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Abstract—In late 1940’s and with the introduction of cellular
automata, various types of problems in computer science and
other multidisciplinary fields have started utilising this new
technique. The generative capabilities of cellular automata have
been used for simulating various natural, physical and chemical
phenomena. Aside from these applications, the lattice grid of
cellular automata has been providing a by-product interface to
generate graphical patterns for digital art creation. One notable
aspect of cellular automata is symmetry, detecting of which is
often a difficult task and computationally expensive. This paper
uses a swarm intelligence algorithm – Stochastic Diffusion Search
– to extend and generalise previous works and detect partial
symmetries in cellular automata generated patterns. The newly
proposed technique tailored to address the spatially-independent
symmetry problem is also capable of identifying the absolute point
of symmetry (where symmetry holds from all perspectives) in a
given pattern. Therefore, along with partially symmetric areas,
the centre of symmetry is highlighted through the convergence of
the agents of the swarm intelligence algorithm. This technique is
potentially applicable in the domain of aesthetic evaluation where
symmetry is one of the measures.
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I. INTRODUCTION

Creating aesthetically pleasing images has been inves-
tigated by many researches in the context of evolutionary
computing, including the Bimorphs of Dawkins [1], Mutator
of Latham [2], and Virtual Creatures of Sims [3]. Although
some impressive results have been achieved, there still remains
problems with the aesthetic selection. According to [4], first,
the subjective comparison process, even for a small number of
phenotypes, is slow and forms a bottleneck in the evolutionary
process. Human users would take hours to evaluate many
successive generations that in an automated system could
be performed in a matter of seconds. Secondly, genotype-
phenotype mappings are often not linear or uniform. That is,
a minor change in genotype may produce a radical change
in phenotype. Such non-uniformities are particularly common
in tree or graph based genotype representations such as in
evolutionary programming, where changes to nodes can have
a radical effect on the resultant phenotype. In this study we
approach the problem in the framework of dynamical systems
and define a criterion for aesthetic selection in terms of its

association with symmetry. The association of aesthetics and
symmetry has been investigated from different points of view.

In this work, a brief account on cellular automata is pre-
sented, followed by a section on symmetry and its significance
in aesthetics. Then a swarm intelligence algorithm – Stochastic
Diffusion Search – is explained, highlighting its main features,
including its unique partial function evaluation aspect. After-
wards, the application of the algorithm in detecting points
of symmetry is detailed, illustrating the performance of the
method proposed.

II. CELLULAR AUTOMATA

A cellular automaton is a lattice of regularly arranged
homogeneous deterministic finite state automata in Euclidean
space.

Therefore, a cellular automaton can be presented as a
quadruple of A = 〈L, S,N, f〉, where L is a finite square
lattice in Z2 with periodic boundary conditions, S ⊆ N0

is a finite set of non-negative integers as alphabet or states
(S = {s0, .., sn−1}), N ⊆ N+ is a finite set of non-
negative integers as neighbourhood and f : S|N | 7→ S is a
mapping as the state transition function. In a 2D lattice with
square cells as primitive units if automata on the opposite
sides of the lattice (up and down with left and right) are in
neighbourhood relation, the resulting lattice forms a virtual
torus shape (Fig. 1) which is referred as a lattice with periodic
boundary conditions. The state transition function (local rule)
f maps from the set of neighbourhood states S|N | where |N |
is the cardinality of neighbourhood set, to the set of states S
synchronously at discrete time intervals of t = {0, 1, 2, 3, ..., n}
where t = 0 is the initial time of a cellular automaton. A
mapping that satisfies f(s0, ..., s0) = s0 (s0 ∈ S) is called a
quiescent state.

The behaviour of CA at a certain point of time emergences
from a synchronous iterative application of transition function
(local rule) over the initial configuration at time t = 0. There
are some distinctive characteristics in CA which can make
them particularly attractive to digital artists and suitable for
image and pattern generation purposes (each automaton acting
as picture element). Furthermore, the significance of CA for
computer art comes from the fact that simple rules can generate
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Fig. 1. The formation of periodic boundary from a lattice

Fig. 2. Sample CA generated images with symmetrical patterns

observationally unpredictable complex behaviours and there is
a vast universe of behaviours which can be explored. Generally
the behaviour of a particular cellular automaton is constrained
by its initial configuration, transaction function and number of
states. A two-dimensional multi-state cellular automaton with
periodic boundary provides an endless environment for the
growth of patterns and the observation of emergent complex
behaviour over the time of evolution. For some rules the
periodic generation of patterns creates an animated sequence
of pattern formations. This opens up possibility of generating
animations based on the development of pattern formation
where both symmetries and the element of surprise coexist.
This capability was observed in [5] where CA are described
as “self-generating computer graphics movies”. This is a new
way of generating imagery which has no precedent in human
culture [6]. The role of symmetry in art, architecture and
its association with aesthetic preferences is a well known
concept [7]. The iterative application of transition function
over initial configuration, especially in multi-state CA, can
generate complex symmetrical patterns [8], [9] which are
extremely challenging to construct using conventional mathe-
matical methods. Fig. 2 shows experimental patterns generated
by the authors to demonstrate the generative capabilities of CA
in creating symmetrical patterns.

III. SYMMETRY AND AESTHETIC

Symmetry or having proportionality and balance is an im-
portant element of aesthetics. The association of aesthetics and
symmetry has been investigated extensively in the literature.
A study to investigate the effect of symmetry on interface
judgements, and relationship between a higher symmetry value
and aesthetic appeal for the basic imagery, showed that subjects
preferred symmetric over non-symmetric images [10]. Further
studies found that if symmetry is present in the face or the
body, an individual is judged as being relatively more attractive

and if the body is asymmetric the face is rated unattractive,
even if the person doing the rating never sees the body [11],
[12]. Symmetry plays a crucial role in theories of perception
and is even considered a fundamental structuring principle
of cognition [13]. In the Gestalt school of psychology things
[objects] are affected by where they are and by what surrounds
them... so that things [objects] are better described as more
than the sum of their parts [14].

The Gestalt principles emphasise the holistic nature of per-
ception where recognition is inferred, during visual perception,
more by the properties of an image as a whole, rather than
its individual parts [15]. Thus, during the recognition process
elements in an image are grouped from parts to whole based
on Gestalt principles of perception such as proximity, paral-
lelism, closure, symmetry, and continuation [16]. In particular,
symmetric objects are more readily perceived [17]. It is not
surprising that we humans find sensory delight in symmetry,
given the world in which we evolved. In our world the animals
that have interested us and our ancestors (as prey, menace, or
mate) are overwhelming symmetric along at least one axis [18].

A. Evolutionary and Computational approaches

Evolutionary psychologists examine physical appearances
like as symmetry, and perceived level of aesthetics as an
indirect measure in mate selection [7], [19]. In this view
symmetrical faces are examined as more attractive faces. In
other words symmetry is positively linked with both psycho-
logical and physiological health indicators [20]. In geometry
symmetrical shapes are produced by applying four operations
of translations, rotations, reflections, and glide reflections.
However developing computational methods which generate
symmetrical patterns is still a challenge since it has to connect
abstract mathematics with the noisy, imperfect, real world;
and few computational tools exist for dealing with real-
world symmetries [21]. Applying evolutionary algorithms to
produce symmetrical forms leaves the formulation of fitness
functions, which generate and select symmetrical phenotypes,
to be addressed. Lewis describes two strategies in evolutionary
algorithms approach for generating and selecting symmetrical
forms: “A common approach is to hope for properties like
symmetry to gradually emerge by selecting for them. Another
strategy is to build in symmetry functions which sometimes
activate, appearing suddenly. However this leads to a lack of
control, as offspring resulting from slight mutations (i.e., small
steps in the solution space) bear little resemblance to their
ancestors [22]”.

There are several algorithms designed to detect exact sym-
metry in images; amongst which, and in the case of a collection
of n points in the plane, Atallah describes an algorithm
for enumerating all axes of symmetry under reflection of a
planar shape [23]. In another work, Wolter et al. give exact
algorithms, based on string matching, for the detection of
symmetries of point clouds, polygons, and polyhedra [24].
These algorithms are often impractical due to their sensitivity
to noise and high computational expense, because of their
restricted nature to exact symmetries.

In terms of approximate symmetry there are two broad cat-
egories: the first defines approximate symmetry by an infimum
of a continuous distance function quantifying how similar is a
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shape to its transformed version. One of the works introduced
in this category is reported in [25]. The second approach aims
to address the computational complexity issue by translating
the search into a proxy domain, realising that the set of
admissible symmetries is sparse in the transformation space;
among the examples of this type of work are [26], [27], [28].
Other variations of symmetry detection have being proposed
that fall within the broad above-mentioned categories (e.g. [29]
which addresses reflection symmetry detection problem or [30]
focusing on boolean functions, which is based on Shannons
Theorem [31] that detects symmetry by comparison of two-
variable cofactors).

In the research presented in this paper, two modalities of
the same algorithms are used to detect absolute symmetry in
an input image if present, as well partial (sub-) symmetries.

The next section explains the swarm intelligence algorithm
which will be used in detecting symmetrical patterns.

IV. STOCHASTIC DIFFUSION SEARCH

The swarm intelligence algorithm used in this work is
Stochastic Diffusion Search (SDS) [32], [33] which is a prob-
abilistic approach for solving best-fit pattern recognition and
matching problems. SDS, as a multi-agent population-based
global search and optimisation algorithm, is a distributed mode
of computation utilising interaction between simple agents.
Its computational roots stem from Geoff Hinton’s interest 3D
object classification and mapping. See [34] for Hinton’s work
and [35] for the connection between Hinton mapping and
SDS. SDS algorithm has been used in various fields including
optimisation, generative arts and medical imaging (e.g. [36],
[37], [38], [39]). SDS, contrary to many swarm intelligence
algorithms, has a strong mathematical framework describing
its behaviour and convergence. The full mathematical model
and proof of SDS convergence are elaborated in [33].

A. SDS Architecture

Similar to other swarm intelligence algorithms, SDS com-
mences a search or optimisation by initialising its population.
In any SDS search, each agent maintains a hypothesis, h,
defining a possible problem solution. After initialisation, the
two phases of SDS – Test and Diffusion phases – are followed
(see Algorithm 1 for a high-level description of SDS).

In the test phase, SDS checks whether the agent hypoth-
esis is successful or not by performing a partial hypothesis
evaluation and returning a domain independent boolean value.
Later in the iteration, contingent on the strategy employed,
successful hypotheses diffuse across the population and in
this way information on potentially good solutions spreads
throughout the entire population of agents.

In other words, in the Test phase, each agent performs
partial function evaluation, pFE, which is some function of
the agent’s hypothesis, pFE = f(h); and in the Diffusion
phase, each agent recruits another agent for interaction and
potential communication of hypothesis.

B. Standard SDS and Passive Recruitment

In standard SDS, passive recruitment mode is employed.
In this mode, if the agent is inactive, a second agent is

Algorithm 1 SDS Algorithm

01: Initialising agents
02: While (stopping condition is not met)
03: Testing hypotheses
04: Determining agents status (active/inactive)
05: Diffusing hypotheses
06: Exchanging of information
07: End While

randomly selected for diffusion; if the second agent is active,
its hypothesis is communicated (diffused) to the inactive one.
Otherwise there is no flow of information between agents;
instead a completely new hypothesis is generated for the
first inactive agent at random (see Algorithm 2). Therefore,
recruitment is not the responsibility of the active agents. Higher
rate of inactivity boosts exploration, whereas a lower rate
biases the performance towards exploitation. Details of the test
phase and the fitness function is described later in this paper.

Algorithm 2 Passive Recruitment Mode

01: For each agent ag
02: If ( !ag.isActive )
03: r_ag = pick a random agent
04: If ( r_ag.isActive )
05: ag.hypothesis = r_ag.hypothesis
06: Else
07: ag.hypothesis = generate random hypothesis
08: End If
09: End For

C. Partial Function Evaluation

One of the concerns associated with many optimisation
algorithms (e.g. Genetic Algorithm, Particle Swarm Optimisa-
tion and etc.) is the repetitive evaluation of a computationally
expensive fitness functions. In some applications, such as
tracking a rapidly moving object or generation of CA patters,
the repetitive function evaluation significantly increases the
computational cost of the algorithm. Therefore, in addition to
reducing the number of function evaluations, other measures
can be used in an attempt to reduce the computations carried
out during the evaluation of each possible solution, as part of
the overall optimisation (or search) processes.

The commonly used benchmarks for evaluating the per-
formance of swarm intelligence algorithms are typically small
in terms of their objective functions computational costs [40],
[41], which is often not the case in real-world applications
(examples of costly evaluation functions are seismic data
interpretation, selection of sites for the transmission infras-
tructure of wireless communication networks and radio wave
propagation calculations of one site, etc.).

Costly objective function evaluations have been investi-
gated under different conditions [42] and the following two
broad approaches have been proposed to reduce the cost of
function evaluations:

• The first is to estimate the fitness by taking into
account the fitness of the neighbouring elements, the
former generations or the fitness of the same element
through statistical techniques introduced in [43].
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• In the second approach, the costly fitness function
is substituted with a cheaper, approximate fitness
function.

When agents are about to converge, the original fitness func-
tion can be used for evaluation to check the validity of the
convergence [42].

The approach that the standard SDS algorithm uses is
similar to the second method. Many fitness functions are
decomposable to components that can be evaluated separately.
During the test phase of SDS, in partial function evaluation
(pFE, which is some function of the agent’s hypothesis,
pFE = f(h)), the evaluation of one or more of the compo-
nents may provide partial information to guide the subsequent
optimisation process.

In other words, instead of evaluating the hypothesis in its
entirely, part of it, which is called micro-feature, is selected
and evaluated accordingly. Therefore, during the test phase,
only the randomly selected micro-features of the hypotheses
are evaluated and the status of each agent is thus determined.
Thus, if the micro-feature of each hypothesis consists of,
say, 1

10 of the entire hypothesis, the computational expense
for the evaluation process of each hypothesis would be 9

10
computationally cheaper.

Next, details of the process through which SDS performs
its spatial-independent symmetry detection is presented.

V. EXPERIMENTS

This section explains the design of the experiments con-
ducted along with the results of applying SDS to identify
partial or full symmetries on the cellular automata generated
patterns. The inputs to the system are sample patterns used as
proof of principle to show the functionality of the method; af-
terwards, some real world cellular automata generated patterns
are fed in the system to evaluate the overall performance of the
algorithm in detecting the aforementioned types of symmetries.

In order to adopt SDS to identify symmetries, the following
important considerations are taken into account:

• the search space comprises of the entire cells on the
grid

• SDS hypothesis is a cell index. For instance, in a 5×
5 grid, the coordinate (2, 2) could be the hypothesis
and micro-features1 can be selected by specifying the
xd and yd distances from the hypothesis; therefore,
assuming the (xd, yd) distance is (2, 0), this micro-
feature should be compared against its corresponding
element with (−2, 0) distance from the hypothesis.

• the environment in cellular automata is torus, which
means if moving downwards along the search space
when we reach the last raw, the next row to be
visited is the top row. The same is applicable when
moving between columns (see Fig. 1 shows the 2D
representation of the cellular automata and its real
structure as torus).

1Micro-features are used in the test phase of SDS to determine the status
of the agent (i.e. active or inactive).

Fig. 3. Sample hypothesis set to be (3, 2); active hypotheses are shown in
green and the inactive ones are displayed in red; the selected micro-features
are highlighted in blue

The patterns in Figs. 3 show the hypothesis (3, 2) and the
various possible micro-features, some of which resulting in
the hypothesis’ status to be true while some others lead to the
hypothesis’ status to be false. The hypothesis in these figures
are set to be (3, 2) and various micro-features are selected to
test the symmetry of the pattern along various axes of symme-
try. The torus structure of cellular automata is demonstrated in
the choice of some of the corresponding micro-features; see,
for example, Fig. 3 top-right corner, where the micro-feature
is chosen at (−1,−1) distance. Thus the corresponding cell
is chosen at (1, 1) distance from the hypothesis, which means
moving out of the 2D canvas from the right border and entering
again from the left.

The process through which SDS commences with the
initialisation phase and then cycle through the two phases and
test and diffusion is explained next.

A. Initialisation phase

During the initialisation phase each one of the agents in the
population is assigned a hypothesis which is a random (x, y)
coordinate from the search space. Additionally, the status of
all agents are initially set to false.

B. Test phase

In the test phase, each agent, which is already allocated an
(x, y) hypothesis, picks a random xd and yd distances from
the hypothesis cell as its micro-feature; the randomly selected
micro-feature is then compared against corresponding mirrored
cells to checks if the mirror cell has the same value. If the
values are the same, the status of the agent is set to true,
otherwise false

C. Diffusion phase

The process in the diffusion phase is the same as the
one detailed in the algorithm description where each inactive
agent picks an agent randomly from the population; if the
randomly selected agent is active, the inactive agent adopts
the hypothesis of the active agent (i.e. the (x, y) coordinate),
otherwise the inactive agent picks a random coordinate from
the search space.

After n number of iterations agents converge on the (x, y)
coordinates with the most symmetrical quality.
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D. Experiments and Discussion

One of the main features of SDS is partial function evalu-
ation which here manifests itself in: each time comparing one
cell on one side of the symmetrical point to its corresponding
cell on the other side. Therefore even when an agent is active,
in the next iteration it picks another micro-feature and checks
the point from “a different perspective” to ensure that the
symmetry still holds. In other words, using this approach,
the algorithm allocate its resources “wisely” and repeatedly
tests the already maintained points of interest against any
asymmetrical discovery.

For the experiments reported in this work, the population
size is empirically calculated using the following formula:

pSize =
w2

4
(1)

where pSize is the population size and w is the width of the
search space. Using this set-up, the agents land on fourth of
the search space; therefore for a 5×5 search space, pSize = 6.

As illustrated in the figures, some agents became active
on (x, y) coordinates which do not represent the full four-
fold symmetry; these agents will eventually pick different
micro-features in the next iterations and become inactive;
consequently, when they are inactive, they need to choose
random agents; given that the number of active agents on the
centre of symmetry increases over time (thanks to the diffusion
phase), it is likely that an active agent is chosen. This would
lead to the inactive agents picking micro-features from the
centre of symmetry in their next iterations and become/stay
active. Note that in these experiments, alpha is used for the
transparency of the agents’ colour; therefore as shown on the
figures, the cell with the largest number of active agents can
be distinguished from others.

There are occasions when more than one centre of symme-
try exists, or there exist some partial symmetries (also called
sub-symmetry) in the image along with full centre of sym-
metry; in this case another flavour of the recruitment strategy
is deployed which is called context-sensitive mechanism. This
strategy frees up some of the agents who are active and share
the same hypothesis, and therefore allows the algorithm to
constantly check for traces of symmetry in the input pattern.

Algorithm 3 Context Sensitive Mechanism

01: If ( ag.activity )
02: r_ag = pick a random agent
03: If ( r_ag.activity AND
04: ag.getHypothsis == r_ag.getHypothsis )
05: ag.setActivity ( false )
06: ag.setHypotheis ( randomHypothsis )
07: End If
08: End If

In other words, the use of context sensitive mechanism
biases the search towards global exploration. Thus, if an active
agent randomly chooses another active agent that maintains
the same hypothesis, the selecting agent is set inactive and
adopts a random hypothesis. This mechanism frees up some of
the resources in order to have a wider exploration throughout
the search space as well as preventing cluster size from

overgrowing; this process goes on while ensuring the formation
of large clusters in case there exists a perfect match or good
sub-optimal solutions (see Algorithm 3).

The next set of experiments use some complex patterns,
generated by cellular automata techniques. Initially an ex-
periment is run that utilises the passive recruitment mode
without the introduced context-sensitive mechanism and later,
the impact of context-sensitivity is discussed.

The graph in Fig. 4 illustrate the behaviour of the agents’
activities; this graph demonstrates that after the initialisation
phase, the number of active and inactive agents are balanced;
however over time, and due to the presence of a centre of sym-
metry in the pattern, the number of active agents increases and
the number of inactive agents decreases. Therefore, ultimately,
once the absolute center of symmetry (where symmetry holds
irrespective of which micro-feature is chosen) is identified,
the entire agent population becomes active and the number of
inactive agents drops to zero.

Using context-sensitive mechanism, the graph in Fig. 5
illustrates the behaviour of SDS algorithm using this mode,
where the populations are biased towards global exploration. In
this graph, while the increase of active agents and the decrease
of inactive agents are visible, it is evident that there are always
agents which are released back from the centre of symmetry
to the search space to explore the possibility of the presence of
further (sub-) symmetrical points. This feature is particularly
useful in dynamic environment, and where there are more than
one absolute points of symmetry (the next experiment uses
an input image with a few points of symmetries). The figure
shows many active (green) and inactive (red) agents throughout
the search space and the graph illustrates that the number of
inactive agents never drops to zero.

The next experiment, which uses a more symmetrically
complex CA-generated pattern, demonstrates the crucial differ-
ence between using SDS with and without the context-sensitive
mechanism. As stated before, context-sensitive mechanism
reduces the greediness of the agents and allows the agents to
explore the search space for any undetected symmetry, while
the pure passive mechanism is greedy and once it finds the
absolute point of symmetry (where symmetry holds no matter
which micro-feature is picked), it gradually pulls all the agents
towards the point and stops them from locating possible partial
symmetries in the canvas.

The new input to be used in this experiment has two
identically CA grown patterns one on the top-left corner
and another on on the bottom-left corner. When running the
SDS algorithm, it becomes clear that the passive recruitment
strategy (see Fig. 6) initially locates two points of symmetry
(at n = 100 iterations), however later (at n = 200 iterations)
all agents are drawn towards the absolute point of symmetry
(note that the search spaces in cellular automata are torus).

Using the context sensitive approach, the largest partial
symmetries are also identified and highlighted (see Fig. 7).
The graphs at the bottom of Figs. 6 and 7 clearly show the
behaviour of the agents in both modes. As displayed in the
graph of Fig. 7, while the number of active and inactive agents
are distinguishably far from one another, yet it is shown that
the number of active agents does not reach the maximum
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SDS: Using Passive Recuritment Mode
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Fig. 4. Passive recruitment mode

possible2 and the number of inactive agents does not drop to
zero. This mechanism insures the identification of other (sub-
) symmetrical points in the input. Therefore, depending on
the functionalities needed, either of these approaches could be
used.

Another observation to be expanded in the future work
is the direct proportionality of the agents’ activity to the
‘strength’ of the symmetry. Therefore, while context-sensitive
mechanism finds partial symmetries, it is able to ‘rank’ the
various clusters of agents which are formed over the pattern.
This could lead to introducing the ratio of active/inactive
agents as a measure for order and complexity along with
Shannon’s entropy [44] and information gain [45], [46], [47]
which are among the very few measures used in cellular
automata for measuring symmetry.

VI. CONCLUSION

CA provide perspective and powerful tools in generating
computer graphics. The multi-state CA rule space is a vast set
of possible rules which can generate interesting patterns with
high aesthetic qualities. The interaction of CA rules at local
level generates emergent global behaviour, that can sometimes
demonstrate attractive complexity. Some characteristics of CA,
such as the regularity and complexity of the rules that are
employed locally, suggest that they could be well suited to
generating computer graphics.

2Given the size of the side of search space is ssSize = 129, the population
size for this pattern is pSize = 1292

4
= 4, 160
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Fig. 5. Context sensitive mechanism

This paper demonstrates the capability of a swarm intelli-
gence algorithm – Stochastic Diffusion Search – in detecting
absolute symmetries (when present) and the centre of partial
symmetrical patterns within the input image. Evaluating the
symmetry of cellular automata generated patterns is often
a difficult task partly due the the large size of the search
space, and partly due to the constantly changing, dynamic
environment in which the cellular automata patterns are gen-
erated. These factors contribute to making the detection of
symmetrical patterns computationally expensive. One of the
main features of Stochastic Diffusion Search is partial function
evaluation which is particularly useful when dealing with
large problems with high dimensions and costly evaluation
function (e.g. in this case, the expensive computational cost
of detecting symmetry in cellular automata generated patters).
The performance of this algorithm is explained in the paper
and the results are accordingly demonstrated.

Following the introduction of this novel technique, among
the future research topics are: conducting a comparison with
other evolutionary and non-evolutionary techniques, comput-
ing the correlation between the size of search space and the
computational complexity of the process, ranking the quality
of the symmetries detected, and applying this method to
dynamically evolving cellular automata generated patterns.
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