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Abstract  

Our perception of time varies considerably from moment to moment but how this variability relates to 

endogenous fluctuations in attentional states remains poorly understood. Here we tested the hypothesis 

that perceptual decoupling during mind wandering would distort interval timing. In two studies with 

different visual interval timing paradigms, we found that mind wandering states were characterized by 

underestimation of intervals and a decline in temporal discrimination. Further analyses suggested that 

temporal contraction during mind wandering, but not a decline in temporal discrimination, could be 

attributed in part to attentional lapses. These results highlight the role of transient fluctuations in 

attentional states in intra-individual variability in time perception and have implications for the behavioral 

markers, and costs and benefits, of mind wandering.  
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Public  significance  statement  

The way we experience time changes from one moment to the next: we may underestimate or 

overestimate time or we may perceive it as constant or fragmented. Previous research has identified 

factors that influence our perception of time but the variables that underlie spontaneous fluctuations in 

time perception have been neglected. Here we examined whether changes in our tendency to mind wander 

(to think about things other than the task at hand) might explain some of the variability in our time 

perception. In two studies, we show that participants underestimated time and were poorer at 

discriminating different temporal intervals when they were mind wandering. Temporal contraction seems 

to be attributable, in part, to lapses in our attention whereas poorer temporal discrimination may be due to 

impaired perception when mind wandering. These results help to clarify the role of spontaneous changes 

in attentional states to variations in our perception of time. 
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Our ability to accurately perceive time plays an instrumental role in a wide range of psychological 

functions including speech processing, motor control, and our moment-to-moment conscious experience 

(Allman, Teki, Griffiths, & Meck, 2014; Matthews & Meck, 2016; Wittmann, 2013). Time perception in 

the milliseconds to seconds range (interval timing) is known to exhibit considerable intra-individual 

differences but the source of this variability is poorly understood (Matthews & Meck, 2014; Terhune, 

Sullivan, & Simola, 2016). Identifying the factors underlying this variability will help to advance 

contemporary models of interval timing (Coull, Cheng, & Meck, 2011; Gu, van Rijn, & Meck, 2015; 

Merchant, Harrington, & Meck, 2013; Yin, Terhune, Smythies, & Meck, 2016) and strengthen our 

understanding of heterogeneity in cognition and perception more broadly (Matthews & Meck, 2016). 

One as of yet unexplored possibility is that moment-to-moment interval timing varies with transient 

fluctuations in attentional states. The average person spends as much as a third of their waking life 

engaging in thought that is unrelated to the current activity (Kane et al., 2007; Kane et al., in press; 

Marcusson-Clavertz, Cardeña, & Terhune, 2016), a phenomenon known as mind wandering (Schooler et 

al., 2011; Smallwood & Schooler, 2015). Evidence suggests that during mind wandering, one’s attention 

is coupled to task-independent thoughts and concomitantly dissociated from perceptual input, resulting in 

an attenuation of sensory processing (perceptual decoupling; (Barron, Riby, Greer, & Smallwood, 2011; 

Smallwood, Beach, Schooler, & Handy, 2008). The magnitude of processing resources directed to a timed 

interval is related to its perceived duration such that greater, or lesser, allocation of resources is associated 

with temporal dilation, or contraction, respectively (Berry, Li, Lin, & Lustig, 2014; Buhusi & Meck, 

2009). The association between perceived duration and resource allocation suggests that perceptual 

decoupling during mind wandering states will lead to distortions in interval timing.  

  

Study  1 

This study examined how mind wandering impacts interval timing. Mind wandering was measured 

through self-report by the inclusion of attention probes on a trial-by-trial basis (Smallwood & Schooler, 

2009, 2015). Previous research has consistently validated the use of such probes: performance is reliably 
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impaired on trials preceding self-reported mind wandering episodes relative to those in which task-focus 

was maintained (Smallwood & Schooler, 2009). Participants completed an oddball task involving a 

homogeneous train of standard stimuli of fixed duration punctuated by infrequent (oddball) stimuli of 

varying duration. This task has similarities with the Sustained Attention to Response Task (Robertson, 

Manly, Andrade, Baddeley, & Yiend, 1997), a go-no-go task with infrequent no-go trials, which is the 

most widely used behavioral index of mind wandering (Smallwood & Schooler, 2015). Oddball stimuli 

are typically perceived as dilated relative to standards plausibly because the repetition of standards gives 

rise to predictive coding (Eagleman & Pariyadath, 2009; Pariyadath & Eagleman, 2007; Schindel, 

Rowlands, & Arnold, 2011). This has been proposed to result in the perceived contraction of standards 

due to repetition suppression and the concomitant dilation of oddballs due to the violation of sensory 

predictions (Grill-Spector, Henson, & Martin, 2006; Pariyadath & Eagleman, 2007; Wiggs & Martin, 

1998). There is evidence that subsecond timing is subserved in part by distributed sensory-specific 

mechanisms (Bueti, 2011) and thus we expected that perceptual decoupling during mind wandering 

would suppress the extent to which oddballs violate sensory predictions, resulting in their perceived 

contraction (rather than customary dilation) and a decline in temporal discrimination.  

 

Methods  

Thirty-four right-handed individuals (MAge=25, SE=0.7; 56% female) consented to participate in this 

study in accordance with local ethical approval.  

Participants completed an oddball task in which infrequent stimuli (green circles) of varying duration 

(325ms, 375, 425, 475, 525, 575, 625, 675) were randomly embedded (8th, 9th, or 10th position) within a 

train of 11 homogeneous standard stimuli (blue circles) of constant duration (500ms) with inter-stimulus 

intervals of 200ms. Participants judged with their right hand whether the oddball was shorter or longer in 

duration than the standards and whether they were “on-task” (task-focus) or “off-task” (mind wandering) 

during the stimulus train using a Cedrus® response pad (Cedrus Corporation, San Pedro, CA). Finger-

response mappings and stimulus colours were counterbalanced across participants. Stimuli were presented 
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at a distance of 70cm, subtending a visual angle of 2.45°2, with E-Prime® (2.0, Psychology Software 

Tools, Pittsburgh, PA). Participants completed one 8-trial practice block followed by five 96-trial blocks. 

Data were modeled using the Palamedes toolbox (Kingdom & Prins, 2010; Prins & Kingdom, 2009) 

for MATLAB® (2011a, MathWorks, Natick, MA). The proportions of long responses (p(long)) at each 

interval for task-focus and mind wandering states were independently fitted with logistic functions 

defined by four parameters: threshold α, slope β, guess rate γ, and lapse rate λ. We fixed γ at 0 because of 

the 2-alternative forced-choice response format and λ at 0.1 to allow for occasional lapses (Kingdom & 

Prins, 2010). α and β were set as free parameters and estimated using maximum likelihood estimation. In 

order to determine whether the effects of mind wandering on performance were driven by attentional 

lapses, we repeated the analyses with λ as a free parameter. The duration corresponding to the 50% 

threshold on the psychometric function was used as the point of subjective equality (PSE), which 

corresponds to the oddball duration that is perceived as equivalent to the standards (values less than and 

greater than 500ms reflect relative overestimation and underestimation, respectively). Temporal precision 

was computed with the Weber fraction (WF), which is the difference limen [(t(p(long)=0.75) – 

t(p(long)=0.25))/2, where t is the stimulus duration at the respective response proportion location on the 

fitted psychometric function], divided by the PSE, with lower values reflecting superior precision. Eight 

participants’ data were omitted because of poor model fit in one or both states (three in task-focus, seven 

in mind wandering; pDevs<.05; (Kingdom & Prins, 2010)); these data are presented in Fig. 1b. The 

greater proportion of omitted cases in mind wandering states can be attributed to an insufficient number 

of such reports. To further corroborate analyses of WFs, we computed error rates and d´, a signal 

detection theory measure of discrimination ability (Green & Swets, 1966). 

The data violated assumptions of parametric statistical tests and were analyzed using Bootstrap 

resampling. Each statistic was computed on resampled data (10,000 samples) and the 95% confidence 

intervals (CIs; (bias-corrected and accelerated method; Efron, 1987) of these distributions are reported. 

We report both uncorrected Spearman correlations and those in which outliers have been removed 
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(adjusted boxplot rule; Carling, 2000; Pernet, Wilcox, & Rousselet, 2012); in all cases the two 

coefficients exhibit convergent statistical significance. 

  

Results 

Perceived duration 

Participants reported mind wandering in 12% [9, 23] of trials. They marginally overestimated the duration 

of oddballs during task-focus states, Mdn PSE=488ms [462, 500], (Fig. 1a), but experienced significant 

contraction of oddballs during mind wandering, Mdn=567ms [524, 703]. The majority of participants 

displayed a larger PSE [85%; 65, 96], reflecting greater underestimation, during mind wandering than 

task-focus states (Fig. 1c). Bootstrap resampling revealed a Mdn ∆PSE (MW-TF) of 105ms [75, 213], 

indicating that participants underestimated oddballs when mind wandering, d=0.32 [0.21, 0.82]. This shift 

was unrelated to mind wandering rate, rs=.30 [-.13, .63] (no outliers).  

 

Temporal discrimination 

WF values were lower during task-focus, Mdn=.12 [.09, .17], than mind wandering, Mdn=.23 [.21, .56], 

states (Fig. 1d), suggesting a decline in temporal precision during the latter. The majority of participants 

exhibited this effect [92%; 77, 100], reflecting a significant ∆WF of .15 [.09, .33], d=0.43 [0.22, 0.92]. 

Further analyses revealed superior performance in task-focus than mind wandering states for error rates 

(task-focus: .20 [.15, .25]; mind wandering: .37 [.32, .42]; Mdn ∆: .14 [.11, .16], d=1.48 [1.01, 2.18]), and 

d´ values (task-focus: 1.82 [1.50, 2.15]; mind wandering: .79 [.37, 1.05]; Mdn ∆: .97 [.78, 1.30], d=1.53 

[1.06, 2.64]). Mind wandering rate was unrelated to mind wandering-specific shifts in WFs, rs=.31 [-.13, 

.66], rs(outliers removed)=.30 [-.21, .68], error rates, rs=-.04 [-.44, .37], rs(outliers removed)=-.02 [-.44, 

.43], or d´, rs=.10 [-.36, .49] (no outliers). Both temporal contraction and reduced temporal precision 

during mind wandering are also present in the data of excluded participants (Fig. 1b). 
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Figure 1. Oddball task performance parameters. (a) Proportion of long responses [p(long)] as a function 

of oddball interval and attentional state. (b) Participants excluded due to poor model fit. (c) PSE (point of 

subjective equality) in attentional states (the solid line represents the duration of the standards; values 

larger than 500ms reflect underestimation of oddball intervals); ∆PSE (MW-TF) (the solid line represents 

the null hypothesis of no difference); Bootstrap resampling counts of the Mdn ∆PSE (the dark gray area 

reflects the 95% confidence region of the distribution). (d) WF (Weber fraction) in attentional states.   

 

Interval timing with variable lapse rates 

The foregoing analyses assumed a fixed λ so that timing-specific effects could be modeled as a function 

of self-reported mind wandering episodes. We next investigated whether the impact of mind wandering 

was attributable to attentional lapses by treating λ as a free parameter. Estimated λ values were lower in 

task-focus, .02 [.00, .06], than mind wandering, .03 [.00, .30], states, although this difference did not 

achieve significance, Mdn ∆λ <.001 [-.01, .18], d=0.00 [-0.08, 1.15]. PSEs remained lower in task-focus, 
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Mdn=478ms [450, 492], than mind wandering, Mdn=543ms [489, 615], states, Mdn ∆PSE=66 [7, 138], 

d=0.21 [0.02, 0.63]. Similarly, WF values remained lower in task-focus, Mdn=.13 [.09, .18], than mind 

wandering, Mdn=.27 [.13, .59], states, Mdn ∆WF=.12 [.05, .28], d=0.19 [0.07, 0.48].  

 

Discussion  

These results suggest that mind wandering states are characterized by temporal contraction and a decline 

in temporal discrimination. These effects are plausibly driven by perceptual decoupling during mind 

wandering. Perceptual decoupling may produce a decline in visual processing of to-be-timed stimuli 

leading to impaired temporal discrimination and may diminish the representational deviance of oddball 

stimuli, resulting in underestimation due to predictive coding (Eagleman & Pariyadath, 2009; Pariyadath 

& Eagleman, 2007; Schindel et al., 2011). The magnitude of both effects was smaller when attentional 

lapses were incorporated into the analyses although neither effect appears to be wholly driven by such 

lapses. 

The frequency of mind wandering was lower than in research on its frequency in daily life (Kane et 

al., 2007; Kane et al., in press; Killingsworth & Gilbert, 2010; Marcusson-Clavertz et al., 2016).  

This may be attributable to the high cognitive demand associated with the task (Marcusson-Clavertz et al., 

2016; Rummel & Boywitt, 2014), the high probe frequency (Seli, Carriere, Levene, & Smilek, 2013; 

Smallwood & Schooler, 2015), and the faster stimulus presentation rate (McKiernan, D'Angelo, 

Kaufman, & Binder, 2006), all of which may have attenuated mind wandering by regularly reinforcing 

the task set. This high probe frequency was deemed necessary to ensure sufficient data were collected for 

the psychophysical analyses although future research may consider selectively presenting probes based on 

the cumulative mind wandering rate for each stimulus interval.  

A further deviation from the extant literature is that the oddball effect in task-focused states (~2% 

dilation) was smaller than in previous studies (~10-50%; (Rose & Summers, 1995; Seifried & Ulrich, 

2010; Tse, Intriligator, Rivest, & Cavanagh, 2004; Ulrich, Nitschke, & Rammsayer, 2006). This 

attenuation may have been caused by the need to monitor one’s attentional state and the necessary 
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redirection of resources from the task toward ensuring meta-awareness of attentional states. This may 

have similarly augmented temporal contraction during mind wandering. However, insofar as participants 

needed to monitor attention on a trial-by-trial basis irrespective of their attentional state, it is unlikely that 

mind wandering-specific distortions in timing are attributable to the need to monitor attention.  

  

Study  2  

The oddball paradigm used in Study 1 captures a specific illusion that is hypothesized to be driven by 

predictive coding (Eagleman & Pariyadath, 2009; Pariyadath & Eagleman, 2007; Schindel et al., 2011). 

However, the disruption of this illusion during mind wandering may not be representative of the impact of 

mind wandering on interval timing more generally. For this reason, this study examined whether distorted 

timing during mind wandering could be replicated in a widely-used paradigm requiring the constant 

timing of stimuli. Toward this end, participants completed a temporal bisection task in which they judged 

whether comparison intervals were closer in duration to previously learned short or long intervals (Kopec 

& Brody, 2010). Motivated by research highlighting the importance of meta-awareness in mind 

wandering (Smallwood & Schooler, 2015) and time perception (Lamotte, Izaute, & Droit-Volet, 2012), 

we further explored whether mind wandering impacts metacognition (Fleming & Lau, 2014; Maniscalco 

& Lau, 2012) of interval timing.  

  

Methods  

Thirty-seven right-handed individuals (MAge=23, SE=1; 52% female) consented to participate in this study 

in accordance with local ethical approval. None of the participants had taken part in Study 1. 

Participants completed a temporal bisection task in which they were first trained on two standard 

intervals (360ms and 640ms) and subsequently judged whether comparison intervals (360ms, 400, 440, 

480, 520, 560, 600, 640) were closer in duration to the short or the long standards. Each trial consisted of 

a blank 1000ms interstimulus interval followed by a comparison interval (a blue circle with the same 

dimensions as in Study 1). After a second 1000ms interstimulus interval, participants were presented with 



Mind  wandering  distorts  interval  timing   10  

a 2-dimensional grid (Macdonald, Mathan, & Yeung, 2011) upon which they judged 1) whether the 

comparison interval was closer to the short or the long standard interval; 2) their confidence in this 

judgment; and 3) the extent to which they were “on-task” (task-focus) or “off-task” (mind wandering) by 

pressing the left mouse button with their right index finger. Each dimension of the grid was labeled with 

two anchors (“Sure short” vs. “Sure long”; “On-task” vs. “Off-task”) with both the position of the anchors 

and the dimensions counterbalanced across participants. Participants completed five practice trials (to 

familiarize themselves with the response grid) and 20 training trials with 10 presentations of each of the 

standards, followed by four blocks of 192 trials, amounting to 96 presentations of each interval. 

Data were analyzed in the same way as in Study 1. The duration corresponding to the 50% 

threshold on the psychometric function was used as the bisection point (BP), which corresponds to the 

duration of the comparison interval that is perceived as equidistant from the two standards, with larger 

values reflecting relative temporal underestimation of comparison intervals. Six participants’ data were 

omitted because of poor model fit in one condition (1 in task-focus states, 5 in mind wandering states) 

(pdevs<.05) (Prins & Kingdom, 2009); these data are presented in Fig. 2b. We also computed error rates 

and d´ for each attentional state. To measure, metacognition of timing, we down-sampled pseudo-

continuous confidence judgments (0 to 1) to a five-point scale (i.e., 0-0.2: 1; 0.2-0.4: 2; 0.4-0.6: 3; 0.6-

0.8: 4; 0.8-1: 5) and submitted the data to receiver-operating-characteristic (ROC) analysis independently 

for task-focus and mind wandering state data using maximum likelihood estimation in order to compute 

meta-d´, a measure of metacognitive sensitivity (Maniscalco & Lau, 2012), which indexes the extent to 

which an individual’s confidence judgments predict performance. Meta-d´ is calculated in the same units 

(SDs) as d´ and thus the two can be contrasted using meta-d´-d´ (metacognitive efficiency (Rounis, 

Maniscalco, Rothwell, Passingham, & Lau, 2010), which quantifies the optimality of one’s metacognitive 

sensitivity, namely how close it is to discrimination performance, with negative values reflecting poorer 

sensitivity (Fleming & Lau, 2014). 
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Results  

Perceived duration 

Participants reported mind wandering in 25% [20, 31] of trials and displayed a tendency to underestimate 

comparison intervals during mind wandering states (Fig. 2a). BPs were similar in task-focus, 

Mdn=494ms [471, 505], and mind wandering, Mdn=491ms [476, 524], states, although bootstrap 

resampling revealed a Mdn ∆BP (MW-TF) of 16ms [6, 45] (Fig. 2c), suggesting that participants 

underestimated comparison intervals when mind wandering, d=0.22 [0.07, 0.60], with 71% [52, 84] of 

participants exhibiting this effect.  

 

Temporal discrimination 

Participants exhibited lower WFs, reflecting superior temporal precision, during task-focus, Mdn=.16 

[.13, .20], than during mind wandering, Mdn=.22 [.18, .26], states, representing a significant shift, Mdn 

∆WF=.04 [.02, .07], d=0.42 [0.13, 0.86] (Fig. 2d). The majority of participants [81%; 65, 94] exhibited 

this effect. Participants also displayed lower error rates during task-focus, Mdn=.28 [.23, .31], than mind 

wandering, Mdn=.34 [.31, .37], states, Mdn ∆: .06 [.03, .07], d=0.84 [0.35, 1.31], and higher d´ during 

task-focus, Mdn=1.18 [0.96, 1.52], than mind wandering, Mdn=0.87 [0.75, 1.12], states, Mdn ∆: 0.29 [.14, 

.37], d=0.73 [0.30, 1.17]. Temporal contraction and reduced temporal precision during mind wandering 

are also apparent in the data of excluded participants (Fig. 2b). 

 

Metacognition of interval timing 

Metacognition of interval timing did not differ significantly across attentional states. Specifically, there 

were no differences in metacognitive sensitivity (meta-d´; task-focus: 1.00 [0.82, 1.22]; mind wandering: 

0.66 [0.57, 1.10]; Mdn ∆: 0.18 [-.09, .37], d=0.42 [-0.23, 0.87]), or efficiency (meta-d´-d´; task-focus: -.26 

[-.35, -.14]; mind wandering: -.10 [-.21, .05]), Mdn ∆: -.12 [-.27, .09], d=0.30 [-0.25, 0.74]. 
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Figure 2. Temporal bisection task performance parameters. (a) Proportion of long responses [p(long)] as 
a function of comparison interval and attentional state. (b) Excluded participants (due to poor model fit). 
(c) BP (bisection point) in attentional states (the solid line represents the objective BP; values larger than 
500ms reflect underestimation of comparison intervals); ∆BP (MW-TF) (the solid line represents the null 
hypothesis of no difference); Bootstrap resampling counts of the Mdn ∆BP (the dark gray area reflects the 
95% confidence region of the distribution). (d) WF (Weber fraction) in attentional states. (e-g) 
Correlations between the proportion of trials with self-reported mind wandering and the ∆ in (e) WF, (f) 
d´, and (g) metacognitive sensitivity (meta-d´). Red markers reflect outliers (see Method). Reported 
values are uncorrected Spearman correlations on all data (black) and skipped Spearman correlations after 
the omission of outliers (gray). Bracketed values reflect bootstrap 95% CIs. Regression lines for all data 
(black) and data after outlier omission (gray) are included for reference. 
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Interval timing as a function of mind wandering frequency 

Mind wandering rate differentially correlated with shifts in different performance parameters during mind 

wandering states. Although mind wandering rate was unrelated to ∆BP, rs=.09 [-.29, .46]; rs(outliers 

removed)=.05 [-.35, .46], higher mind wandering rates were associated with smaller declines in WF (Fig. 

2e), error rates, rs=-.58 [-.79, -.23], rs(outliers removed)=-.58 [-.80, -.20], and d´ values (Fig. 2f) during 

mind wandering states. Similarly, mind wandering rate was associated with smaller declines in 

metacognitive sensitivity (meta-d´) (Fig. 2g), but not metacognitive efficiency (meta-d´-d´), rs=.30 [-.03, 

.55], rs(outliers removed)=.24 [-.12, .55], during mind wandering states.  

  

Interval timing with variable lapse rates 

As in Study 1, we examined whether the observed effects were attributable to attentional lapses. 

Estimated λ values were higher in mind wandering, .11 [.05, .22], than task-focus, .06 [.02, .13], states, 

Mdn ∆: .01 [.00, .09], although this effect was very small, d=0.06 [0.00, 0.71]. BPs no longer differed 

between task-focus, Mdn=474ms [460, 496], and mind wandering, Mdn=459ms [442, 491], states, Mdn 

∆BP: -6ms [-42, 20], d=0.02 [-0.16, 0.31], although WF values remained lower in task-focus, Mdn=.18 

[.12, .21], than mind wandering, Mdn=.25 [.18, .29], states, Mdn ∆WF: .05 [.02, .07], d=0.48 [0.18, 0.81]. 

These results suggest that temporal contraction, but not reduced temporal precision, during mind 

wandering is driven by attentional lapses. 

  

Discussion 

This study replicated the principal results of Study 1: participants tended to underestimate temporal 

intervals, and display poorer temporal precision, when mind wandering. The magnitude of temporal 

contraction was slightly smaller than in Study 1 (representing ~20% and ~30% shifts of a SD, 

respectively) whereas declines in precision were comparable in the two studies (~40% shift of a SD). The 

precision results were further corroborated by analyses of discrimination ability.  
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The results of this study partially departed from those of Study 1 when we considered whether 

lapse rates could account for the impact of mind wandering on interval timing. When lapse rates were free 

to vary, temporal contraction was no longer observed during mind wandering states whereas the decline 

in temporal precision remained stable. By contrast, in Study 1, both effects were attenuated, but not 

completely disrupted. This discrepancy may simply be due to the larger temporal contraction effect in 

Study 1, which is plausibly attributable to additive effects of predictive coding and attentional lapses, 

whereas the corresponding effect in Study 2 may be solely due to the latter. Two further potential 

contributing factors were the smaller mind wandering rate in Study 1 (12%) relative to Study 2 (25%) and 

the absence of differential lapse rates across attentional states in the former. These effects may have 

allowed lapses to exert a greater impact on perceived duration in Study 2.  

A notable set of results is that participants who mind wandered more frequently exhibited smaller 

declines in temporal discrimination and metacognitive sensitivity during mind wandering states, 

suggesting that frequent mind wandering is associated with reduced proneness to its deleterious effects. 

These associations are potentially driven by variability in meta-awareness (see, e.g., Smallwood, 

McSpadden, & Schooler, 2007): individuals with superior meta-awareness of their attentional states may 

exhibit broadly superior cognitive functioning (cf. (Levinson, Smallwood, & Davidson, 2012)) and thus 

be less susceptible to the detrimental effects of mind wandering. Alternatively, the results may relate to 

variability in the adjudication criteria by which participants judged their attentional states. Some 

participants may only report mind wandering during pronounced episodes, which might be expected to be 

associated with elevated perceptual distortions. Nevertheless, insofar as these effects were not observed in 

Study 1, they should be interpreted with caution. 

 

General  Discussion 

In two studies we demonstrate that mind wandering is characterized by distorted interval timing. During 

mind wandering episodes, participants underestimated subsecond intervals and exhibited a decline in 

temporal precision, but no change in metacognition of timing. These results complement research 
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demonstrating that interval timing varies as a function of the allocation of processing resources to a 

stimulus (Buhusi & Meck, 2009; Gu et al., 2015; Matthews & Meck, 2016) and specifically highlights the 

influence of transient changes in attention on momentary shifts in interval timing (Berry et al., 2014; 

Matthews & Meck, 2014). Fluctuations in attentional states may be driven by variations in occipital 

cortex excitability (Macdonald et al., 2011), which is consistent with research showing that temporal 

underestimation of visual intervals is associated with elevated local cortical inhibition in primary visual 

cortex (Terhune, Russo, Near, Stagg, & Cohen Kadosh, 2014). Further research will benefit from 

contrasting these effects with other factors contributing to intra-individual variability in perceived 

duration, such as fluctuations in striatal dopamine receptor availability (Soares, Atallah, & Paton, 2016; 

Terhune et al., 2016). 

 The principal aim of this study was to test the hypothesis that perceptual decoupling during mind 

wandering disrupts interval timing. Our results are only partially consistent with this hypothesis as they 

point to potentially distinct mechanisms by which mind wandering impacts timing. The results suggest 

that attentional lapses during mind wandering states underlie a moderate to substantial proportion of the 

influence of mind wandering on perceived duration. By contrast, lapses do not seem to substantially 

impact temporal discrimination. Declines in temporal discrimination during mind wandering are perhaps 

better explained by perceptual decoupling, whereby attention is redirected from sensory input toward 

task-unrelated mental representations, resulting in impaired perception (Barron et al., 2011; Schooler et 

al., 2011; Smallwood et al., 2008). These differential effects are consistent with evidence that estimated 

lapse rates in psychophysical models are closely linked to attentional states rather than sensory 

mechanisms (Kingdom & Prins, 2010). Further indirect evidence for this dissociation is provided by the 

correlations with mind wandering rates: the latter were related to mind wandering-specific declines in 

temporal discrimination, but not to temporal contraction. 

An open question is the temporal locus of the impact of attentional lapses on interval timing. One 

possibility is that lapses alter perceived duration by delaying the onset of stimulus timing: participants 

miss the onset of the target and thereby perceive the stimulus as contracted. However, a delayed onset of 
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timing would have produced a rightward shift of psychometric functions, including greater accuracy for 

short intervals, but that was not observed. Alternatively, the temporal loci of attentional lapses may be 

more diffuse and produce periodic interruptions in temporal attention at various stages of stimulus 

processing. These explanations may be distinguished by measuring the perceived frequency of a second 

stimulus dimension (e.g., colour) that varies over time (Coull, Hwang, Leyton, & Dagher, 2012; Coull, 

Vidal, Nazarian, & Macar, 2004). If variability in the alternation of stimulus colour is experimentally 

weighted toward one colour at the onset of the stimulus, a delayed onset explanation would predict a 

larger judgment bias toward the other colour whereas a periodic lapse explanation would not.  

Distorted interval timing may account for a common marker of mind wandering. One of the most 

widely observed behavioral correlates of mind wandering is an increase in response time variability 

(Esterman, Noonan, Rosenberg, & Degutis, 2013; McVay & Kane, 2009; Seli, Cheyne, & Smilek, 2013). 

This increase is plausibly due in part to a decline in temporal precision during tasks requiring responses 

after a certain fixed amount of time has passed. One salient feature of our results is that distorted interval 

timing during mind wandering states appears to be either specific to, or at least more pronounced for, the 

timing of longer intervals. It is possible that short intervals may more readily capture attention and thus 

are processed in a similar way across task-focus and mind wandering states. 

These results also have consequences for the costs and benefits of mind wandering (Smallwood & 

Schooler, 2015). Mind wandering during tasks requiring precise timing of the environment, such as 

operating a motor vehicle (Yanko & Spalek, 2014), will deleteriously impact performance. In contrast, 

mind wandering during repetitive tasks (Avni-Babad & Ritov, 2003) or painful episodes (Kam, Xu, & 

Handy, 2014) may help them pass more quickly, thereby representing a specific valuable function of 

temporal contraction.  
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