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ABSTRACT
We introduce the idea of using a perception-based medial point
description [9] of a natural form (2D static or in movement) as a
framework for a part-based shape representation which can then
be efficiently used in biological species identification and matching
tasks. The first step is one of fuzzy medialness measurements of 2D
segmented objects from intensity images which emphasises main
shape information characteristics of an object’s parts (e.g. con-
cavities and folds along a contour). We distinguish interior from
exterior shape description. Interior medialness is used to charac-
terise deformations from straightness, corners and necks, while ex-
terior medialness identifies the main concavities and inlands which
are useful to verify parts extent and reason about articulation and
movement. In a second step we identify a set of characteristic
features points built from three types. We define (i) an Interior
dominant point as a well localised peak value in medialness rep-
resentation, while (ii) an exterior dominant point is evaluated by
identifying a region of concavity sub-tended by a minimum angu-
lar support. Furthermore, (iii) convex point are extracted from the
form to further characterise the elongation of parts. Our evaluated
feature points, together are sufficiently invariant to shape move-
ment, where the articulation in moving objects are characterised by
exterior dominant points. In the third step, a robust shape match-
ing algorithm is designed that finds the most relevant targets from a
database of templates by comparing the dominant feature points in
a scale, rotation and translation invariant way (inspired by the SIFT
method [17]). The performance of our method has been tested on
several databases. The robustness of the algorithm is further tested
by perturbing the data-set at different scales.

Keywords
2D shape analysis, dominant points, information retrieval, medial-
ness representation, shape compression, articulated movement.

1. INTRODUCTION
In this short communication we introduce our proposed 2D shape

representation for biological objects (animals and plants) which is
inspired by results and techniques from cognitive psychology, artis-
tic rendering and animation and computer vision (Fig. 1.(h)). An
artist will often draw different poses of an animal in movement
by using various combinations of primitive structures of different
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Figure 1: (a) Sketch of a cat built from a small number of ap-
proximate disks (visible sketched lines); (b) corresponding seg-
mented and binarised image; (c) classical internal medial-axis
approximation; (d) external medial-axis; (e) 2D shock graph;
(f) proposed interior medialness map; (g) recovered concave
(green dots) and convex (red dots) points, and (h) final domi-
nant (medial) point set (in blue for internal ones, in green for
external/concave ones, and in red for convex points) obtained
via our method.

sizes (here approximate disks of various radii, Fig. 1.(a)). Different
body movements are characterised by a particular orientation and
combination of these primitives. From the point of view of psy-
chophysical investigations on the perception of shape movements
by humans, Kovács et al. have shown that such articulated move-
ments of a biological character can be best captured via a minimal
set of dominant features, potentially being represented as isolated
points [9].

Inspired with these two approaches to the perception of natu-
ral motions, we have investigated a possible scheme based on the
notion of robust medialness presented by Kovács et al. that can
efficiently capture the important structural part-based information
commonly used in artistic drawings and animations. The main
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Figure 2: From [9, Fig.2] with permission: the Dε function for
a simple shape defined as an accumulation of curve segments
falling inside the annulus neighborhood of thickness ε (thick
boundary segments within the gray ring) centered around the
circle (with center p). M(p) is taken as the minimum radial
distance from point p to the nearest contour point.

advantage over other classical medial-based representations of 2D
shape is one of combined compactness, robustness and capacity of
dealing with articulated movements.

Shape representation towards matching has been addressed in
many ways by computer scientists in recent years, including by
directly characterising and grouping contour points [24, 15], by
contour analysis [2, 10, 5, 21], using Blum’s medial axis trans-
form (MAT) and its related shock graph [8], combining contour and
skeleton [11, 1], or using instead the inner distance [14] (some of
the main medial representations are illustrated in Fig. 1, including
our proposed method). Most related to our approach are contour
enclosure-based symmetries [7] and medial point transform [22],
which compute similar medialness maps, but do not apply these to
the retrieval of dominant points and their use in shape matching.
Other classical approaches emphasise similarly either boundary in-
formation (e.g. Fourier, wavelet and scale-space analyses of closed
contours) or interior information (e.g. primitive retro-fitting or ap-
proximation) [18]. The general approach to matching is then to find
good ways to put in correspondence the whole shape representation
from a query with an equivalent complete shape representation of
a target object (e.g. extracting a skeleton from a segmented image
and defining a process to match it with another skeleton description
in the DB). We propose instead to find an efficient medial repre-
sentation which remains discrete (point-based), is (at least approx-
imately) invariant to scaling, rotations and translations, and can be
the basis of a feature vector map for efficient query-target matching
tasks as produced in the discipline of Information Retrieval. Note
that we do not require to have a complete object segmented and
thus will also address partial shape matching. Note also that most
of the well established shape-based approaches do not consider de-
formations and articulated movements, while we do.

Our current method is to develop a shape matching algorithm
which is invariant to translation, scale and rotation and is inspired
by the now classic SIFT approach [16, 17]. Our shape represen-
tation is derived from the region-based medial point description of
shape proposed by Kovács et al. [9] in cognitive science and per-
ception studies. The purpose of evaluating such medialness mea-
surement is to provide a description of the shape which is local,
compact, can easily be applied at different spatial scales, and mim-
icks human sensitivity to contour stimuli. This process maps the
whole shape information into a few number of points we call “dom-

inant” and hence makes it compact. Contrarily to classical medial-
based representations, ours is not overly sensitive to small boundary
deformations and furthermore gives high response in those regions
where the object has high curvature with large boundary support
and in the vicinity of joints (between well-delineated parts, such as
the limbs of an animal). We augment the medial dominant points
with main contour points indicating significant convex and concave
features, thus bringing together with our notion of medialness the
main 2D point-based shape systems proposed over the years in the
fields of cognitive psychology and computer vision: the so-called
“codons” denoting contour parts [19] and high curvature convexi-
ties often used in scale-space analyses [3].

Mathematically, medialness of a point in the image space is de-
fined as the containment of sets of boundary segments falling into
the annulus of thickness parameterised by the tolerance value (ε)
and with interior radius taken as the minimum radial distance of
a point from boundary [9] (Fig. 2). On completion of medialness
measurements each pixel in the transformed image space holds a
local shape information (of accumulated medialness). Assuming
figure-ground separation, thickness variations, bulges and necks of
an object are captured via interior medialness measurement. In the
work of Kovács et al. it is shown that humans are most sensitive
to a small number of localised areas of medialness which coarsely
correspond to joints for animated bodies [9]. Our equivalent (ex-
tended) notion is defined as dominant points and can be applied to
any objects, animated or not. Dominant points are constrained to
be a relatively small number of points of high medialness obtained
by filtering out the less informative, redundant and noisy data from
the initial medialness image space.

To identify internal dominant points a morphological top-hat
transform [23] is applied to isolate peaks in the medialness sig-
nal. Peaks are filtered using an empirically derived threshold. The
selected peaks are then each characterised by a single represen-
tative point. To avoid considering large numbers of nearby iso-
lated peaks which are characteristic of object regions with many
small deformations, only peaks at a given minimum distance away
from each other are retained. The extraction process of external
dominant point is achieved by combining a concavity measure to-
gether with length of support on the contour. Again, a spatially lo-
calised filtering is applied to isolate representative dominant points.
Furthermore, to improve the robustness of our representation, we
extracted the set of convex points to capture the blob like struc-
ture from the shape. We have observed that the articulation and
movement of limbs can be captured via such additional dominant
points. Together, the selected dominant points (internal and exter-
nal) and convex points are then considered as the representative
feature points of the shape. Our matching algorithm is designed
in such a way that it first compares internal dominant points of a
query object with internal representative dominant points of target
shapes in a database. External dominant points are then similarly
processed and convex points are used in a final refinement step. The
matching algorithm first analyses the amount of scale, rotation and
translation of the query w.r.to the target image. These values are
then applied over the query image to find the best possible match-
ing location in the target image.

2. MEDIALNESS MEASURES & FEATURE
EXTRACTION

A medial point is defined by computing theDε function as a dis-
tance metric (to boundary segments). The Dε value at any point
in transformed space represents the degree to which this point is
associated with a percentage of bounding contour pixels of the ob-
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Figure 4: Illustration of the three successive steps in isolating
internal dominant points: (a) medialness representation of (the
interior of) a standing dog figure; (b) corresponding top-hat
transform; and (c) internal dominant points illustrated as black
dots together with the original object’s boundary.

ject within a tolerance of value ε (after Kovács et al. [9]; Fig. 2).
Formally, Dε is defined as: Dε(p) = 1

T

´
|p−b|≤M(p)+ε

db, for
any point p = [xp, yp], vector b(t) = [(x(t), y(t)] describing
the 2D bounding contour (B) of the object, and normalising factor
T =

´
b∈B db. The metric M(p) is taken as the smallest distance

between p and the bounding contour: M(p) = min
0≤t≤1

|p−b(t)|. As

an example, we performed (interior) medialness measurement on
a dog in a typical standing posture to illustrate how the increasing
value of tolerance (ε) operates an averaging effect on medialness,
Fig. 3, as previously observed by Kovács et al. [9]: as ε increases,
smaller symmetries are discarded in favor of those at a larger scale.

2.1 Dominant Points Extraction
Medialness measurement is currently done separately for inter-

nal and external regions to take advantage of the perceptual figure-
ground dichotomy known to be a powerful cue in humans. This
also enables our method to consider articulated objects as potential
targets in pattern recognition tasks.

2.1.1 Internal Dominant Points
Medialness increases with “whiteness” in our transformed im-

ages (visualisation of medialness). To select points of internal dom-
inance, a “white” top-hat transform is applied, resulting in a series
of bright white areas. The white top-hat transform is defined as the
difference of an input function (here an image of medialness mea-
sures as a grey-level 2D function) with the morphological opening
of this image by a flat structural element (a disk with radius as a pa-
rameter). Opening is a set operator on functions which “removes”
small objects from the foreground of an image, placing them in
the background (augmenting the local function set values) [23, 6].
This filtering is followed by a thresholding to discard remaining ar-
eas of relatively low medialness significance. Figure 4.(b) shows
the result obtained after applying the white top-hat transform on a
medialness image.

We still require to process further the output of the top-hat trans-
form to isolate the most dominant points amongst the remaining
selected medialness points which tend to form clusters. To do so, a
flat circular structuring element of radius ε/2 (but of at least 2 pix-
els in width) is applied over the top-hat image such that within the
element it produces only that value which maximises medialness.
We further impose that no remaining points of locally maximised
medialness are too close; this is currently implemented by impos-
ing a minimum distance of length 2ε is taken between any pair of
selected points. We have found that in practice this is sufficient to
avoid the clustering of final interior dominant points (Fig.4.(c)).

2.1.2 External Dominant Points

In practice, if an object can be deformed or is articulated, salient
concavities can be identified in association to those deforming or
moving areas (such as for joints of a human body). Considering this
empirical observation, the location of an external dominant point
can be made invariant to this deformation/articulation only up to a
certain extent. For example, if the location of an external dominant
point is initially relatively far away from the corresponding contour
segment, a slight change in the boundary shape near the movable
part (such as an arm movement) can considerably change the posi-
tion of that associated dominant point (Fig. 5, left). On the other
hand, if a point is located very close to the contour, it can easily be
due to noise or small perturbations in the boundary. Therefore, to
be able to retrieve reliable external dominant points, it is first re-
quired to provide an adapted definition of concavity as a significant
shape feature.

Figure 5: Left: External medialness processing on a humanoid.
The articulated movement of the left arm changes the location
and orientation of the associated external dominant point (at
the concave curvature peak). If the external dominant point
is reasonably far from the contour, then it proves difficult to
retrieve a (shape-based) match with the modified form. Blue
arrows show the local support for concavity while brown ar-
rows indicate the direction of flow of medialness (away from
the concavity). Right: Top: Detection of concave regions (on a
butterfly object) using angular support. Bottom: Detected Con-
cave points.

We define a point (contour point) of local concavity if it falls
under a threshold angular region, under the constraint of length of
support which itself depends on the tolerance value (ε). The value
of threshold (θ) is tunable but is always less than π, which permits
to control the angular limit of the concave region. A point whose
local concavity is larger than θ is considered a “flat” point. In our
experiments we tuned the value of θ from 5π/6 to 8π/9. In as-
sociation, we define an external circular region (of radius function
of ε) centered at each locus containing candidate external dominant
points. Each such region may provide only one representative dom-
inant point, where the dominance of a particular point is decided by
the maximum containment of boundary points inside the associated
annulus (of medialness) and corresponds to the maximum length of
support. Finally, we position the representative dominant point to
be near the contour at a fixed distance outside the form (Fig. 5,
right).

2.1.3 Convex Points
Our final shape feature is a set of convex points, where a shape

has sharp local internal bending and gives a signature of a blob-like
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Figure 3: Top row: Medialness and tolerance. Left: A dog standing; other images to the right show variations in Dε for increasing
tolerance (ε). Middle row: The Dε-function for a sequential set of frames capturing the profiles of a running leopard. The maxima
(white spots) of the function are good candidates as primitives for biological motion representation (after [9]). Bottom row: Corre-
sponding feature points automatically extracted from the medialness measures visible in the middle row (blue: interior dominant;
green: exterior dominant; red: convex points).

part or significant internal curvature structure (i.e. a peak in curva-
ture with large boundary support). The goal is to represent an entire
protruding sub-structure using one or a few boundary points. Tradi-
tionally, such protrusions have a significant contribution in charac-
terising shape [19, 11, 2, 21]. The process of extraction of convex
points is similar to the extraction of concave points, the main dif-
ference being the value of threshold angle (θ), where π < θ ≤ 2π.
In our experiments we have found useful values to be in the range:
5π/4 to 4π/3. Such convex and concave points are complemen-
tary to each others and have been used in the “codon” theory of
shape description: a codon is delimited by a pair of negative cur-
vature extrema denoting concavities and a middle representative
positive maximum of curvature denoting a convexity [19]. In our
case we relate these two sets with the extremities of the traditional
medial axis of H. Blum: end points of interior branches correspond
to center of positive extrema of curvature and end points of exte-
rior branches are mapped to negative extrema of curvature of the
boundary. The repositioning of these extrema near the boundary
is alike the end points of the PISA (Process Inferring Symmetry
Axis) representation of M. Leyton [13]. Together, the three sets:
concave, convex and interior dominant, form a rich enough point-
based description of medialness to allow us to efficiently address
applications with articulated movement for real image data.

2.2 Articulation
Anatomically, an animal’s articulated movement is dependent on

the point of connection between two bones or elements of a skele-
ton. Our results show that exterior dominant points (representative
of significant concavities) have higher potential to trace such artic-
ulations, unless the shape is highly deformed [12]. For usual move-
ments (e.g. walking or jogging), these feature points remain present
and identifiable in association to an underlying bone junction and
hence can provide a practical signature for it (Fig. 3, bottom).

3. MATCHING ALGORITHM

Figure 6: Illustration of the evaluation of scale (β). In the
query image on the left, for a particular dominant point falling
inside the green circle, two possible matching locations in the
target image, are shown: cases I and II. In each case the cir-
cle’s radius is dictated by the minimum distance to the contour
(from medialness) and the scale (β) is given as the ratio of the
minimum radial distances of target vs query.

Our objective is to design a robust matching algorithm that will
match dominant points (query to targets) in an efficient way, in
both time (or equivalent numerical complexity) and accuracy. First,
both the internal and external dominant points are separately ex-
tracted from query and target images. Internal dominant points
are the keypoints for evaluating scale, rotation and translation of
the query image w.r. to a target image. After finding the scale,
rotation and translation of the query image, the next task is to im-
prove the correctness of the matching algorithm. For this, external
dominant points can play a role and improve the final accuracy.
The following information is associated with the dominant points :
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< X,Y,R,MM >, where (X,Y) is the 2D location of the domi-
nant point, R is the minimum radial distance of the point from the
contour and MM is the medialness measurement. The test case
(query Q) is represented as: Q= {QI ,QE ,Qc}, for internal (QI ),
external (QE) dominant points and convex (QC ) points; while the
target image (T ) is similarly represented as: T = {TI ,TE ,TC}.
Each element of QI is matched with each element of TI follow-
ing four stages.

Stage I finds the scale (β) and translation of the query image by
matching a dominant point. Stage II is a check on the scale β to
make sure at least one more internal dominant point can be used in
the matching process (if not, move to a different dominant point not
yet considered). In stage III, the rotation of the query image (w.r.to
the target) is evaluated. Finally, stage IV modifies the Cartesian
positions of each feature point of the query image by applying the
evaluated scale, rotation and translation and we proceed to measure
a matching performance value.
Stage I: Take an element (qi) from set QI and match it with each
element (tj) of set TI . For each pair of (qi,tj), the scale (β) is

evaluated as: β =
Rtj

Rqi
(Fig. 6). The scale (of query image w.r. to

target) for the matching pair (qi,tj) is defined via two translations,
one for each axial direction:

−−→
qxtx = tx − qx and

−−→
qyty = ty − qy ,

where qi = (qx,qy) and tj = (tx,ty).
Stage II: Now take the next element (qi+k) from set QI and match
it again with each element (tj) of set TI . For each pair of (qi+k,tj)
find the scale β

′
. If the ratio of β

′
over β is under the tolerance

level Ts, then goto stage III. Otherwise, repeat at another point and
check the same tolerance criterion Ts and repeat if necessary until
all the elements of QI are counted. The value β

′
(if it is under the

tolerance level) ensures compatibility under scaling of the query
image (with respect to a target) and helps in finding the matching
location of the next internal dominant point to consider (red arrows
in Fig. 7).
Stage III: We define the orientation (α) of an image by the angle
between a line joining two matched dominant points (as obtained
from step I and II) and the positive (reference) x-axis. If (qi,qi+k)
are the matching dominant points in QI and (tj ,tj+l) are matched
dominant points in TI , then orientations αq and αt are defined as
the angle between matching dominant points (Fig. 7). The rotation
(θ) of the image Q is thus defined by the difference of orientations,
i.e. rotation(θ) = αT (tj ,tj+l) − αQ(qi,qi+k).

Figure 7: For both query (test) and target images, the orien-
tation (α) is the angle between a line joining the two matching
internal dominant points (shown with blue arrows) and a posi-
tive x-axis. The required rotation (θ) of the query image w.r.to
the target is given by the difference in orientations.

Stage IV: Upon obtaining the values of translation, rotation and

scale of the image Q (w.r.to T ), our next task is to transform the
positions of all feature points (QI , QE and QC ) of the image Q
into the space of image T and finally check for a match. This is
done as follows:

1. Construct the 4 × 4 homogeneous matrix H to perform the
required linear (rotation and scaling) and affine (translation)
transforms for all feature points found in image Q.

2. Calculate the modified coordinate positions by matrix multi-
plication of H with the feature point positions.

3. For each modified qi (qiεQI ) if there is a tj (tjεTI ) within a
tolerance radius of r × ε, their β-value is then compared. If
the β ratio is within Ts, then count it as a match.

4. Repeat step 3 for external dominant and convex points, i.e.
each element of QE and QC with TE and TC respectively.

Consider MI , ME and MC as the sets of internally, externally and
convex matching feature points. Intuitively, more shape discrim-
ination is present in internal and external dominant points while
convex points add details (end points of protruding parts delimited
by external (concave) points). Hence we make use of the follow-
ing heuristic: our matching metric is biased towards internal and
external dominant points. We express the problem of finding a best
matching location ofQ in T as the maximization of the F-measure:

F =
2×

∑
(MI +ME)∑

(QI +QE) +
∑

(TI + TE)
(1)

To handle the situations where many F-measures have same val-
ues, we then compute a percentage of matched convex points, FC ,
and maximize this value. Mathematically,

FC =
2×

∑
MC∑

(QC + TC)
(2)

There is more than one way to combine the information from the
three sets of feature points. Currently, we are using first the internal
dominant points to reduce the number of targets to further consider
for a potential match. Then we add external (concave) dominant
points to further reduce the number of candidates, and finally use
convex points only if we still have multiple candidates left. Note
that we do not use yet in practice additional information implicitly
available, such as “codon” structure, i.e. how pairs of concavities
are associated with specific convex points [19]. This structural in-
formation would be useful for finer matching under articulated mo-
tions (of limbs). We are currently exploring this combined use of
convex points with external dominant points and will report else-
where on its potential advantage.

4. EXPERIMENTAL RESULTS
Our current matching algorithm is hierarchical in its use of fea-

ture points (internal –> external –> convex) and has proven use-
ful even with common body articulated movements, but as pointed
out above, this could be refined in the near future by using more
structural information. At this early stage in our research program
we have performed an extensive experiment on different heteroge-
neous databases containing biological forms (large animals, plants
and insects) to verify the performance in efficiency and accuracy of
our novel method. Four main types of datasets were used for this
purpose: (i) animals taking a static posture and in movement, (ii)
humans taking a static posture or in action (articulated movement),
(iii) insects and (iv) plants (only leaf forms currently). Also, we
performed some random re-scaling, rotating and translating for the
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verification of invariance under such transformations (Fig. 9), and
added a number of occlusions, by performing random cuts, to test
the method’s response beyond affine transforms. Furthermore, the
robustness of the algorithm is also evaluated by applying a “struc-
tural noise” — introducing scalable random geometric deforma-
tions — which we designed by performing randomised morpho-
logical set operations on the segmented (binarised) objects. In our
experiments we have defined three levels of perturbations: small or
less perturbed, medium and large or highly perturbed (examples in
Fig. 8). We note that other methods relying on smooth continuous
contours (such as methods based on the use of codons or curvature
scale-space, as well as many of the traditional medial-axis meth-
ods) will have great difficulty in dealing with such deformations —
which are to be expected in noisy image captures and under varying
environmental conditions such as due to decay and erosion.

Figure 8: Three levels of (added) perturbation: I - none (origi-
nals), II - small , III - medium and IV - large.

To construct different databases we used the standard MPEG-7
[10], ImageCLEF-2013 [4] and Kimia (Brown University’s) [20]
datasets. Furthermore, we also initiated our own database where
we selected different sequences of animals in motion (from videos).
From these datasets, we have collected a total of 1130 samples be-
longing to Animals other than insects (520 samples, including Hu-
man, Horse, Rat, Cat, Panther, Turtle, Elephant, Bat, Deer, Dog,
and Ray forms), Insects (410 samples, including Butterfly, Bug,
Mosquito, Ant, and other miscellaneous insect forms), and Plant
leaves (200 samples, including Acercampestre, Aceropalus, Ac-
erplatanoides, Acerpseudoplatanus, Acersaccharinum, Anemone-
hepatica, Ficuscarica, Hederahelix, Liquidambarstyraciflua, Lirio-
dendrontulipifer, and Populusalba specimens).

We note that we are limiting the sizes of our test databases as we
require well segmented binary forms (distinguishing figure from
ground) to initiate our medialness transform (e.g. ImageCLEF in-

Figure 9: Top-10 results on some of the samples for deer,
horse and humanoid forms when using our F − measure as
the basis for ranking. The leftmost image for each ranking
results is the query, while the images on the top row are the
target images matched at successive rank location from best to
worst. The bottom row then shows the overlaying (in orange) of
the query on the respective target image (after transformation)
and their spatial differences. The top two series shows tests
for the invariance under scaling, rotation and translation. The
third and fourth series show the behavior of matching using the
F −measure in the presence of articulated movements.

cludes circa 5000 plant images, while we have segmented only 200
of these thus far). This is a limitation of our current approach,
but we are working on extensions to grey-level and color images
(as non-segmented inputs). Also, rather than focus on one type of
biological forms, say butterflies, we decided to test and show the
potential power of our approach for a number of very different bi-
ological forms, from plant leaves, to various species of insects to
larger animals (including humans).

Furthermore, to check the robustness of our algorithm, we de-
formed each such sample at the previously indicated three levels
of perturbation, thus bringing our total dataset count to 1130×4 =
4520. From this database, we took each sample as a different query,
resulting in a total comparison set of 4520×4520≈20.43 million
forms, and exploited our current ranking metric (F alone, or with
FC ) to find the returned top-10 matches. Examples of such top-10
results can be seen in Figures 9, 10, 11, and 12. In our experiments,
the matching algorithm always finds the best fitting shape area for
the query in the target image (Fig. 13). For empirical analysis, we
performed two individual comparisons: (a) precision obtained on
different sets of data types (Fig. 14), and (b) precision obtained
at different perturbation levels (Fig. 15). When the query image
belongs to the original set, the retrieval rate at different ranks is
very high, while the performance significantly decreases for high
levels of perturbations. Note however that even under a large struc-
tural perturbation a given form which may have lost some of its
significant shape features (e.g. a limb), can still be matched with
perceptually similar targets — as judged by a human observer and
validated here as we know the ground truth.
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Figure 10: Top-10 results on some of the samples from the
Plant database (ImageCLEF-2013 [4]) with shape perturbations
using our F −measure as the basis for ranking. NB: The first
match is always the desired target.

Figure 11: Top-10 results on some of the samples for butterfly
forms from the Insect database including structural perturba-
tions when using our F − measure as the basis for ranking.
NB: A partial shape query (3rd series from the top) returns
valid and interesting results.

Figure 12: Top-10 results on some of the samples from the
Insect database including structural perturbations when using
our F −measure as the basis for ranking.

Figure 13: A special query image obtained as a juxtaposition of
two different insect cuts finds a best fitting location in the tar-
get image, and results into an interesting series of part-based
matches (retrieving the correct pair of individual insects (be-
fore juxtaposition) from the DB).
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Figure 14: Result analysis (precision) on the different datasets
containing originals of large animal, plant and insect images,
using our proposed F −measure as the ranking metric.

Figure 15: Result analysis of the entire dataset for different
levels of perturbations, using our F − measure as the rank-
ing metric. NB: Most of the images are also randomly rotated,
scaled and translated.

5. CONCLUSION
The strengths of our approach include: (1) emphasizing a rep-

resentation of 2D shapes based on results from studies on human
perception via robust medialness analysis; (2) introducing an algo-
rithmic chain providing an implementation of this shape analysis
tested on current reference 2D binary animal and plant databases;
(3) mapping of the whole form into a small number of dominant
feature points; (4) achieving accuracy for top ranked matches (ex-
actness) and with nice (observable) degradation properties for the
following highest ranking results; (5) testing and demonstrating
robustness under some levels of articulation and other structural
(noise, cuts) perturbations. Our method also shows promising re-
sults for part-based matching tasks, in the context of occlusions,
cuts and mixed object parts, as well as for shape reconstruction and
compression, all important topics which will require further inves-
tigations.
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