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Abstract. Probabilistic record linkage has been well investigated in re-
cent years. The Fellegi-Sunter probabilistic record linkage and its en-
hanced version are commonly used methods, which calculate match and
non-match weights for each pair of corresponding fields of record-pairs.
Bayesian network classifiers — naive Bayes classifier and TAN have also
been successfully used here. Very recently, an extended version of TAN
(called ETAN) has been developed and proved superior in classification
accuracy to conventional TAN. However, no previous work has applied
ETAN in record linkage and investigated the benefits of using a natu-
rally existing hierarchy feature level information. In this work, we extend
the naive Bayes classifier with such information. Finally we apply all the
methods to four datasets and estimate the F} scores.

Keywords: Probabilistic record linkage; Naive Bayes classifier; TAN
and ETAN; Hierarchy feature level information

1 Introduction

Record linkage (RL) [I] proposed by Halbert L. Dunn (1946) refers to the task of
finding records that refer to the same entity across different data sources. These
records contain identifier fields (e.g. name, address, time, postcode etc.). The
simplest kind of record linkage, called deterministic or rules-based record linkage,
requires all or some identifiers are identical giving a deterministic record linkage
procedure. This method works well when there exists a common/key identifier
in the dataset. However, in real world applications, deterministic record linkage
is problematic because of the incompleteness and privacy protection [2] of the
key identifier field.

To mitigate against this problem, probabilistic record linkage (also called
fuzzy matching) is developed, which takes a different approach to the record
linkage problem by taking into account a wider range of potential identifiers.
This method computes weights for each identifier based on its estimated ability
to correctly identify a match or a non-match, and uses these weights to calculate
a score (usually log-likelihood ratio) that two given records refer to the same
entity.

* The authors would like to thank the Tungsten Network for their financial support.



Record-pairs with scores above a certain threshold are considered to be
matches, while pairs with scores below another threshold are considered to be
non-matches; pairs that fall between these two thresholds are considered to be
“possible matches” and can be dealt with accordingly (e.g., human reviewed,
linked, or not linked, depending on the requirements). Whereas deterministic
record linkage requires a series of potentially complex rules to be programmed
ahead of time, probabilistic record linkage methods can be trained to perform
well with much less human intervention.

The Fellegi-Sunter probabilistic record linkage (PRL-FS) [3] is one of the most
commonly used methods. It assigns the match/non-match weight for each corre-
sponding field of record-pairs based on log-likelihood ratios. For each record-pair,
a composite weight is computed by summing each field’s match or non-match
weight. When a field agrees (the contents of the field are the same), the field
match weight is used for computing the composite weight; otherwise the non-
match weight is used. The resulting composite weight is then compared to the
aforementioned thresholds to determine whether the record-pair is classified as
a match, possible match (hold for clerical review) or non-match. Determining
where to set the match/non-match thresholds is a balancing act between obtain-
ing an acceptable sensitivity (or recall, the proportion of truly matching records
that are classified match by the algorithm) and positive predictive value (or pre-
cision, the proportion of records classified match by the algorithm that truly do
match).

In PRL-FS method, a match weight will only be used when two strings
exactly agree in the field. However, in many real world problems, even two strings
describing the same field may not exactly (character-by-character) agree with
each other because of typographical error (mis-spelling). For example, the field
(first name) comparisons such as (Andy, Andrew) and (Andy, John) are both
treated as non-match in PRL-FS even though the terms Andy and Andrew are
more likely to refer to the same person. Moreover, such mis-spellings are not
uncommon according to the research results [4] of US Census Bureau, which
show that 25% of first names did not agree character-by-character among medical
record-pairs that are from the same person. To obtain a better performance in
real world usage, Winkler proposed an enhanced PRL-FS method (PRL-W) [5]
that takes into account field similarity (similarity of two strings for a field within
a record-pair) in the calculation of field weights, and showed better performance
of PRL-W compared to PRL-FS [6].

Probabilistic graphical models for classification such as naive Bayes (NBC)
and tree augmented naive Bayes (TAN) are also used for record linkage [7], where
the single class variable contains two states: match and non-match. These models
can be easily improved with domain knowledge. For example, monotonicity con-
straints (i.e. a higher field similarity value indicating a higher degree of ‘match’)
can be incorporated to help reduce overfitting in classification [§]. Recently, a
state-of-the-art Bayesian network classifier called ETAN [9, [10] has been pro-
posed and shown outperform the NBC and TAN in many cases. ETAN relaxes



the assumption about independence of features, and does not require features
to be connected to the class.

In this paper we will apply ETAN to the probabilistic record linkage problem.
Also we will extend the naive Bayes classifier (referred to as HR-NBC) by in-
troducing hierarchy restrictions between features. As discussed in previous work
[11, 2], these hierarchy restrictions are very useful to avoid unnecessary com-
putation of field comparison, and to help refine the Bayesian network structure.

In our model, such hierarchy restrictions are mined from the semantic re-
lationships between features, which widely exist in real world record matching
problems. An example of this occurs especially in address matching. For exam-
ple, two restaurants with the same name located in two cities are more likely to
be recognized as two different restaurants. Because they might be two different
branches in two cities. In this case, the city locations have higher importance
than the restaurant names. And we can introduce a connection between these
two features.

To deal with mis-spellings in records, we use the Jaro-Winkler similarity
function to measure the differences between fields of two records. These field
difference values and known record linkage labels are used to train the classifier.
Finally, we compare all the methods — PRL-W, TAN, ETAN, NBC and HR-NBC
in four datasets. The results show the benefits of using different methods under
different settings.

2 Probabilistic Record Linkage
2.1 PRL-FS and PRL-W

Let us assume that there are two datasets A and B of n-tuples of elements from
some set F'. (In practice F' will normally be a set of a strings.) Given an n-tuple
a we write a; for the i-th component (or field) of a.

Matching If an element of a € A is the representation of the the same object
as represented by an element of b € B we say a matches b and write a ~ b. Some
elements of A and B match and others do not. If a and b do not match we write
a » b. We write M = {(a,b) € A x Bla ~ b} and U = {(a,b) € A x Bla » b}.
The problem is then, given an element x in A X B to define an algorithm for
deciding whether or not x € M.

Comparison Functions on Fields We assume the existence of a function:

cf :FxF —][0,1].
With the property that Vh € F, ¢f(h,h) = 1. We think of ¢f as a measure of how
similar two elements of F' are. Many such functions exist on strings including
the normalised Levenshtein distance or Jaro-Winkler. In conventional PRL-FS
method, its output is either 0 (non-match) or 1 (match). In PRL-W method, a
field similarity score (Jaro-Winkler distance [5[13]) is calculated, and normalized
between from 0 and 1 to show the degree of match.



Discretisation of Comparison Function Same as previous work [6], rather
than concern ourselves with the exact value of cf(a;,b;) we consider a set of
Iy, - - I of disjoint ascending intervals exactly covering the closed interval [0, 1].
These intervals are called states. We say cf (a;, b;) is in state k to mean cf(a;, b;) €
I.

Given an interval I, and a record-pair (a,b) we define two Valueﬁﬂ

— my,; is the probability that c¢f(a;, b;) € I given that a ~ b.
— uyg,; is the probability that cf(a;, b;) € Ij, given that a - b.

Given a pair (a,b), the weight w;(a,b) of their i-th field is defined as:

w;(a,b) = Zwk,i(a, b)
k=1

where
IH(M) if cf(ai,bi) e I
wy,i(a,b) {ln(l kL) otherwise.
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The composite weight w(a,b) for a given pair (a,b) is then defined as
w(a,b) = Zwi(a, b).
i=1

2.2 The E-M Estimation of Parameters

In practice, the set M, the set of matched pairs, is unknown. Therefore, the
values my, ;, and uy ;, defined above, are also unknown. To accurately estimate
these parameters, we applied the expectation maximization (EM) algorithm with
randomly sampled initial values for all these parameters.

The Algorithm

1. Choose a value for p, the probability that an arbitrary pair in A X B is a
match.

2. Choose values for each of the my ; and uy ;, defined above.

3. E-step: For each pair (a,b) in A x B compute

p H Hm;c,i(av b)
(a,b)eAxXB k=1
g(a,b) = - (1)

p H Hmz,i(avb) + (1-p) H H“%,i(avb)

(a,b)eAxB k=1 (a,b)eAxB k=1

! Note in conventional PRL-FS method [3], two fields are either matched or un-
matched. Thus the k of my ; can be omitted in this case.



where
my,i  if ef(ai, b;) € Iy
1 otherwise.

and

u;c _(a7 b) _ Uk, if cf(ai, bl) c Ik
* 1 otherwise.

4. M-step: Then recompute my, ;, uy,;, and p as follows:

Z g;c,i(av b) Z g~lk,i(a7 b) Z g9(a,b)

(a,b)eAxB (a,b)eAxB (a,b)eAxB

Mpi = ————= > Uki= ’ P="TaxBl
S ga) > 1-g(a,b) |A x B
(a,b)EAXB (a.D)€EAXE
(2)
where
gla,b) if ¢f(ai,b;) € I,
r 7b —
gk,z(a ) {0 otherwise.
and

G (an) = {1 = gla,b) if ef(ai,bi) € I
0 otherwise.

In usage, we iteratively run the E-step and M-step until the convergence
criteria are satisfied: Y (|Amy ;) < 1x 1078, S°(|Aug 4]) < 1x 1078, and |Ap| <
1 x 10~8. Having obtained values for myg,; and ug ;. We can then compute the
composite weight (the natural logarithm of g(a,b)) for each pair defined earlier.

In our implementation, we set the decision threshold as 0.5, and do not
consider possible matches. Because using a domain expert to manually examine
these possible matches is expensive. Thus, the record-pair (a,b) is recognized as
a match if g(a,b) > 0.5; otherwise it is a non-match.

3 Bayesian Network Classifiers for Record Linkage

In this section we discuss different Bayesian network classifiers (NBC, TAN and
ETAN) for record linkage. After that, we discuss the hierarchy structure between
features, and the proposed hierarchy-restricted naive Bayes classifier (HR-NBC).

3.1 The Naive Bayes Classifier

Let record-pair feature vector ? be an input Vecto to the classifier, and C}, be
a possible class of the binary variable C', where C; = 0 indicates a non-match



(a)NBC (b) HRNBC
(c) TAN (d) ETAN

Fig. 1. The graphical representation of NBC, HR-NBC, TAN, ETAN. The blue arrow
represents the dependency introduced by hierarchy feature level information.

and Cy = 1 indicates a match. The model calculates the probability of C} given
the feature values (distance for each field-pair). This can be formulated as:

P(Cy[F) = P(Cy) %ﬁ—’“’ (3)

In the naive Bayes classifier (Figure [I{a)), we assume the conditional inde-

pendence of features, P(?|Ck) can be decomposed as P(?|C’k) = HP(fi|Ck).
i=1

Thus, equation becomes:

_HP(fi\Ok)
P(Cy| f) = P(Cy) % :T%?T (4)

With this equation, we can calculate P(Ck|?) to classify ? into the class

(match/non-match) with the highest P (C’k\?) This approach is one of the base-
line methods we compare our model to.

2 Here ? = {filfi = Ix,i = 1,...,n} contains n elements, whose values indicate the
distances between two records on specific fields, Ij is the state/interval discretised
from cf(ai,b;).



Like the probabilistic record linkage, one of the often-admitted weaknesses
of this approach is that it depends upon the assumption that each of its fields
is independent from the others. The tree augmented naive Bayes classier (TAN)
and its improved version ETAN relax this assumption by allowing interactions
between feature fields.

3.2 The Tree Augmented Naive Bayes Classifier

TAN [I4] can be seen as an extension of the naive Bayes classifier by allowing a
feature as a parent (Figure c)) In NBC, the network structure is naive, where
each feature has the class as the only parent. In TAN, the dependencies between
features are learnt from the data. Given a complete data set D = {Dq,..., Dy}
with L labelled instances, where each instance is an instantiation of all the
variables. Conventional score-based algorithms for structure learning make use
of certain heuristics to find the optimal DAG that best describes the observed
data D over the entire space. We define:

G = arg glé%d(G,D) (5)

where (G, D) is the log-likelihood score, which is the logarithm of the likelihood
function of the data that measures the fitness of a DAG G to the data D. {2 is
a set of all DAGs.

Assume that the score (i.e. BDeu score [15]) is decomposable and respects
likelihood equivalence, we can devise an efficient structure learning algorithm for
TAN. Because every feature f; has C' as a parent, the structure (f; has f; and
C' as parents, i # j) has the same score with the structure, where f; has f; and
C as parents:

f(f“{f],C},D) +£(f]707D) :g(f]a{fuc}aD) +f(fl,C,D) (6)

Beside the naive Bayes structure, in the TAN, features are only allowed to
have at most one other feature as a parent. Thus, we have a tree structure
between the features. Based on the symmetry property (equation (@), we can
have an efficient algorithm to find the optimal TAN structure by converting
the original problem (equation ) into a minimum spanning tree construction
problem. More details could be found in [9].

3.3 The Extended TAN Classifier

As discussed in the previous section, the TAN encodes a tree structure over all
the attributes. And it has been shown to outperform the naive Bayes classifier
in a range of experiments [I4]. However, when the training data are scarce or
a feature and the class are conditionally independent given another feature, we
might not get a TAN structure. Therefore, people have proposed the Extended
TAN (ETAN) classifier [9] [I0] to allow more structure flexibility.



ETAN is a generalization of TAN and NBC. It does not force a tree to cover
all the attributes, and a feature to connect with the class. As shown in Figure
d), ETAN could disconnect a feature if such a feature is not important to
predict C'. Thus, ETAN’s search space of structures includes that of TAN and
NBC, and we have:

UGpran,D) > UGran, D) and {(Gran,D) > {(Gnpe, D) (7)

which means the score of the optimal ETAN structure is superior or equal to
that of the optimal TAN and NBC (Lemma 2 in [9]).

In the ETAN, the symmetry property (equation @) does not hold, because a
feature (e.g. fo in Figure[f(d)) is allowed to be disconnected from the class. Thus,
the undirected version of minimum spanning tree algorithm cannot be directly
applied here. Based on Edmonds’ algorithm for finding minimum spanning trees
in directed graphs, people developed the structure learning algorithm of ETAN,
whose computational complexity is quadratic in the number of features (as is
TAN). For detailed discussions we direct the reader to the papers [9, [10].

3.4 Hierarchy Restrictions Between Features

To utilize the benefits of existing domain knowledge, we extend the NBC method
by allowing hierarchy restrictions between features (HR-NBC). These restric-
tions are modelled as dependencies between features in HR-NBC.

Hierarchy restrictions between features commonly occur in real world prob-
lems. For example, Table [I| shows four address records, which refer to two restau-
rants (there are two duplicates). The correct linkage for these four records is:
1) record 1 and 2 refer to one restaurant in Southwark, and 2) record 3 and 4
refer to another restaurant in Blackheath. As we can see, even record 1 and 3
exactly match with each other in the field of restaurant name, they cannot be
linked with each other because they are located in a different borough.

Table 1. Four restaurant records with name, address, borough/town and type infor-
mation.

Index Name (f1) Address (f2) Borough (f3s)  Type (fa)
1 Strada Unit 6, RFH Belvedere Rd Southwark Roman
2 Strada at Belvedere Royal Festival Hall Southwark Ttalian
3 Strada 5 Lee Rd Blackheath Italian
4 Strada at BH 5 Lee Road BLACKHEATH Italian

Based on the description of the example Table |1, we can see there is a hier-
archy restriction between the name and borough fields, where the borough field
has higher feature level than name field. Thus, intuitively, it is recommended to
compare the borough field first to filter record linkage pairs. To let our classifier



capture such hierarchy restriction, we introduce a dependency between these two
fields (f3 — f1) to form our HR-NBC model (Figure [I[b)). Thus, equation

now becomes:

P(f1fs, Co) [ [P(filCi)
P(Cy|f) = P(Cy) x = (8)
P(¥)

Parameter estimation Let 0 denote the parameters that need to be learned
in the classifier and let r be a set of fully observable record-pairs. The classical
maximum likelihood estimation (MLE) finds the set of parameters that maximize
the data log-likelihood £(0|r) = log P(r|6).

However, for several cases in the unified model, a certain parent-child state
combination would seldom appear, and the MLE learning fails in this situation.
Hence, maximum a posteriori algorithm (MAP) is used to mediate this problem
via the Dirichlet prior: § = arg maxg log P(r|0)P(6). Because there is no infor-
mative prior, in this work we use the BDeu prior [I5] with equivalent sample
size (ESS) equal to 1.

4 Experiments

This section compares PRL-W to different Bayesian network classifiers. The goal
of the experiments is to do an empirical comparison of the different methods,
and show the advantages/disadvantages of using different methods in different
settings. Also, it is of interest to investigate how such hierarchy feature level
information could improve the classifier’s performance.

4.1 Settings

Our experiments are performed on four different datasetﬂ two synthetic datasets
[12] (Country and Company) with sampled spelling errors and two real datasets
(Restaurant and Tungsten). The Country and Company datasets contain 9 and
11 fields/features respectively. All the field similarities are calculated by the
Jaro-Winkler similarity function.

Restaurant is a standard dataset for record linkage study [§]. It was created by
merging the information of some restaurants from two websites. In this dataset,
each record contains 5 fields: name, address, city, phone and restaurant-type ﬁ

Tungsten is a commercial dataset from an e-invoicing company named Tung-
sten Corporation. In this dataset, there are 2744 duplicates introduced by user
entry errors. Fach record contains 5 fields: company name, country code, address
line 1, address line 4 and address line 6.

3 These datasets can be found at |http://yzhou.github.io/.

4 Because the phone number is unique for each restaurant, it, on its own, can be
used to identify duplicates without the need to resort to probabilistic record linkage
techniques. Thus, this field is not used in our experiments.


http://yzhou.github.io/

The experiment platform is based on the Weka system [16]. Since TAN and
ETAN can not deal with continuous field similarity values, these values are
discretised with the same routine as described in PRL-W. To simulate real world
situation, we use an affordable number (10, 50 and 100) of labelled records
as our training data. The reason is clear that it would be very expensive to
manually label hundreds of records. The experiments are repeated 100 times in
each setting, and the results are reported with the mean.

To evaluate the performance of different methods, we compare their ability
to reduce the number of false decisions. False decisions include false matches
(the record-pair classified as a match for two different records) and false non-
matches (the record-pair classified as a non-match for two records that are
originally same). Thus these methods are expected to get high precision and
recall, where precision is the number of correct matches divided by the number
of all classified matches, and recall is the number of correct matches divided by
the number of all original matches.

To consider both the precision and recall of the test, in this experiment, we
use Fj score as our evaluation criteria. This score reaches its best value at 1 and
worst at 0, and is computed as follows:

precision X recall
X

=2 9)

precision + recall

4.2 Results

The F} score of all five methods in different scenarios are shown in Table where
the highest average score in each setting is marked bold. Statistically significant
improvements of the best result over competitors are indicated with asterisks *
(p = 0.05).

Table 2. The Fi score of five record linkage methods in different datasets.

Dataset L PRL-W TAN ETAN NBC HR-NBC

10 0.974 0.920* 0.899* 0.938* 0.941*
Country 50 0.971* 0.970* 0.967* 0.976 0.976
100  0.967* 0.977* 0.978 0.980 0.981

10 0.999 0.969* 0.965* 0.987* 0.988*
Company 50 0.999 0.995* 0.992* 0.997* 0.997*
100 0.999 0.997* 0.996* 0.998 0.999

10 0.996 0.874* 0.863* 0.884* 0.897*
Restaurant 50 0.996 0.950* 0.952* 0.957* 0.958%*
100 0.995 0.957* 0.958* 0.959* 0.960*

10 0.872 0.878 0.877 0.878 0.877
Tungsten 50 0.873* 0.904 0.900 0.904 0.904
100 0.873* 0.914 0.911 0.911%* 0.912




As we can see, the PRL-W gets the best result in Company and Restaurant
datasets. And its performance does not depends on the number of labelled data.
The reason is the record linkage weights were computed with an EM-algorithm as
described in equation (1)) and (2) over the whole dataset (labelled and unlabelled
data). When two classes are easy to distinguish, it is not surprising that the
PRL-W could get good performance with limited labelled data.

Because the scarce labelled data and large number of features, TAN and the
state-of-the-art ETAN methods have relatively bad performances in Country
and Company datasets. Although it is proven that ETAN provides higher fit to
the data (equation ) than TAN;, it receives lower classification accuracies in
most settings due to overfitting. In the Tungsten dataset, TAN gets the best
performance.

According to the results, both NBC and HR-NBC get high Fj scores in all
settings. This demonstrates the benefits of using these two methods when the
labelled data is scarce. Moreover, the performance of our HR—NBCE is equal or
superior to that of NBC in all settings.

5 Conclusions

In this paper, we discussed the hierarchy restrictions between features, and ex-
ploited the classification performance of different methods for record linkage on
both synthetic and real datasets.

Results demonstrate that, in settings of limited labelled data, PRL-W works
well and its performance is independent of the number of labelled data, and show
that TAN, NBC and HR-NBC have better performances than ETAN even though
the latter method provides theoretically better fit to the data. Compared with
NBC, HR-NBC achieves equal or superior performances in all settings, which
show the benefits of introducing hierarchy restrictions between features in these
datasets.

We note, however, that our method might not be preferable in all cases. For
example, in a medical dataset, a patient could move her or his address and have
multiple records. In this case, two records with different addresses refer to the
same person. Thus, the hierarchy restrictions used in this paper will introduce
extra false non-matches.

In future work we will investigate other sources of domain knowledge to
enhance the performance of the resultant classifier, such as improving accuracy
by using specific parameter constraints [17] elicited from experts.

5 In each dataset, we only introduce one hierarchy restriction between the name and
address fields.
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