ)gµν) + SIV (ψIV , B(φ)gµν) (5)

In the context of brane worlds, the index V stands here for matter on brane 1, whereas IV stands for matter on brane
2. The functions ψV and ψIV stand for the matter fields on each individual branes. The field φ in equation (5) takes
the role of either ϕ or R in the last section. In the following we shall work with reduced Planck units κ ≡ 1.

From the action above, one can derive the following field equations:

Gµν =

(

T (V )
µν + T (IV )

µν + φ,µφ,ν − 1

2
gµν(∂φ)2 + V (φ)

)

(6)

2φ = −βV T
V − βIV T

IV (7)

T (i)ν;µ
µ = β(i)T

(i)φ,ν , with i = (V , IV ). (8)

In these equations, T stands for the trace of the energy–momentum tensor for each individual matter. The functions
β are given by

β1 =
∂ lnA

∂φ
, β2 =

∂ lnB

∂φ
. (9)

In the first case under consideration, the functions β do not depend on the scalar field (as it is the case with one
of the scalar field in section II) and choose β to be the form 4

Case I : A = B ∝ exp(−2α2φ/(1 + 2α2)) ⇒ β1 = − 2α2

1 + 2α2
= β2. (10)

We have retained the main features of the brane model, i.e. β1,2 is negative and bounded. In the second case
(corresponding to the field R in the last section), the functions β depend on the field and we have

Case II : A ∝ cosh(φ), B ∝ sinh(φ) ⇒ β1 = tanh(φ) = 1/β2. (11)

As before we have kept the same functional dependence as in the brane models.
For a homogeneous and isotropic universe with flat spatial sections, the line element reads

ds2 = a2(τ)
(

−dτ2 + δijdx
idxj

)

. (12)

The field equations read

H2 =
1

3
a2

(

ρV + ρIV +
1

2a2
φ̇2 + V (φ)

)

, (13)

φ̈+ 2Hφ̇+ a2 ∂V

∂φ
= −βV (ρV − 3pV )a2 − βIV (ρIV − 3pIV )a2 (14)

ρ̇(i) + 3H(ρ(i) + p(i)) = β(i)

(

ρ(i) − 3p(i)

)

φ̇. (15)

4Note that α in this expression is different from α̃ in Section 2, because of the field redefinition.
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In these equations, the dot represents a derivative with respect to the conformal time τ and H = ȧ/a. Note that in
equations (7) and (14) we must sum over all matter forms. In this paper we will assume that T IV

µν = 0. This would
correspond to no matter on the second brane in the theory of the last section.

The theory above differs from General Relativity and is therefore constrained by observations. Firstly, local ex-
periments (i.e. on earth and in the Solar System) constrain the post–Newtonian parameters γPN and βPN given
by

γPN − 1 = −2
β2

A/B

1 + β2
A/B

, (16)

βPN − 1 =
1

2

β2
A/B

(1 + β2
A/B)2

dβA/B

dφ
, (17)

where βA/B stand for the functions β1 for the cases I or II, respectively. Current constraints give [31]

|γPN − 1| ≤ 2 · 10−3, |βPN − 1| ≤ 6 · 10−4. (18)

Nucleosynthesis constraints limit the effective number of degrees of freedom for relativistic particles at this epoch. In
general the constraints have to be worked out in detail, but there is a simple way to get a rough limit on the theory
from nucleosynthesis [32]. Because the energy conservation equation (15) implies that ρMa

3 6= constant in general,
the expansion rate at nucleosynthesis is different from its value in General Relativity. This leads to [32]

(

A(φnuc)

A(φ0)

)2

≤ 1.2. (19)

Although we have derived the general equations, from now on we shall set V (φ) = Λ, because we wish to compare
the results for the perturbations with the ΛCDM model. Before we turn our attention to cosmological perturbations
and their evolution, however, we briefly study the evolution of the background in the matter dominated era for the
case A and B separately.

Case I: The case for constant coupling parameter β

The model in this case has similarities to the model discussed in [33], although we do not have an exponential
potential for the field, and so the critical points found in [33] do not apply here. In the radiation dominated epoch,
the field is almost constant, because the terms on the left–hand side on the Klein–Gordon equation (14) dominate.
The constraints (18) on the post–Newtonian parameter lead to α ≤ 0.1. We can easily find the solutions to the
background equations in the matter dominated epoch:

a(τ) =

(

τ

τ0

)x

, with x = 2 − 8α4

φ = φ0 + 4α2 ln

(

τ

τ0

)

. (20)

Therefore, the universe expands a little slower than expected, although the correction is very small. An important
point has to be made here, namely that matter does not scale like ρmatter ∝ a−3, but rather like

ρmatter ∝ a−3 exp

(
∫

βdφ

)

. (21)

For the theory under consideration here, this implies that, for a given matter density today, the matter density in
the past was greater than it would have been under standard cosmology.

Case II: The case for non-constant coupling parameter β

The low–energy effective theory now corresponds to the first model by Randall and Sundrum [16]. As we will see,
there is an attractor mechanism at work, which drives the field towards small values and thereby generating small
couplings between φ and matter, as it is dictated by observations on Earth and in the Solar System.

The equations are difficult to handle analytically. Assuming that φ is small and slowly varying at the onset of
matter domination, one can find that
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a(τ) =

(

τ

τ0

)2

, (22)

and that ρmatter ∝ a−3. The field φ(τ) now goes like

φ(τ) = A
cos

(√

39
4 ln (τ/τ0)

)

(τ/τ0)3/2
+B

sin
(√

39
4 ln (τ/τ0)

)

(τ/τ0)3/2
. (23)

Thus, apart from oscillating behaviour, the field φ in this case decays during matter domination.
Although the solutions above are based on a crude approximation, this qualitative behaviour is found even if the

field value was initially larger [22]. For large values of φ, however, equation (21) is a better approximation.
Thus, although it is easy to fulfill the constraints (18) due to the cosmological attractor, the nucleosynthesis

constraints give a limit on φ(τ = τnucl) ≤ 0.4.

IV. COSMOLOGICAL PERTURBATIONS AND MODULI FIELDS

In the following we discuss the evolution of perturbations in the presence of moduli fields. This section is organized
as follows: first we will write down the perturbation equations. Then we will solve them (approximately) in the matter
dominated era, in order to gain some understanding about the effects of the coupling between the field and matter.
Finally we discuss the solutions of the numerical computation of the spectrum of anisotropies in the CMB and the
matter power spectrum.

A. The Perturbation Equations in the Synchronous Gauge

We work in the synchronous gauge (using the notations as in [34]); i.e. the perturbed line element has the form

ds2 = a2(τ)
(

−dτ2 + (δij + hij)dx
idxj

)

. (24)

After Fourier transformation, the perturbed Einstein equations read:

2k2η − ȧ

a
ḣ = a2δT 0

0 (25)

ḧ+ 2
ȧ

a
ḣ− 2k2η = −a2δT i

i, (26)

where h and η are defined by (k̂ is the unit vector in direction of k)

hij =

∫

d3keik·x

[

k̂i · k̂jh(k, τ) +

(

k̂i · k̂j −
1

3
δij

)

6η(k, τ)

]

(27)

¿From the energy–momentum conservation equation one obtains a set of two equations for the evolution of the
density contrast and the divergence of the velocity field. Defining

(ρ+ p)θ = ikjδT 0
j (28)

(ρ+ p)σ = −
(

k̂i · k̂j −
1

3
δij

)

(

T ij − δijT k
k/3

)

(29)

and writing pi = w(i)ρ(i), c
2
s(i) = ∂p(i)/∂ρ(i) and θ = ikivi we find from the evolution equation for the density contrast

δ(i) = δρ(i)/ρ(i)

δ̇(i) = −
(

1 + w(i)

)

[

θ(i) +
ḣ

2

]

− 3
ȧ

a

(

c2s(i) − w(i)

)

δ(i)

+
∂βi

∂φ

(

1 − 3w(i)

)

φ̇δφ+ βi

(

1 − 3w(i)

) ˙(δφ) − 3φ̇βi

(

c2s(i) − w(i)

)

δ(i). (30)
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The divergence of the velocity field θ(i) = v
(i)j

,j of each individual fluid evolves according to

θ̇(i) = − ȧ
a

(

1 − 3w(i)

)

θ(i) −
ẇ(i)

1 + w(i)
θ(i) +

c2s(i)

1 + w(i)
k2δ − k2σ(i)

+ βi

1 − 3w(i)

1 + w(i)
k2δφ− βi(1 − 3w(i))φ̇θ(i). (31)

It is important to note that these equations reduce to those of ordinary General Relativity, if the fluid under
consideration has an radiation–like equation of state, i.e. if w(i) = 1/3. This means that the equations governing the
dynamics of photons and relativistic neutrinos are those found in General Relativity. Important changes occur in the
equations for CDM and baryons:

Cold Dark Matter:

In this case, we have w = 0 = cs and vanishing anisotropic stress. Thus

δ̇c = −
[

θc +
ḣ

2

]

+
∂βc

∂φ
φ̇δφ+ βc

˙(δφ) (32)

θ̇c = − ȧ
a
θc + βck

2δφ− βcφ̇θc (33)

Baryons:

In this case, we have w = 0 = cs and vanishing anisotropic stress (a very good approximation after neutrino decoupling
[34]). As in [34], we do not neglect the quantity c2sk

2δ, which becomes important on small length scales and thus large
k. We also have to add the terms describing the momentum transfer between photons and baryons due to Thomson
scattering. Therefore, we have

δ̇b = −
[

θb +
ḣ

2

]

+
∂βb

∂φ
φ̇δφ+ βb

˙(δφ) (34)

θ̇b = − ȧ
a
θb + c2sk

2δb +
4ργ

3ρb
aneσT (θγ − θb) + βbk

2δφ− βbφ̇θb (35)

where ne is the number density of free electrons and σT the Thomson cross section.
The only new terms compared to General Relativity are the ones proportional to β and its derivative. Note that

we have to add an evolution equation for θc: while we can still set θc = 0 initially (in order to fix the synchronous
gauge completely), in General Relativity, where there is no extra field, it stays zero; however, fluctuations in φ are a
source and therefore, in the theory we consider, it evolves according to the above equation.

Finally, the equation for the fluctuations in φ evolve according to

¨(δφ) + 2
ȧ

a
˙(δφ) +

(

k2 + a2 ∂
2V

∂φ2

)

δφ+
1

2
ḣφ̇ = −

(

βcρcδc + βbρbδb +
∂βb

∂φ
ρb(δφ) +

∂βc

∂φ
ρc(δφ)

)

a2 (36)

These equations are quite general. Again, we are assuming V = Λ = const.

B. Solutions to the Perturbation Equations in the Matter Dominated Era

Before we give the results for the CMB anisotropies and matter power spectrum, we try to gain some analytical
insight from the perturbation equations in the matter dominated epoch on sub-horizon scales. We neglect radiation
and the baryons, taking only into account CDM and the scalar field in this regime. Furthermore, we consider only
the case for the field with constant coupling, which is tractable analytically.

Taking the derivative of equation (32) and making use of equations (25), (26), (33) and the Friedmann equation,
one gets
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δ̈c +Hδ̇c −
3

2
H2δc = 2α2k2δφ+ 2φ̇ ˙(δφ) − 2α2

(

H ˙(δφ) + ¨(δφ)
)

− 2α2φ̇θc. (37)

Using the perturbed Klein–Gordon equation, ignoring oscillations in δφ and inserting (32) one obtains

δ̈c + (H − 2α2φ̇)δ̇c −
3

2
H2

(

1 + 8α4
)

δc = 0. (38)

Assuming a ∝ τx, using the background solution equation (20) and making the Ansatz δc ∝ τm, one gets up to O(α4)

m = 2 +
32

5
α4 (39)

for the growing mode. Therefore, compared to the ΛCDM model, due to the non–vanishing coupling perturbations
in CDM grow faster than the scale factor and the transfer function is on small scales bent towards larger values. We
have confirmed this numerically.

C. CMB Anisotropies and the Matter Power Spectrum

In the following we will discuss the spectrum of anisotropies in the CMB and the matter power spectrum. It is
customary to expand the temperature anisotropy measured in a given direction n in spherical harmonics according to

∆T

T
(n) =

∑

lm

almYlm(n). (40)

We assume that the density fluctuations are Gaussian random variables, as predicted by the inflationary scenario.
The statistics of the fluctuations are completely specified by the power spectrum Cl, defined as

〈alma
∗

l′m′〉 ≡ Clδll′δmm′ . (41)

Let us briefly summarize how the Cls depend on the perturbation variables and how they are calculated (see [35],
[36] and [3] for excellent detailed reviews on the physics of CMB anisotropies, [37]– [40] are shorter reviews). The
reader familiar with CMB anisotropies can skip this part. To illustrate the essential steps involved in calculating the
anisotropy power spectrum, we neglect the polarization states of the photons. However, when we present the results
of the calculations, the polarization states have been taken into account.

At very early times the universe was radiation dominated and the temperature of the universe was so high, that
photons and baryons formed a plasma. At these high temperatures, photons and baryons are tightly coupled. On
scales less than the horizon the fluid undergoes acoustic oscillations due to the interplay of gravity, which tries to
compress overdense regions, and the photon pressure, which, when high enough, acts against the force of gravity.
When the temperature dropped below 4000 K, electrons and nuclei were able to combine to atoms (mainly hydrogen
and helium) and the mean free path of the photons became larger than the Hubble horizon. Around that time, the
photons completely decoupled from matter. On their path, photons may experience energy loss due to time–changing
gravitational fields (the so–called integrated Sachs–Wolfe effect, or ISW). Additionally, photons may interact with
reionized gas (reionization might happen due to early star formation).

In order to follow the perturbations in the photons correctly, one has to go beyond the fluid description and study
the evolution of the photon distribution function fγ in phase space, i.e. one has to solve the Boltzmann equation. In
general, fγ is a function of the comoving position x, the photon momentum p and conformal time τ . To first order we
write fγ = f0 + δfγ , where f0 is the unperturbed photon distribution. The brightness function ∆T (x,n, τ) is defined
as

δfγ(x,p, τ) =

(

T̄

4

∂f0
∂T̄

)

∆T (x,n, τ), (42)

where T̄ is the unperturbed temperature of the photon gas (i.e. of the background) and n is a unit vector in the
direction of the photon momentum p. One can now formulate a perturbed version of the Boltzmann equation,
describing the evolution of ∆T . However, it is more useful to perform a Fourier transform of ∆T (x,n, τ) and expand

the Fourier coefficients ∆T (k,n, τ) in Legendre polynomials (k̂ is a unit vector in direction of k):

∆T (k,n, τ) =

∞
∑

l=0

(−i)l(2l + 1)∆Tl(k, τ)Pl(k̂ · n). (43)
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It can be shown that the density contrast in the photon energy density, δγ , the divergence of the photon velocity field,
θγ and the photon anisotropic stress, σγ , are related to ∆Tl by

δγ = ∆T0, θγ =
3

4
k∆T1, σγ =

1

2
∆T2. (44)

In terms of the moments ∆Tl, the Boltzmann equation becomes a hierarchy of equations. Using equation (44), the
evolution equations are given by

δ̇γ = −4

3
θγ − 2

3
ḣ, (45)

θ̇γ = k2

(

1

4
δγ − σγ

)

aneσT (θb − θγ) , (46)

2σ̇γ =
8

15
θγ − 3

5
k∆T3 +

4

15
ḣ+

8

5
η̇ − 9

5
aneσTσγ (47)

∆̇Tl =
k

2l + 1

[

l∆T (l−1) − (l + 1)∆T (l+1)

]

− aneσT ∆Tl, (l ≥ 3) (48)

Furthermore, it can be shown that the quantity Cl, defined in equation (41), is related to the brightness function ∆Tl

by

Cl = 4π

∫

dk

k
|∆Tl(k, τ0)|2 . (49)

It is straightforward to include polarization. Due to Thomson scattering, photons are linearly polarized in the plane
perpendicular to n. The collision terms in the Boltzmann equation depend on the polarization state. In order to
follow the evolution in phase space, one defines a total distribution function fγ , which includes all polarization states
and another distribution function, gγ , which is defined as the difference of the distribution functions for the individual
polarized photons. Defining the temperature brightness function ∆T and the polarization brightness function ∆P

similarly to the above procedure, one can show that ∆T obeys the equation (45)–(48), but equation (47) has to be
changed to

2σ̇γ =
8

15
θγ − 3

5
k∆T3 +

4

15
ḣ+

8

5
η̇ − 9

5
aneσTσγ +

1

10
aneσT (∆P0 − ∆P2) , (50)

because the collision term in the Boltzmann equation depends on the polarization state. Additionally, one obtains a
hierarchy for the functions ∆Pl:

∆̇Pl =
k

2l+ 1

[

l∆P (l−1) − (l + 1)∆P (l+1)

]

− aneσT

[

∆Pl +
1

2
(∆T2 + ∆P0 + ∆P2)

(

δ0l +
δ2l

5

)]

, (51)

where δil in the last term stands for the Kronecker delta.
The CMB anisotropy power spectrum Cl is still given by equation (49). Thus, in order to calculate the CMB

power spectrum Cl (as well as the polarization power spectrum and the temperature/polarization cross correlation
spectrum), one has to solve a large set of differential equations (the equations for baryons, CDM and the scalar field
presented in section IVA and the hierarchy above). In [41] solutions to the Boltzmann equation are found. Here we
use an existing code [42] and make the appropriate changes to the evolution of background and perturbation variables
to incorporate the above theory.

1. Constant Coupling

In order to calculate the CMB power spectrum, we make changes to an existing code [42], whose method is based
on [43]. As described in section IVA we have to make changes in the equations for CDM and baryons and have to
include the modified Klein–Gordon equation for the scalar field. We assume a scale–invariant initial power spectrum
and adiabatic initial conditions.

What are the expected effects of the non–vanishing coupling? There are two effects, which come in when α differs
from zero. Firstly, as mentioned in section III, the dependence of the matter density (both for baryons and CDM) on
the scale factor is no longer given by ρmatter ∝ a−3, but rather by equation (21). Therefore, relative to the ΛCDM
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model the density of matter (and in particular of baryons) is larger at decoupling (we remind the reader that the
models are normalized such that their matter density is equal at the present epoch). Hence, the amplitudes of the
peaks are larger, since a larger baryon content implies larger amplitudes of the peaks.

Additionally, there are changes to the sound speed c2s = ṗγ/(ρ̇b + ρ̇γ). The sound speed decreases with increasing
α. This effects the peak separation, which is proportional to [35]

δl =
χ(τ0 − τdec)

Ds
, (52)

where χ(τ0 − τdec) is the angular diameter distance to the surface of last scattering and Ds =
∫ τdec csdτ is the sound

horizon. Aside from having an effect on cs, the presence of the scalar field does also affect the distance to the last
scattering surface. Let us estimate the position of the first peak, given by l0 = πχ(τ0 − τdec)/Ds. It is simple to
calculate χ(τ0 − τdec):

χ(τ0 − τdec) =

∫ τ0

τdec

dτ ≈ 2

H0

1

1 + C
(53)

where C = 2α4/(1 − 8α2)(1 + 2α2). Putting c2s ≈ 1/3 and neglecting the radiation dominated epoch, one finds

Ds ≈ 1

3

1

H0

2

1 + C
a

1

2
+C

2

dec . (54)

Therefore, the position of the peak is given by (note that we have a(τ0) = 1)

l0 = l̃0a
−C/2
dec , (55)

where l̃0 ≈ 200 is the position of the peak for the flat model with no coupling. Therefore, the peak moves towards
larger values (i.e. to the right in the spectrum).

To reach this conclusion we have assumed that cs ≈ 1/3, which is a crude assumption. Note, however, that if one
takes the baryons into account the cs is smaller and hence, the sound horizon Ds is smaller. Thus, l0 is if anything
somewhat larger than the value given in equation (55).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 100 1000 10000

0.00
0.01

0.1
0.2
0.3

FIG. 2. The temperature anisotropy power spectrum, l(l+ 1)Cl/2π, for the constant coupling case: the values in the legend
are the values of α.

The second important change when the coupling is non–vanishing is that there is a larger contribution from the
integrated Sachs–Wolfe effect. Even in the matter dominated era the gravitational potential changes with time,
because the matter density contrast no longer grows like δ(τ) ∝ a(τ), as discussed in the last section. As the time–
evolution of the scale factor is altered in the presence of the scalar field, the duration of the recombination era is
affected, too.
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In figure 2 we plot the results for the temperature anisotropy power spectra. We assume an initial power spectrum
with equal power on all scales. It can clearly be seen that the both the amplitude and the separation of the peaks is
affected with increasing coupling. Also, on large scales (low l) one can see the additional power due to the integrated
Sachs–Wolfe effect.

In order to compare the theory to observations, we normalize the curves appropriately. Usually this done at large
angular scales, using the COBE data as reference. The curves normalized to COBE are plotted in figure 3. Clearly,
the normalized curves show less power on small scales because of the enhanced integrated Sachs–Wolfe effect in
models with non–vanishing coupling. On larger scales (small multipole number l) one clearly sees a boost of power.
Additionally, the normalized matter power spectra for models with non–vanishing coupling are below the ΛCDM
curve.

For completeness we plot the E–type polarization spectra and the cross correlation between temperature and E–type
polarization in figure 4. One can clearly see that in both spectra on small scales the power is suppressed when α is
increased.
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FIG. 3. COBE-normalized temperature anisotropy l(l + 1)Cl/2π (left panel) and matter power spectrum (right panel) for
the case of constant coupling. On small scales the COBE–normalized spectra are below the predictions for vanishing coupling
due to the enhanced ISW.
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FIG. 4. COBE-normalized E-mode polarization anisotropy (left panel) and TE cross-correlation (right panel) for the case of
constant coupling.
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FIG. 5. CMB anisotropy spectra (left panel) for the constant-coupling case, with α taking the extreme value permitted by
nucleosynthesis, with a reference curve from the ΛCDM model; the right panel shows the relative discrepancy. Although the
differences are around 3 percent at high multipoles, a different choice of normalization – normalizing to COBE at l = 800, say
– would move all the observed discrepancies into the low–multipole region, where cosmic variance dominates.

In figure 5 we plot the anisotropy spectra for the ΛCDM model and the model with the maximal value of α allowed
by nucleosynthesis (α = 0.1). One can see that the COBE normalized curves differ from each other by a few percent
on small angular scales.

2. Non–constant Coupling

In this case, where the field φ corresponds to the R field in equation 1, the coupling function now decays. But also
here, the baryon density is larger at decoupling compared to the ΛCDM, which leaves a similar effect on the peak
position and amplitudes as in the case of constant coupling.
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FIG. 6. The temperature anisotropy power spectrum, l(l+ 1)Cl/2π, for the field-dependent coupling case: the values in the
legend are for the initial values of the scalar field φ.

However, well inside the matter dominated epoch, the coupling becomes very small, so that the density contrast
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grows essentially like a(τ) from that time on. Therefore, the ISW effect is not as pronounced as in the case of constant
coupling. Only if φ was initially very large will the field have not evolved to small values by today; consequently, for
the field-dependent coupling case, only for large initial field values will the effect on the ISW become more apparent
(see figure 6).
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FIG. 7. COBE-normalized temperature anisotropy l(l + 1)Cl/2π (left panel) and matter power spectrum (right panel) for
the case of field-dependent coupling. Similar to the case in figure 3, on small scales the COBE–normalized spectra are below
the predictions for vanishing coupling.
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FIG. 8. COBE-normalized E-mode polarization anisotropy (left panel) and TE cross-correlation (right panel) for the case of
field-dependent coupling.

The normalized anisotropy and matter power spectra are shown in figure 7, whereas the normalized E-mode
polarization anisotropy and the TE–cross–correlation are shown in figure 8. Increasing the initial value of the field
implies that the power in both the E–polarization spectrum and the cross correlation spectrum between temperature
and E–polarization is suppressed on small scales.

The initial field values in figures (6) and (7) have been used without taking into account constraints from nucleosyn-
thesis (19), which implies that φnuc < 0.4. In figure 9 we plot the cases for φinit = 0.4 and the ΛCDM curve. One can
see that there are differences in the predictions for the temperature anisotropy as large as 6 percent at small angular
scales and 3 percent on degree scale. This is potentially distinguishable with WMAP and the Planck Surveyor.
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FIG. 9. CMB anisotropy spectra (left panel) for the case of an initial value (φini = 0.4) allowed by nucleosynthesis. The
right panel shows the relative error between the ΛCDM and the model with φini = 0.4. For l ≈ 100 the difference between the
model is as large as 3 percent and gets larger at higher l (smaller angular scales).

We would like to point out that constraints on φ become stronger, once the CMB is included. In all cases plotted
in the figures, the field fulfills the constraints today. However, a large field value in the early universe modifies the
predictions for the temperature and polarization power spectra (as well as the matter power spectra). Hence, the
CMB provides vital complementary information to the local experiments.

V. CONCLUSION

In this paper we have investigated the implications of time–varying extra dimensions for CMB anisotropies and
large scale structure formation. In theories with extra dimensions, certain scalar fields, so called ‘moduli fields’, appear
in the low energy effective theory coupling directly to matter fields. We have investigated in particular the couplings
appearing in a five–dimensional model based on the brane world idea. The model contains two branes which are the
boundaries of the higher–dimensional spacetime, with, in general, four-dimensional matter fields confined on these
branes. Additionally, we allowed for a scalar field propagating in the extra–dimensional spacetime. At low energies
the dynamics of this system is described by a bi–scalar–tensor theory. One of the scalar fields has a constant (i.e.
field– and coordinate–independent) coupling to the matter fields, whereas in the case of the second field the coupling
function is field dependent.

We have investigated the effects of the individual fields on the CMB anisotropies, the cross–correlation between
temperature and polarization of the CMB and the matter power spectrum. Due to the coupling, both the amplitude
and the positions of the peaks are affected. The spectra normalized to COBE lie below the spectra of the reference
ΛCDM model on small scales.

The results presented in section IV imply that, for the brane world model presented in section II, potentially there
is a measurable effect of both fields on CMB. If it turns out that the second field needs to be already quite small
during the radiation dominated epoch, then some mechanism has to drive it to these small values in the very early
universe. This can happen, for example, if there is some matter on the second brane. In this case, the field R is
driven even faster to zero, so that it might be small at decoupling. Note, however, that in this case the evolution of
perturbations are affected in the radiation dominated epoch.

Clearly, the CMB anisotropies as well as the polarization provide complementary information about time–evolution
of the extra dimensions. Together with other tests, such as gravity experiments in the solar system and/or on earth
and tests of time–varying gauge couplings and primordial nucleosynthesis, these cosmological considerations strongly
constrain any model involving extra dimensions. For example in the case of the model considered here, the field with
constant coupling is already constrained by local experiments such that its effects on the CMB are negligible. For
the second field, however, we have seen that although its effect is constrained to be minimal today, it can have a big
impact on the CMB anisotropies.
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There is another important point not addressed in this paper: we have not discussed the time evolution of Kaluza–
Klein excitations and their influence on the CMB. They might still be present in the radiation dominated epoch,
thereby affecting the evolution of perturbations at least initially. Their presence could imply, for example, that the
initial perturbations are not purely adiabatic. The details would depend on the mechanism which produces the
primordial fluctuations, such as inflation or the cyclic model, see e.g. [44] and [45]. To address this important issue
one has to go beyond the moduli space approximation (and in fact beyond the lowest order in the method used in
[24], [25] and [27]).

In this paper we have investigated the effects of moduli fields on the CMB motivated from a certain class of brane
world theories. There are other brane world models, in which the theory at low energies cannot be described by an
action of the form (1). For example, in the models of [46]– [48], gravity becomes five–dimensional at large distances.
We expect that some of the conclusions drawn in this paper do not hold for such models. Nevertheless, the CMB
gives useful constraints on these models, too [49].
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