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Shannon entropy fails to discriminate structurally different patterns in two-dimensional im-
ages. We have adapted information gain measure and Kolmogorov complexity to overcome
the shortcomings of entropy as a measure of image structure. The measures are customised
to robustly quantify the complexity of images resulting from multi-state cellular automata.
Experiments with a two-dimensional multi-state cellular automaton demonstrate that these
measures are able to predict some of the structural characteristics, symmetry and orientation
of cellular automata generated patterns.
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1. Introduction

Cellular Automata (CA) were initially developed as a material independent framework
to study the logic of self-reproducing behaviour of biological systems in the late 1940s
by von Neumann and Ulam (Burks, 1970). In the 1960s the idea of using CA as artistic
tool emerged from the works of Knowlton and Schwartz who produced “Pixillation”,
one of the early computer generated animations (Knowlton, 1964; Schwartz & Schwartz,
1992). The “Tapestry I ” and “Tapestry II ”, still frames from “Pixillation” won the first
prize of the Eighth Annual Computer Art Contest in 1970. The computer arts of Struy-
cken (Struycken, 1976), Brown (Brown, 2001; Beddard & Dodds, 2009) and evolutionary
architecture of Frazer (Frazer, 1995) are classical examples of CA based arts. Moreover,
CA have been used for music composition, for example, Xenakis (Xenakis, 1992) and
Miranda (Miranda, 2001).

The popularity of John Conway’s Game of Life (Gardner, 1970) drew the attention
of a wider community of researchers and digital artists to the unexplored potential of
CA applications, especially in their capacity to generate complex behaviour from simple
rules (Brown, July 1996). This fact has been noted by Wolfram, who himself produced
some CA arts in the 1980s, “even a program that may have extremely simple rules
will often be able to generate pictures that have striking aesthetic qualities-sometimes
reminiscent of nature, but often unlike anything ever seen before” (Wolfram, 2002, p.11).
He further emphasises that “one of the things I’ve been meaning to do is to make a bit
more of a serious effort to use cellular automata in some kind of computer art” (Regis,

∗Corresponding author. Email: m.javaheri@gold.ac.uk



February 26, 2016 Connection Science ConnScie-2

1988, p.250).
Although classical one-dimensional CA with binary states can exhibit complex be-

haviours, experiments with multi-state two-dimensional (2D) CA reveal a very rich spec-
trum of symmetric and asymmetric patterns which are extremely challenging to generate
using conventional mathematical methods (Javaheri Javid & te Boekhorst, 2006; Javaheri
Javid, al Rifaie, & Zimmer, 2014).

There have been number of studies on the quantitative (Langton, 1986) and qualitative
behaviour (Wolfram, 1983, 1984, 2002) of CA but they are mostly concerned with cate-
gorising the rule space and the computational properties of CA. Since CA are one of the
generative tools in computer art, a means of evaluating the structure of CA generated
patterns would make a substantial contribution towards further automation of CA art.
There have been some interesting attempts to develop means of controlling emergence
of aesthetic behaviour in CA (W. Li, 1988, 1989; Sims, 1992; Mason, 1993; Ashlock &
Tsang, 2009) but with less success. This is due to lack of computational methods of
human aesthetic perception.

This work follows Birkhoff’s tradition in studying mathematical bases of aesthetics,
especially the association of aesthetic judgement with the degree of order and complexity
of a stimulus. Shannon’s information theory provided an objective measure of complexity.
It led to emergence of various informational theories of aesthetics. However entropy
fails to take into account the spatial characteristics of 2D patterns; these characteristics
are fundamental in addressing the aesthetic problem in general and of CA generated
configurations in particular.

In this paper, following our earlier works (Javaheri Javid et al., 2014; Javaheri Javid, al
Rifaie, & Zimmer, 2015; Javaheri Javid, Blackwell, Zimmer, & al Rifaie, 2015), we exam-
ine information gain and Kolmogorov complexity as measures of complexity in multi-state
2D CA generated configurations.

This paper is organised as follows. Section 2 provides formal definitions and establishes
notations of CA. Section 3 demonstrates that entropy is an inadequate measure of dis-
criminating multi-state 2D CA configurations. In Section 4 the potential of information
gain as a structural complexity measure is discussed. Section 5 provides formal notions
of Kolmogorov complexity and a method of estimating it. Section 6 gives details of ex-
periments that test the effectiveness of information gain and its relation to Kolmogorov
complexity. The paper closes with a discussion and summary of findings.

2. Definition of Cellular Automata

Definition 2.1 A cellular automaton is a regular tiling of a lattice with uniform de-
terministic finite state automata.

A cellular automaton A is specified by a quadruple 〈L, S,N, f〉 where:

• L is a finite square lattice of cells (i, j).
• S = {1, 2, . . . , k} is set of states. Each cell (i, j) in L has a state s ∈ S.
• N is neighbourhood, as specified by a set of lattice vectors {ea}, a = 1, 2, . . . , N . The

neighbourhood of cell r = (i, j) is {r + e1, r + e2, . . . , r + eN}. A a cell is considered
to be in its own neighbourhood so that one of {ea} is the zero vector (0, 0). With an
economy of notation, the cells in the neighbourhood of (i, j) can be numbered from
1 to N ; the neighbourhood states of (i, j) can therefore be denoted (s1, s2, . . . , sN ).
Periodic boundary conditions are applied at the edges of the lattice so that complete
neighbourhoods exist for every cell in L.
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• f is the update rule. f computes the state s1(t + 1) of a given cell from the states
(s1, s2, . . . , sN ) of cells in its neighbourhood:s1(t+ 1) = f(s1, s2, . . . , sN ). A quiescent
state sq satisfies f(sq, sq, . . . , sq) = sq.

Remark 1 There are two common neighbourhoods; a five-cell von Neu-
mann neighbourhood {(0, 0), (±1, 0), (0,±1)} and a nine-cell Moore neighbourhood
{(0, 0), (±1, 0), (0,±1), (±1,±1)}.

The collection of states for all cells in L is known as a configuration (C). The global
rule F maps the whole automaton forward in time; it is the synchronous application of
f to each cell. The behaviour of a particular A is the sequence c0, c1, c2, . . . , cT−1, where
c0 is the initial configuration (IC) at t = 0.

CA behaviour is sensitive to the IC and to L, S,N and f . The behaviour is generally
non-linear and sometimes very complex; no single mathematical analysis can describe, or
even estimate, the behaviour of an arbitrary automaton. The vast size of the rule space,
and the fact that this rule space is unstructured, mean that knowledge of the behaviour
a particular cellular automaton, or even of a set of automata, gives no insight into the
behaviour of any other CA. In the lack of any practical model to predict the behaviour
of a cellular automaton, the only feasible method is to run a simulation.

3. Inadequacy of Entropy as a Complexity Measure for Images

Despite the dominance of entropy as a measure of order and complexity, it fails to reflect
on structural characteristics of 2D patterns. The main reason for this drawback is that it
measures the distribution of symbols, and not their arrangements. This is in contrast to
our intuitive perception of the complexity of patterns and is problematic for the purpose
of measuring the complexity of 2D CA generated images in particular.

Information theory was developed in order to address reliable communication over an
unreliable channel (Shannon, 1948). Entropy is the core of this theory (Cover & Thomas,
2006). Let X be discrete alphabet, X a discrete random variable, x ∈ X a particular value
of X and P (x) the probability of x. Then the entropy, H(X), is:

H(X) = −
∑
x∈X

P (x) log2 P (x) (1)

The quantity H is the average uncertainty in bits, log2(1
p) associated with X. Entropy

can also be interpreted as the average amount of information needed to describe X.
The value of entropy is always non-negative and reaches its maximum for the uniform
distribution, log2(|X |):

0 6 H 6 log2(|X |). (2)

The lower bound of relation (2) corresponds to a deterministic variable (no uncertainty)
and the upper bound corresponds to a maximum uncertainty associated with a random
variable. Entropy can be regarded as a measure of order and complexity. A low entropy
implies low uncertainty and the message is highly predictable, ordered and less complex.
High entropy implies a high uncertainty, less predictability, highly disordered and com-
plex. Fig. 1 illustrates the measure of entropy of 2D patterns with various structural
characteristics with the uniform distribution of elements. Figs. 1a-b are patterns with



February 26, 2016 Connection Science ConnScie-2

ordered structures and Fig. 1c is a pattern with a fairly structureless random pattern.

(a) (b) (c)
H = 1.58496 H = 1.58496 H = 1.58496

Figure 1. Measure of H for structurally different patterns with uniform distribution of elements.

These patterns have identical entropy yet clearly have structural differences. This
clearly demonstrates the failure of entropy as a structural measure. This is in contrast
to our intuitive perception of complexity of patterns. For the purpose of measuring com-
plexity of multi-state CA behaviour, it would be problematic if only entropy were to be
applied.

4. Information Gain

Information gain (Bates & Shepard, 1993; Wackerbauer, Witt, Atmanspacher, Kurths,
& Scheingraber, 1994; Andrienko, Yu. A., Brilliantov, N. V., & Kurths, J., 2000) has
been proposed as a means of characterising the complexity of dynamical systems and of
2D patterns. It measures the amount of information gained in bits when specifying the
value, x, of a random variable X given knowledge of the value, y, of another random
variable Y ,

Gx,y = − log2 P (x|y). (3)

P (x|y) is the conditional probability of a state x conditioned on the state y. Then the
mean information gain (MIG), GX,Y , is the average amount of information gain from
the description of the all possible states of Y :

GX,Y =
∑
x,y

P (x, y)Gx,y = −
∑
x,y

P (x, y) log2 P (x|y) (4)

where P (x, y) is the joint probability, prob(X = x, Y = y). G is also known as the
conditional entropy, H(X|Y ) (Cover & Thomas, 2006). Conditional entropy is the re-
duction in uncertainty of the joint distribution of X and Y given knowledge of Y ,
H(X|Y ) = H(X,Y )−H(Y ). The lower and upper bounds of GX,Y are

0 6 GX,Y 6 log2 |X |. (5)

Definition 4.1 A structural complexity measure G, of a cellular automaton configura-
tion is the sum of the mean information gains of cells having homogeneous/heterogeneous
neighbouring cells over 2D lattice.

For a cellular automaton configuration, G can be calculated by considering the distri-
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bution of cell states over pairs of cells r, s,

Gr,s = −
∑
sr,ss

P (sr, ss) log2 P (sr, ss) (6)

where sr, ss are the states at r and s. Since |S| = N , Gr,s is a value in [0, N ].
The vertical, horizontal, primary diagonal (�) and secondary diagonal (�) neighbour-

ing pairs provide eight Gs; G(i,j),(i−1,j+1) ≡ G↖, G(i,j),(i,j+1) ≡ G↑, G(i,j),(i+1,j+1) ≡ G↗,

G(i,j),(i−1,j) ≡ G←, G(i,j),(i+1,j) ≡ G→, G(i,j),(i−1,j−1) ≡ G↙, G(i,j),(i,j−1) ≡ G↓ and

G(i,j),(i+1,j−1) ≡ G↘. The relative positions for non-edge cells are given by matrix M :

M =

 (i−1,j+1) (i,j+1) (i+1,j+1)

(i−1,j) (i,j) (i+1,j)

(i−1,j−1) (i,j−1) (i+1,j−1)

 . (7)

Correlations between cells on opposing lattice edges are not considered. The result of
this edge condition is that G→ is not necessarily equal to G←. In addition the differ-
ences between the horizontal (vertical) and two diagonal mean information rates reveal
left/right (up/down), primary and secondary orientation of 2D patterns. So the sequence
of generated configurations by a multi-state 2D cellular automaton can analysed by the
differences between the vertical (V ), horizontal (H), primary diagonal (Pd ) and sec-
ondary diagonal (Sd) mean information gains by

∆GV = |G↑ −G↓| (8a)

∆GH = |G← −G→| (8b)

∆GPd
= |G↖ −G↘| (8c)

∆GSd
= |G↗ −G↙| (8d)

Fig. 2 demonstrates the merits of G in discriminating structurally different patterns
for the sample patterns in Fig. 1. As it is evident, the measures of H are identical for
structurally different patterns, however G and ∆G differentiate spatial arrangement.

5. Kolmogorov Complexity of 2D Patterns

From the perspective of information theory, the object X is a random variable drawn
according to a probability mass function P (x). If X is random, then the descriptive com-
plexity of the event X = x is log 1

P (x) , because dlog 1
P (x)e is the number of bits required

to describe x. Thus the descriptive complexity of an object depends on the probability
distribution (Cover & Thomas, 2006). Kolmogorov defined the algorithmic (descriptive)
complexity of an object to the minimum length of a program such that a universal
computer can generate a specific sequence (Kolmogorov, 1965). Thus, the Kolmogorov
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(a) (b) (c)
H = 1.58496
G↑ = 1.15955
G↓ = 1.15955

∆GV = 0
G← = 0
G→ = 0

∆GH = 0
G↖ = 1.15843
G↘ = 1.15843

∆GPd
= 0

G↗ = 1.15843
G↙ = 1.15843

∆GSd
= 0

H = 1.58496
G↑ = 0
G↓ = 0

∆GV = 0
G← = 1.15955
G→ = 1.15955

∆GH = 0
G↖ = 1.15843
G↘ = 1.15843

∆GPd
= 0

G↗ = 1.15843
G↙ = 1.15843

∆GSd
= 0

H = 1.58496
G↑ = 1.58181
G↓ = 1.58209

∆GV = 0.00028
G← = 1.57696
G→ = 1.57668

∆GH = 0.00028
G↖ = 1.56727
G↘ = 1.56712

∆GPd
= 0.000150

G↗ = 1.57688
G↙ = 1.57657

∆GSd
= 0.00031

Figure 2. Measure of H, Gs and ∆Gs for structurally different patterns with uniform distribution of elements.

complexity of an object is independent of the probability distribution. Kolmogorov com-
plexity is related to entropy H(X) in that the expected value of K(x) for a random
sequence is approximately the entropy of the source distribution for the process generat-
ing the sequence. However, Kolmogorov complexity differs from entropy in that it relates
to the specific string being considered rather than the source distribution (M. Li, 1997;
Cover & Thomas, 2006). Kolmogorov complexity can be described as follows, where ϕ
represents a universal computer, p represents a program, and x represents a string and
l(p) represents program length,

Kϕ(x) =

{
min

ϕ(p)=x
l(p)

}
(9)

Random strings have rather high Kolmogorov complexity, of the order of their length,
as patterns cannot be discerned to reduce the size of a program generating such a string.
On the other hand, strings with a large amount of structure have fairly low complex-
ity. Universal computers can be equated through programs of constant length, thus a
mapping can be made between universal computers of different types. The Kolmogorov
complexity of a given string on two computers differs by known or determinable con-
stants. The Kolmogorov complexity K(y|x) of a string y, given string x as input is

Kϕ(y|x) =


min

ϕ(p,y)=y
l(p)

∞, if there is no p such that ϕ(p, x) = y

 (10)

where ϕ is a particular universal computer under consideration. Thus, knowledge or
input of a string x may reduce the complexity or program size necessary to produce a
new string y. The major difficulty with Kolmogorov complexity is its uncomputability;
however, any program that produces a given string provides an upper bound.
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Lempel and Ziv defined a measure of complexity for finite sequences rooted in the abil-
ity to produce strings from simple copy operations (Ziv & Lempel, 1978). This method
known as LZ78 universal compression harnesses this principle to yield a universal com-
pression algorithm that can approach the entropy of an infinite sequence produced by
an ergodic source. Hence LZ78 compression can be used as an estimator for K.

In order to estimate the K value of 2D configurations generated by multi-state CA,
we generate linear strings of configurations using six different templates, illustrated in
Fig. 3.

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

(a) (b) (c) (d) (e) (f)

Figure 3. The six different templates used to linearise 2D configurations.

Fig. 3a string horizontal Sh = {1, 2, 3, 4, 5, 6, 7, 8, 9}, Fig. 3b vertical Sv =
{1, 4, 7, 2, 5, 8, 3, 6, 9}, Fig. 3c diagonal Sd = {1, 2, 4, 3, 5, 7, 6, 8, 9}, Fig. 3d reverse di-
agonal Srd = {3, 2, 6, 1, 5, 9, 4, 8, 7}, Fig. 3e spiral Ss = {1, 2, 3, 6, 9, 8, 7, 4, 5}, and Fig. 3f
continuous spiral Scs = {1, 4, 2, 3, 5, 7, 8, 6, 9}. Then an upper bound of K is estimated
from the smallest LZ78 compression over these templates.

A comparison of the measurement of H, Gs, ∆Gs and K for structurally different
patterns with uniform distribution of elements is illustrated in Fig. 4. As is evident from
the measurements, K is able to discriminate the complexity of the patterns, however it
fails to discriminate the spatial orientations.

(a) (b) (c)
H = 1.58496
G↑ = 1.15955
G↓ = 1.15955

∆GV = 0
G← = 0
G→ = 0

∆GH = 0
G↖ = 1.15843
G↘ = 1.15843

∆GPd
= 0

G↗ = 1.15843
G↙ = 1.15843

∆GSd
= 0

Kh = 0.13889

H = 1.58496
G↑ = 0
G↓ = 0

∆GV = 0
G← = 1.15955
G→ = 1.15955

∆GH = 0
G↖ = 1.15843
G↘ = 1.15843

∆GPd
= 0

G↗ = 1.15843
G↙ = 1.15843

∆GSd
= 0

Kv = 0.13889

H = 1.58496
G↑ = 1.58181
G↓ = 1.58209

∆GV = 0.00028
G← = 1.57696
G→ = 1.57668

∆GH = 0.00028
G↖ = 1.56727
G↘ = 1.56712

∆GPd
= 0.000150

G↗ = 1.57688
G↙ = 1.57657

∆GSd
= 0.00031

Kd=cs = 0.27778

Figure 4. Measures of H, Gs, ∆Gs and K for structurally different patterns with uniform distribution of elements.
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6. Experiments and Results

A set of experiments was designed to examine the effectiveness of G in discriminating
the particular configurations that are generated by a multi-state 2D cellular automaton.
The experimental rule (Table 1) maps four states, represented by white, red, blue and
orange; the quiescent state is white.

Table 1. Update rule of experimental cellular automaton.

L = 65× 65 (4225 cells).
S = {0, 1, 2, 3} ≡ {�,�,�,�}
N : Moore neighbourhood
f : S9 7→ S

f(si,j)(t) = si,j(t+ 1) =


1 if s(i,j)(t) = 0 and σ = 1
3 if s(i,j)(t) = 1-3 and σ = 2
2 if s(i,j)(t) = 1-3 and σ = 3
0 otherwise


where σ is the sum total of the neighbourhood states.

The experiments were conducted with four different ICs: (1) all quiescent states cells
except for a single cell (Fig. 5a), (2) a right oriented 5 cell (Fig. 5b), (3) a left oriented
5 cell (Fig. 5c) and (4) a random configuration with 2112 white quiescent states cells
covering ≈ 50% of the lattice, 749 red, 682 blue and 682 orange cells (Fig. 5d).

The experimental rule has been iterated synchronously for 150 successive time steps.
Figs. 6, 8, 10 and 12 illustrate a sample of time steps starting from four different ICs.
Then the sequence of configurations are analysed by Eqs. 8a, 8b, 8c, 8d and K.

(a) (b) (c) (d)

Figure 5. The four different ICs used to seed experimental cellular automaton.

The behaviour of cellular automaton from the single cell IC is a sequence of symmetrical
patterns (Fig. 6). This fact has been reflected on the measurements of ∆Gs (Fig. 7), where
they are constant for the 150 time steps (∆GV = ∆GH = ∆GPd

= ∆GSd
= 0). This is

an indicator of the development of complete symmetrical patterns in four directions for
each of 150 configurations generated by experimental cellular automaton. However, the
measurement of entropy starts from H0 = 0.00319 and reaches H150 = 1.47979 at the
end of the runs (Fig. 14).

The two 5 cell ICs (5b and 5c) generate sequence of symmetrical patterns with different
orientations (Fig. 8 and Fig. 10). The measurements of H for these two sequences of
structurally different but symmetrical configurations are identical from t = 0 to t = 150,
where H5b

0 = H5c
0 = 0.01321 and H5b

150 = H5c
150 = 1.43241 (Fig. 14). On the other hand

the measurements of ∆Gs especially ∆GPd
and ∆GSd

are reflecting the differences in the
orientations of symmetrical configurations (Fig. 9 and Fig. 11). This is further illustrated
in Fig. 15 where the measures of H, Gs and ∆Gs are compared for two configurations
generated at t = 40 from two different 5b and 5c ICs.

The development of configurations from the random IC is a sequence of irregular



February 26, 2016 Connection Science ConnScie-2

t=0 t=20 t=40

t=60 t=80 t=100

t=120 t=140 t=150

Figure 6. Space-time diagram of the experimental cellular automaton for sample time steps starting from the

single cell IC (5a).

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

-0.5
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Time step t
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ts

∆GV

∆GH

∆GPd

∆GSd

Figure 7. The measurements of ∆Gs for 150 time steps starting from 5a ICs.

structures (Fig. 12). The formation of patterns with local structures has reduced the
values of ∆Gs until a stable oscillating pattern is attained (Fig. 13). This is an indicator
of the development of irregular structures. However the patterns are not random since
the maximum four-state value of log2(4) = 2 (Eq. 5).

These experiments demonstrate that a cellular automaton rule seeded with different
ICs leads to the formation of patterns with structurally diverse characteristics. The
gradient of the mean information rate along lattice axes is able to detect the structural
characteristics of patterns generated by this particular multi-state 2D cellular automaton.
From the comparison of H with ∆Gs in the set of experiments, it is clear that entropy
fails to discriminate between the diversity of patterns that can be generated by various
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t=0 t=20 t=40

t=60 t=80 t=100

t=120 t=140 t=150

Figure 8. Space-time diagram of the experimental cellular automaton for sample time steps starting from the 5b

IC.
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∆GH

∆GPd

∆GSd

Figure 9. The measurements of ∆Gs for 150 time steps starting from 5b IC.

CA. The structured but asymmetrical patterns emerging from the random IC are clearly
distinguished from the symmetrical patterns including their orientation. As it is evident
from the results of experiments, the measures of H are identical for structurally different
patterns, however, the measure of Gs and ∆Gs are reflecting not only the complexity of
patterns but their spatial arrangements (i.e. orientation of symmetries) as well.

In addition, the relationship between K and Gs are examined by Eq. 11 (Pearson
correlation coefficient). Table 2 illustrates the calculations of r for different directional
Gs. Since the values of r are ≈ 0.99, so there are strong positive correlation between K
and Gs.
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t=0 t=20 t=40

t=60 t=80 t=100

t=120 t=140 t=150

Figure 10. Space-time diagram of the experimental cellular automaton for sample time steps starting from the 5c

IC.
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Figure 11. The measurements of ∆Gs for 150 time steps starting from 5c IC.

r = rKG =

∑150
i=1(Ki − K̄)(Gi − Ḡ)√∑150

i=1(Ki − K̄)2

√∑150
i=1(Gi − Ḡ)2

(11)
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t=0 t=20 t=40

t=60 t=80 t=100

t=120 t=140 t=150

Figure 12. Space-time diagram of the experimental cellular automaton for sample time steps starting from the
random (5d) IC.
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Figure 13. The measurements of ∆Gs for 150 time steps starting from the random (5d) IC.
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Figure 14. The measurements of H for 150 time steps starting from 5a, 5b, 5c and 5d ICs.
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(a) (b)
H = 1.42929 H = 1.42929
G↑ = 1.36140 G↑ = 1.36140
G↓ = 1.36538 G↓ = 1.36538

∆GV = 0.00398 ∆GV = 0.00398
G← = 1.36140 G← = 1.36538
G→ = 1.36538 G→ = 1.36140

∆GH = 0.00398 ∆GH = 0.00398
G↖ = 1.36634 G↖ = 1.37148
G↘ = 1.37431 G↘ = 1.37148

∆GPd
= 0.00797 ∆GPd

= 0
G↙ = 1.37148 G↙ = 1.37431
G↗ = 1.37148 G↗ = 1.36634

∆GSd
= 0 ∆GSd

= 0.00797
Ks = 0.15929 Kv = 0.16118

Figure 15. The comparison of H, Gs and ∆Gs at t = 40 for 5b (a) and 5c (b) ICs.

Table 2. Calculations of r for different ICs.

rKG↑
= 0.9985 rKG↓

= 0.9985 rKG←
= 0.9985 rKG→

= 0.9985

rKG↖
= 0.9975 rKG↘

= 0.9975 rKG↗
= 0.9975 rKG↙

= 0.9975

Calculations of r for 5a IC.

rKG↑
= 0.9996 rKG↓

= 0.9995 rKG←
= 0.9996 rKG→

= 0.9995

rKG↖
= 0.9996 rKG↘

= 0.9996 rKG↗
= 0.9994 rKG↙

= 0.9995

Calculations of r for 5b IC.

rKG↑
= 0.9996 rKG↓

= 0.9995 rKG←
= 0.9995 rKG→

= 0.9996

rKG↖
= 0.9995 rKG↘

= 0.9996 rKG↗
= 0.9996 rKG↙

= 0.9996

Calculations of r for 5c IC.

rKG↑
= 0.9854 rKG↓

= 0.9842 rKG←
= 0.9874 rKG→

= 0.9838

rKG↖
= 0.9885 rKG↘

= 0.9879 rKG↗
= 0.9794 rKG↙

= 0.9831

Calculations of r for 5d IC.
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7. Conclusion

CA are known for their generative capabilities and have contributed to the creation of
many computer art works. Indeed, multi-state 2D CA can generate aesthetically ap-
pealing and complex patterns with various structural characteristics. Thus the means of
evaluating the structure and ultimately the aesthetic qualities of CA generated patterns
could have a substantial contribution towards further automation of CA art.

Entropy, one of the mostly applied measure of complexity, depends on the probability
distribution of symbols, and not their arrangements. Despite the dominance of entropy
as a measure of order and complexity, it fails to reflect on the structural characteristics
of 2D patterns and of CA configurations.

However mean information gain takes into account conditional and joint probabilities
between pairs of cells and, since it is based on correlations between cells, holds promise
for patterns discrimination. Kolmogorov algorithmic complexity is another measure of
complexity which can be used to estimate the complexity of 2D configurations generated
by a cellular automaton.

This paper reports on a set of experiments with a cellular automaton rule seeded with
four different initial conditions which lead to the formation of patterns with structurally
diverse characteristics. The potential of mean information gain and Kolmogorov com-
plexity for distinguishing multi-state 2D CA patterns is demonstrated. The measures
appear to be particularly good at distinguishing different kinds of random patterns from
non-random patterns. Furthermore, information gain measure is also able to discriminate
the orientation of symmetries.
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