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Abstract. Bipartite data is common in data engineering and brings
unique challenges, particularly when it comes to clustering tasks that im-
pose strong structural assumptions. This work presents an unsupervised
method for assessing similarity in bipartite data. The method is based on
regular equivalence in graphs and uses spectral properties of a bipartite
adjacency matrix to estimate similarity in both dimensions. The method
is reflexive in that similarity in one dimension informs similarity in the
other. The method also uses local graph transitivities, a contribution
governed by its only free parameter. Reflexive regular equivalence can
be used to validate assumptions of co-similarity, which are required but
often untested in co-clustering analyses. The method is robust to noise
and asymmetric data, making it particularly suited for cluster analysis
and recommendation in data of unknown structure.4

In bipartite data, co-similarity is the notion that similarity in one dimension
is matched by similarity in some other dimension. Such data occurs in a many
areas: text mining, gene expression networks, consumer co-purchasing data and
social affiliation. In bipartite analyses, co-clustering is an increasingly promi-
nent technique in a range of applications [11], but has strong co-similarity as-
sumptions. One example of co-similar structure is in text analysis where similar
words appear in similar documents, where there is assumed to be a permutation
of the word-document co-occurrence matrix that exposes co-similarity among
words and documents [4]. The work here describes a way to assess co-similarity
using regular equivalence [8] with a reflexive conception of similarity that ac-
commodates nodes’ (data-points) local structures. This assessment is a kind of
pre-condition for co-clustering: if there is little co-similarity, co-clustering will
yield a poor clustering solution. Assessing co-similarity will produce similarity
in one dimension to expose potential clustering without requiring it across di-
mensions. This is particularly useful for asymmetric data when a non-clustered
dimension informs, but does not reciprocate clustering in the other. Whereas
as co-clustering finds clusters across dimensions, our method provides a decou-
pled solution in each mode. Reflexive regular equivalence is able to quantify how
much one dimension informs similarity in the other. Additionally, our results
show that by incorporating local structures, it can better overcome noise and
accommodate asymmetry.

4 An extended preprint of this paper is available at arxiv.org/abs/1702.04956.
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Background Measuring co-similarity amounts to calculating similarity in two di-
mensions. In a graph setting, this can be done with bipartite generalizations
of regular equivalence [1,5], which measure similarity based on the similar-
ity of neighboring nodes. Bipartite regular equivalence makes sense of within-
dimension regularity and between-dimension structure. As we will see, allowing
the inter-dimensional structure to be “reflexive”, as defined below, greatly helps
assess co-similarity. Specifically, we conceive of bipartite data as a two-mode
network. In simple networks, vertex similarity can be measured using pairwise
metrics like the Jaccard index, the cosine of a pair’s connectivity patterns, their
correlation or simply the overlap of neighbors. Recent efforts have sought to
account for structure beyond nodes’ immediate neighbors. Regular equivalence
proposes that nodes are similar to the extent their neighbors are similar [8], a
method common in social network analysis [7].
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Fig. 1. With the same network (left; a) a biclustering solution yields partitions that
group vertices in both modes. On the right (b) is a hypothetical grouping based on sim-
ilarities produced by reflexive regular equivalence; there may not be a mapping between
clusters in each mode and groupings are exposed by similarity, not by partitioning.

In a social setting, co-similarity was formalized by Ronald Breiger in 1974
where similar people were found to participate in similar groups [2]. With the ad-
jacency structure, A, of people×groups, similarity can be measured as Speople =
AAT and Sgroups = ATA. Such multi-modal conceptions of social structures are
now common in models of social search and recommendation [6,10]. Our method
extends regular equivalence and Breiger’s notion of co-similarity. Crucially, it
considers structural equivalence by adding contributions from local transitivity
– two nodes are similar if their neighbors are similar within and across dimen-
sions. Our goal is not to find partitions that optimally group nodes across di-
mensions, but to measure similarity in each mode of the data using information
from the other. Only by extension, may any clustered structure be revealed in
the data. Figure 1 depicts a bipartite network and hypothetical co-clustering
solution (a) and a potential solution based on reflexive regular equivalence (b).
Though different from our method, co-clustering algorithms have much in com-
mon with reflexive regular equivalence. Co-clustering algorithms yield partitions
across modes that group self-similar rows with self-similar columns, and assume
co-similarity just as clustering assumes similarity. Reflexive equivalence assess
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co-similarity, which may justify a co-clustering strategy. For examples of co-
clustering algorithms that implement related notions of similarity see [3,9,12].

Method Our reflexive equivalence method is an unsupervised approach to mea-
suring vertex similarity in a bipartite network. This notion is equivalent to a
pairwise similarity metric that operates on row- and column-vectors of the adja-
cency structure in bimodal data. Bipartite networks are equivalent to what are
normally treated as rows and columns in a matrix. Our method iterates between
each mode incorporating information from the other. There is no restriction to
binary-valued data: edges may be weighted.

Let G be a bipartite graph with two sets of nodes, V and V ′ and A be the
adjacency matrix in which Aij > 0 represents how strongly i ∈ V is connected
to j ∈ V ′. Let S be a square |V | matrix where entry Sij is the similarity between
i and j in V , and S′ be a square |V ′| matrix where S′ij is the similarity between
i and j in V ′. Assuming the similarity of i and j in one mode is informed by
similarity between neighbors of i and any neighbor of j in the other mode, then

Sij =
∑
k

∑
l

AikAjlS
′
kl, (1)

S′
ij =

∑
k

∑
l

AkiAljSkl, (2)

This provides a procedure for inferring similar nodes in the adjacency matrix.
Starting from randomly initialized S and S′, Eqs. 1 and 2 can be applied itera-
tively until convergence of ‖S‖F and ‖S′‖F. This formulation, however, treats all
neighbors equally, regardless of their structural importance to the pair of nodes
in question. Thus, we weight similarity between common neighbors more than
non-common neighbors. Denoting neighbors of i and j by Γi and Γj respectively,
we define this similarity as follows:

Sij = (1− α)[
∑

k∈(Γi−Γi∩Γj)

∑
l∈Γj

S
′
kl +

∑
k∈Γi∩Γj

∑
l∈(Γj−Γi∩Γj)

S
′
kl] +

∑
k∈Γi∩Γj

∑
l∈Γi∩Γj

S
′
kl,

S
′
ij = (1− α)[

∑
k∈(Γi−Γi∩Γj)

∑
l∈Γj

Skl +
∑

k∈Γi∩Γj

∑
l∈(Γj−Γi∩Γj)

Skl] +
∑

k∈Γi∩Γj

∑
l∈Γi∩Γj

Skl.

This combines structural equivalence, regular equivalence and reflexivity into
a single model. A parameter α balances the contribution of non-common and
common neighbors. Rearranging the terms, the equations can be rewritten as

Sij = (1− α)
∑
k

∑
l

AikAjlS
′
kl + α

∑
k

∑
l

AikAjkAilAjlS
′
kl, (3)

S′
ij = (1− α)

∑
k

∑
l

AkiAljSkl + α
∑
k

∑
l

AkiAkjAliAljSkl, (4)

or in matrix form:

S = (1− α)AS′AT + α(A⊗AT) · S′ · (A⊗AT)T, (5)

S′ = (1− α)ATSA+ α(AT ⊗A) · S · (AT ⊗A)T, (6)
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where (·) is the conventional inner product defined in tensor algebra. Eqs. 5
and 6 compute reflexivity between the two dimensions and the effect of local
structure is controlled by α. When α = 0, the method is a bipartite form of
regular equivalence. As α increases, similarity between common neighbors plays
a larger role. A is normalized prior to applying the algorithm, and S and S′ are
normalized after every iteration by their L1-, L2- or L∞-vector norm.

Results We evaluated the method on data with known structure. A set of semi-
random n×m versions of A were generated with diagonal blocks of random sizes:
the resulting similarity matrices should have diagonal blocks proportional to the
row- and column-wise block sizes in A. The test is to run the algorithm on
randomly permuted data, Â, after which if we apply the original ordering of A
to Ŝ and Ŝ′. The solution is then assessed as

µ =
1

2
‖S − Ŝ‖F

1

|S| +
1

2
‖S′ − Ŝ′‖F

1

|S′| . (7)

Here, µ is simply the mean difference between results on A and Â, and in the
perfect case will be 0. We compare reflexive similarity to three pairwise metrics
operating on the rows and columns of A. The results show that reflexive variants
perform marginally better (Figure 1b); α had no effect, which is expected given
all node interactions are purely local.
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Fig. 2. (a; left) Similarity of Â should produce results similar to those computed for
A. (b; right) Performance (µ; lower is better) on Â using variants of reflexive similarity
method. Error-bars are ±2 s.e. of the mean over ten versions of A.

Robustness to Noise Because real-world data is often noisy, we evaluated the
method with noise added to A of the form N (0, σ) to produce Ã. Note that
adding noise breaks the element-wise symmetry of A but the underlying block-
structure remains symmetric. Figure 3 shows results with respect to noise, nor-
malization variant and α. With little noise, the L∞-norm variant outperforms
other methods when α > 0.5. As noise is increased, pairwise metrics perform
worse, as do the reflexive methods with α = 0. This confirms that our method
is well-suited to finding co-similarity structure in both dimensions of noisy data
where the L∞ variant with α = 1 performs best.
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Fig. 3. Performance (µ; lower is better) with respect to noise, σ, in Ã for different
values of α. Error-bands are ±2 s.e. of the mean over ten versions of A.

Unbalanced Co-similarity Because clusters exposed by similarity in S and S′

are not coupled as they are in co-clustering tasks, reflexive similarity is able
to find unbalanced co-similarity structure. With this kind of data, the reflex-
ive method should produce similarity matrices with different structure. For this
task, another set of semi-random versions of A were generated with random un-
balanced block structure, which were then randomly permuted to get Â. Results
on Â were compared to results from A. Figure 4a shows the results on variants
of reflexive regular equivalence and the pairwise metrics. Results show that all
variants of reflexive similarity outperform the pairwise metrics, but that neither
normalization choice nor α make significant difference.
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Fig. 4. (a; left) Performance on ten versions of Â with unbalanced structure and, (b;
left) with varying amounts of noise.
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The parameter α is crucial to our method’s ability to overcome noise in
symmetric data. The same task was run on asymmetric data with added noise.
Figure 4b shows performance with different noise levels. The results show that
after adding a small amount of noise, the reflexive variants significantly outper-
form pairwise metrics. In particular, for low levels of noise, the L∞-norm variant
performs best, but for higher levels (σ > 0.2) the L1- and L2-norms are better.
In all variants, higher values of α yield better performance. This suggests local
structure is useful even when co-similarity is asymmetric. Overall, the evalua-
tions show that when the structure of A is known, reflexive similarity is able to
leverage inter-dimensional similarity in noisy and asymmetric data to provide
better results than methods restricted to one dimension.

Discussion Co-clustering analysis often employs trial-and-error when assessing
similarity. There are two problems with this: a priori estimates of the number
of clusters can be hard to make, and clusters may not be coupled across dimen-
sion. Reflexive regular equivalence offers a way to attenuate inter-dimensional
structure and local transitivities in similarity calculations. The results show this
is particularly important in noisy data. The method also offers a way to vali-
date co-similarity assumptions: if the same permutation for S and S′ exposes
block structure in each, then A is co-similar. By varying α, one can enhance or
reduce the contribution of local equivalence, essentially backing off to spectral
similarity. In this way, our method offers a way to measure co-similarity across
dimensions, helping confirm assumptions of co-similarity.
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