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ABSTRACT

When performing a piece, a pianist’s interpretation is com-
municated both through the sound produced and through
body gestures. We present PiaF (Piano Follower), a proto-
type for augmenting piano performance by measuring ges-
ture variations. We survey other augmented piano projects,
several of which focus on gestural recognition, and present
our prototype which uses machine learning techniques for
gesture classification and estimation of gesture variations in
real-time. Our implementation uses the Kinect depth sen-
sor to track body motion in space, which is used as input
data. During an initial learning phase, the system is taught
a set of reference gestures, or templates. During perfor-
mance, the live gesture is classified in real-time, and varia-
tions with respect to the recognized template are computed.
These values can then be mapped to audio processing pa-
rameters, to control digital effects which are applied to the
acoustic output of the piano in real-time. We discuss initial
tests using PiaF with a pianist, as well as potential appli-
cations beyond live performance, including pedagogy and
embodiment of recorded performance.
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1. INTRODUCTION

Each performance of a piano piece is unique, especially when
considering what is communicated with movements and ges-
ture. Performances vary highly between pianists and be-
tween interpretations, resulting in variations in the sound
produced as well as the audience’s perception of the pianist’s
movement. We present a prototype for augmenting piano
performance by capturing pianists’ gesture variations and
using these variations to digitally manipulate the acoustic
sound produced by the piano in an expressive way.
Pianists’ gestures are examples of music-related body ges-
tures, where the concept of gesture is examined as a “bridge
between movement and meaning” [12]. Gestures are dis-
cussed as having either sound-producing or ancillary (i.e.
sound—accompanying) qualities. In piano performance, ges-
tures involving the head, for example, can be considered
ancillary, as they do not directly create sound. Meanwhile,
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gestures involving pressing down keys can be considered
mostly sound-producing, as they physically cause the pi-
ano to generate sound. All of these movements, whether
they are sound-producing or ancillary, contribute to the
performer’s expression during performances [8, 7, 6]. More-
over, gestures are critical for the production and perception
of musical expressivity. This does not only depend on what
gesture is performed but also on how a gesture is performed.

Changes in dynamics, shapes, and efforts are the assem-
bled constitutive blocks of gesture expressivity [3]. Given
that, a critical technical challenge is to capture such varia-
tions in order to use them as an expressive vector in gesture—
music interaction. Our approach is to use a machine learn-
ing based method for both gesture classification and esti-
mation of gesture variation.

In this paper, we propose a software prototype that cap-
tures pianists’ gestures, extracts variations in their perfor-
mance based on given gesture references, and use these esti-
mated variations to manipulate audio effects and synthesis
processes. We first present related works on augmented pi-
ano performances using both hardware and software (Sec-
tion 2). Then we present our software architecture (Sec-
tion 3) and implementation (Section 4). We conclude the
paper with observations based on our first tests (Section 5)
and how they open towards pertinent future works within
the NIME community (Section 6).

2. RELATED WORK

Augmenting acoustic instruments has been a fruitful re-
search topic within NIME related research, including a sig-
nificant number of projects focusing on piano performance.

Freed et al. [9] propose a keyboard controller for captur-
ing continuous key position. Hadjakos et al. developed the
Elbow Piano, which measures the movement of a pianist’s el-
bow when playing a note, and modifies the sound produced
according to the type of movement [11]. This was devel-
oped for pedagogical purposes, in order to increase piano
students’ awareness of their elbow movement. McPherson
created a system based on electromagnetic string actuation
and continuous key position sensing to augment acoustic
piano [13].

Other approaches involve using motion capture systems
to augment piano performance. Xiao et al. [14] use a
Yamaha Diskclavier and video projection to “mirror” pi-
ano performance in different scenarios. Yang et al. [15]
used a Microsoft Kinect to allow a user to control synthesis
parameters by performing pre-defined hand gestures in a
“gesture space” placed in front of the piano keyboard. This
system uses gestures as a directly mapped controller, and
requires the pianist to break from the natural interaction
with the instrument. A similar approach has been used
by Gillian and Nicolls where Kinect data feeds a machine
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learning based classification algorithm [10]. The pianist as-
sumes a series of pre-defined hand-arm positions to control
high level musical switches such as looping, layering, and
changes of preset. The vocabulary used consists of static
postures that are outside of the range of the keyboard, and
separate from pianistic gesture vocabulary. Our approach
differs in that it studies variations in the interpretation of
gestures that are inside the range of the pianists’ practice.

Machine learning has the potential to go beyond clas-
sification, and to be better integrated with instrumental
gesture by understanding complex and expressive musical
gesture [5]. Recent machine learning methods can take into
account temporal aspects and variation in gesture perfor-
mance [1, 2]. Among these techniques, the gesture varia-
tion follower' (GVF) [4] has been shown to bring new pos-
sibilities in continuous interaction for creative applications.
The algorithm goes beyond classification. It allows for real-
time gesture recognition and gesture variation estimation:
when following a gesture, it outputs the gesture recognized,
the temporal position within that gesture, and variations in
characteristics such as speed, size, and orientation, relative
to the recognized reference gesture.

In this paper we present PiaF, a prototype for augmented
piano performance using gesture variations. We aim to em-
bed GVF in a complex and generic system that allows the
performer to use gestures from the normal pianistic vocab-
ulary and to harness their variations in performance to ex-
pressively modify the interpretation, by translating the bod-
ily expression to sound.

3. SOFTWARE ARCHITECTURE

PiaF has been designed in order to be used in different aug-
mented piano performance scenarios. Here we describe the
software architecture.

3.1 Design Principles

PiaF was designed with the following principles:

e Self-Contained and Portable. We aimed to develop a
system that can be packaged into a single application
so that musicians can experiment with it on their own,
without the need for a lengthy and complex setup pro-
cess;

Multimodal Sensor Input. The system should be able
to accept input from various sensory modalities, rather
than being limited to use with a specific sensor. These
sensory inputs can be used individually and combined,
in order to capture different accepts of gestural varia-
tions;

Control over Synthesis Parameters. Musicians and
composers should be able to experiment with their
own gesture-sound mappings and audio synthesis. We
propose to embed an audio library that allows for
polyvalent uses (various sound synthesizers and ef-
fects), rather than mandating a specific audio process-
ing chain.

3.2 Architecture

The system? is a C++ application using the openFrame-

works® environment, relevant add—ons, and external libraries.

We first designed the software architecture that draws upon
the principles mentioned previously in an organized struc-
ture of C++ classes. Figure 1 illustrates the system.

"https://github.com/bcaramiaux/gvE
’https://github.com/alejandrovze/oFxGVFxPiano.
3http://openframeworks.cc/

168

Our system has three main components which communi-
cate with each other:

1. Gesture Capture: This portion of the system collects
data from a range of different sensors.

Machine Learning: This data is sent to the GVF algo-
rithm, which computes both classification and adapta-
tion characteristics. It identifies and outputs the label
of the reference gesture being performed, the tempo-
ral position within the gesture, and variations with
respect to the reference gesture.

Audio Processing: This information is then mapped
to various audio processing parameters, in order to
expressively modify the sonic output of the augmented
instrument. These mappings can be set by the user
according to their practice and the performance.

PROCESSED
AUDIO

A

| AUDIO PROCESSING |

A

— USER INTERFACE

€| TEMPLATE
GVF GESTURES
GESTURE INPUT z:f[')\llg

Figure 1: System Architecture

3.3 The GVF Library

Gesture Variation Follower (GVF) [4] is a machine-learning
technique for classification and adaptation based on par-
ticle filtering. It allows for real-time gesture recognition
and gesture variation estimation. The algorithm operates
in two separate phases: training and following. GVF is
first trained on a set of reference gestures (also called tem-
plates). It requires only a single example per reference ges-
ture. Once the gesture vocabulary is created (the training
phase completed), performance takes place in the following
phase. During this phase, a new gesture is performed live
and for each incoming gesture sample the algorithm classi-
fies the performed gesture and estimates how it varies from
the recognized reference. Variations implemented are vari-
ations in speed, size and orientation. GVF makes use of
particle filter inference for recognition and adaptation to
variations, and can be considered as an extension of the
gesture follower (GF), developed at Ircam by Bevilacqua et
al. [1], which is based on Hidden Markov Modeling.

4. IMPLEMENTATION

Based on the software architecture, we deployed a first im-
plementation of this system on a real piano. Here we de-
scribe the gesture capture used, the interaction procedure
based on the machine learning method, and the audio-visual
feedback.

4.1 Gesture Capture

Our system is set up to accept multi-modal gesture data
from various sensors. We wanted to focus on wrist gestures
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and therefore began by using 3-dimensional accelerometers
placed on the wrists as sensors. In the current scenario we
focused on tracking the pianist’s wrist along the three di-
mensions: longitudinal keyboard, transversal keyboard, and
height. For that purpose, we used the Kinect depth sensor
for gesture capture. Using the Kinect in combination with
computer vision techniques from the OpenNI framework*
allows us to track the body skeleton in space: this pro-
vides 3-dimensional coordinations for each visible joint of
the pianist’s body (we worked specifically with data from
the wrists). A drawback is the need to calibrate the system
for each performance and each performer.

4.2 Machine Learning

At each sample, a gesture data vector is sent to the GVF
that is formed by concatenating all of the sensor inputs. As
described earlier, the GVF operates in two separate phases:
a training phase, in which a gesture vocabulary is built, and
a following phase, for performance.

4.2.1 Training Phase

For our implementation, we used the Kinect sensor alone,
and therefore our template data consists of solely spatial
positions of various points in the pianist’s hands, arms, and
upper body. We normalized each gesture according to the
first point in the gesture, such that gestures are charac-
terized by the spatial translation rather than an absolute
trajectory.

GVF can store any number of template gestures, of vary-
ing lengths. We define template gestures according to the
musical phrases which make up the piece being performed,
as segmented by the composer or the performer. Each mu-
sical phrase has a corresponding gesture involved in playing
the phrase. Therefore, by segmenting the piece into musical
phrases we naturally create a set of template gestures which
are used to train the GVF.

Furthermore, when playing a musical phrase in order to
train the GVF on the corresponding template gesture, the
audio for the corresponding phrase is recorded with the ges-
ture data. This allows the pianist to refer to the audio when
browsing through the template gestures, in order to identify
them. Figure 2 illustrates the training phase.

[ GESTURE ]
[ Audio (Piano) ] [ Sensor Data ]
New Gesture Template:
Gesture Data + Musical Phrase (Audio)

-

GVF Template Vocabulary

Figure 2: Training Phase

4.2.2  Following Phase

During the following phase, GVF receives the Kinect ges-
ture data representing the live pianist’s gesture. For each in-
put sample while the gesture is being performed, GVF out-
puts the label of the recognized template, where the pianist

“https://github.com/OpenNI/OpenNI
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is within the template, and variations relative to the refer-
ence. In the current implementation we aim to spot varia-
tions in speed. In addition, we aim to determine whether
the performed gesture has a bigger or smaller spatial extent
which can be estimated via variations in scale along each
dimension of the 3 dimensions of the motion captured by
the Kinect. Figure 3 illustrates the performance phase.

In addition, to indicate to the system when a new gesture
is being performed, the system accepts input from a MIDI
pedal which the pianist can press after each musical phrase.

[ GESTURE ]

Q u

|
I

AUDIO PROCESSING

!

Sensor Data ]

(e

Recognition and Variation
Information

!

Audio Parameters

Audio Qutput

Figure 3: Following Phase

4.3 Feedback and Audio Processing
4.3.1 Visual Interface

The visual interface is primarily used for practice and de-
bugging. It displays the current state of the system, a visual
representation of the recorded gestures, and the analysis
computed by the GVF during performance. When a gesture
is being performed, the recognized template is highlighted,
with a slider displaying the current temporal position within
the gesture. The numerical values of the computed varia-
tions are also displayed using sliders. By having such visual
feedback, the user can better understand how the system
recognizes his gestures and their variations. Beyond this fa-
miliarization, and once the system is trained correctly, the
user can perform on the piano without any interaction with
the visual interface.

4.3.2  Audio Processing

These variations are mapped to sound synthesis parameters
and used to augment the audio. We used the Maximilian
add-on for openFrameworks, ofxMaxim, for audio process-
ing. Our system processes audio input (the sound produced
acoustically by the piano) and outputs augmented audio:
variations determined by GVF are mapped to parameters
of the audio processing which is applied to the sound input.
The specific mappings can be set by the users, according
to their requirements, the goal being to provide a generic
system which can be adapted to specific performers and per-
formances. For example, variations in scale are mapped to
the cutoff frequency of a high-pass filter, and variations in
speed are mapped to the decay time of reverb effect.

S. DISCUSSION

We conducted an initial test with a pianist and received
valuable feedback. She expressed interest in the system
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in the hope that it could help achieve a way of playing
that approached the “bowable” quality of string instruments
or “breathable” quality of wind instruments. She also de-
scribed the system as enabling the user to create a “dialogue
with one’s own arm”, with multiple layers of movement sub-
tleties being sensed, allowing the system to go beyond trig-
gering events as in other gestural control systems, instead
developing an experience with more continuous control and
feedback.

In terms of the gestural recognition, testing with a pianist
helped us understand what challenges we face in refining our
system so that it can fluidly be used in a performance. One
issue was recognizing distinct gestures during a continuous
performance, or the problem of segmenting continuous pi-
ano gestures. Our current solution is for the performer to
use a MIDI pedal to indicate the beginning of a new gesture.
Furthermore, the positioning of the Kinect sensor is critical
and the calibration process affects the usability of the sys-
tem, and it will be important to find an optimal position to
capture the pianist’s movement.

6. CONCLUSION AND FUTURE WORKS

We developed PiaF, a prototype for augmented piano per-
formance, in which the sound produced acoustically by the
piano is digitally altered according to variations in the pi-
anist’s gestural performance. The result is a system which
can introduce what is communicated visually by the pi-
anist’s body movement into the sound produced by the same
movement. We view this as a translation from a multi-
modal performance to a mono-modal performance. We ex-
pect it to be a useful pilot for future NIMEs, in that it
augments instrumental performance without needing to in-
troduce a new, unfamiliar gesture vocabulary. Instead, the
system captures what is already being expressed with the
body, but not necessarily in the sound.

Our future work will explore the use of other gesture in-
puts, including muscle sensor data to capture notions of
strength, effort, or tension. We will also evaluate the system
with several pianists (professional and non-professional) in
different contexts.

Finally, our prototype can have other applications, such
as:

e Pedagogy. GVF allows comparisons between performed
gestures and reference gestures. If we consider the ref-
erence gesture as a target (in that it is a “correct” way
of playing a musical phrase, performed by an instruc-
tor), the variations computed by GVF can then help
understand how a gesture (performed by a student)
deviates from the template. We can communicate
these variations (visually or by adding a secondary
sound-source) to signal disparities, rather than aug-
ment a performance.

Embodiment of recorded performance. We can imagine
an artistic installation that extends the MirrorFugue
interface, which Xiao et al. developed “to conjure the
recorded performer by combining the moving keys of a
player piano with life-sized projection of the pianist’s
hands and upper body” [14].

By combining this system with our augmented piano
application, we can treat the recorded performance
as a set of template gestures, and use GVF to com-
pute gestural variations for a user who engages with
the reproduction by playing the same piece. This can
help the user understand how the current performance
differs from the recorded performance, and these vari-
ations can be used to affect the playback of the perfor-
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mance, thus creating an interaction with the recorded
piece.
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