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Abstract 

This paper explores a variety of methods for applying the Latent Dirichlet Allocation (LDA) automated 
topic modeling algorithm to the modeling of the structure and behavior of virtual organizations found 
within modern social media and social networking environments. As the field of Big Data reveals, an 
increase in the scale of social data available presents new challenges which are not tackled by merely 
scaling up hardware and software. Rather, they necessitate new methods and, indeed, new areas of 
expertise. Natural language processing provides one such method. This paper applies LDA to the study of 
scientific virtual organizations whose members employ social technologies. Because of the vast data 
footprint in these virtual platforms, we found that natural language processing was needed to ‘unlock’ and 
render visible latent, previously unseen conversational connections across large textual corpora (spanning 
profiles, discussion threads, forums, and other social media incarnations). We introduce variants of LDA 
and ultimately make the argument that natural language processing is a critical interdisciplinary 
methodology to make better sense of social ‘Big Data’ and we were able to successfully model nested 
discussion topics from forums and blog posts using LDA. Importantly, we found that LDA can move us 
beyond the state-of-the-art in conventional Social Network Analysis techniques. 
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1. Introduction 

In recent years, the Internet has undergone enormous transformations. From its inception as a framework 

for the interconnection of fragments of information from disparate locations through a vast network of 

hyperlinks, the Internet has evolved into a new medium of communication that almost seamlessly 

connects individuals with one another. Far from early critiques that the Internet separates and isolates 

people, it could now be argued that an important function the Internet is in fact to keep people socially 

connected and even increase their social capital (Wellman, Haase et al. 2001). With sites including 

Facebook and Twitter amongst the most heavily used sites on the Internet, and even sites traditionally 

thought of as informational like Google relying heavily on social features, social technologies have 

become increasingly important to us. Indeed, the Internet has become primarily semantic, contextual, and 

social (Gruber 2008). A key challenge now is to parse, understand, and visualize these online formations 

and spaces and their role in our lives. 
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Many social networking sites implement features which allow users to record and report their 

relationships with other users and groups (e.g. friending, liking, and following) (boyd and Ellison 2007). 

A whole research domain has arisen in recent years to quantitatively explore the kinds of networks 

defined by such user-reported relationships. But a complete and thorough analysis of online communities 

and organizations, which stops there, would be incomplete. These types of relationships only capture a 

small portion of the activity that defines any true online community. For example, virtual organizations, 

“‘collection[s] of geographically dispersed individuals, groups, organizational units - either belonging or 

not belonging to the same organization - or entire organizations that depend on electronic links in order to 

complete the production process” (Travica 1997), involve complex social webs which depend on the 

development and maintenance of trust. And because virtual organizations are increasing mediated by 

social technologies, they often include virtual spaces or forums for fostering trust and completing tasks. 

However, an analysis of these communicative spaces alone is insufficient to the task of understanding the 

organizational and community-building potential provided by modern virtual social formations. 

Understanding the human relationships within virtual organizations requires much more than capturing 

who interacts with whom and the topics about which people communicate. Rather, the formations of 

profiles and other facets of people’s virtual presence are negotiated and constructed over time in complex 

ways. Understanding this activity within virtual organizations involves the study of many users, actions, 

connections, and communities taking place across a universe of diverse threads, discussions, groups, and 

micro-communities within a typical social platform and potentially even across multiple social 

technologies. 

In the last decade, even as interactive social technologies were settling in as the dominant online 

paradigm, there was a severe lack of accepted research methods or even availability of information about 

fledgling online social activity. Even where rich information was available, robust computational analysis 

of that information was often intractable. This status quo often led to favoring approaches to network 

analysis focused on the analysis of reported relationships, as there was an established framework for the 

study of such structures borrowed from graph theory (Fombrun 1982). These methods are and remain 
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important to understanding social networks online. However, they can and should be augmented with 

other types of data and methods of analysis. Natural language processing provides one important avenue 

for this. 

In an earlier issue of this Journal, Fabish et al. (2013) argue  that "Artificial intelligence is facing 

real world problems and thus machine learning problems become more and more complex." Part of this 

real world problem is the exponentially increasing volume of data that machine learning has to process. 

The debates around 'Big Data' challenges have appeared in this Journal as well as across the computer 

science literature more broadly (Kantardzic 2011). A particular challenge for artificial intelligence in the 

context of Big Data is to ensure less—not more—effort is "shifted from human to machine" (Fabisch, 

Kassahun et al. 2013). 

Of course, not all Big Data is equal. A major challenge facing the artificial intelligence 

community is machine learning with small chunks of text, such as text commonly found on online social 

networks, social media, and other online spaces. For example, Twitter data has a wide range of text 

quality, text length, and content types. Machine learning with 140-character tweets is possible and has 

been done by many (Pak and Paroubek 2010), but the task remains rife with problems, especially when 

conventional machine learning algorithms are applied. As Cambria and White (2014) argue, “NLP 

research has evolved from the era of punch cards and batch processing […] to the era of Google,” and 

machine learning continues to evolve to adapt to complex settings, such as the analysis of social media 

data. One part of this evolution is the move from coarse to fine-grained analysis methods. As Cambria et 

al. (2013) point out in their discussion of opinion mining and sentiment analysis, early NLP  methods 

often classified sentiment based on a whole document, whereas newer methods strive to analyze segment-

level sentiment. 

In this article, we describe application of one of these more fine-grained NLP techniques—Latent 

Dirichlet Allocation  (LDA) (Blei, Ng et al. 2003) —to information gathered from two prominent virtual 

communities of life scientists. LDA is a robust and versatile unsupervised topic modeling technique, 

originally developed to identify latent topics within a collection of text documents. It has shown great 
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flexibility in being easily adapted to situations where objects in a collection are each associated with a 

unique set of exchangeable attributes (words, in the case of text documents). In general, the technique 

discovers latent topics of associated and co-occurring attributes within the collection. A latent topic has a 

probability distribution over words (as opposed to a strict list of words that are included in or excluded 

from the topic). Instead of simply determining an object’s simple group membership, as is the case with 

many machine learning algorithms, LDA uses a mixture model that models each of its objects as drawing 

proportionally from each of a set of latent topics. These models provide a rich, almost genome-like 

structure for the comparison of objects, classifying each on the entire range of latent groupings. This 

article first introduces the context of our research question, then describes LDA and its variants before 

moving to our study methods and results.  

2. Background 

In this section, we will provide a brief background to the LDA method for topic modeling and highlight 

some of the opportunities that exist in the application of LDA to understanding collective behavior and 

latent, normally unseen network structures that can be discovered and explored from aggregated 

communication (in our case, drawn from virtual communities and organizations). Of particular interest to 

our research are the patterns and networks of latent behavior and communication that help to understand 

and illuminate the collective activity of scientific social networking sites and particularly the virtual 

organizations that develop from them. 

Social media and social networking technologies have become ubiquitous in our social lives. 

However, they are also increasingly pervasive in organizational settings. For example, corporate internal 

social media systems such as HP’s WaterCooler (Brzozowski 2009) and IBM’s Beehive (Geyer, Dugan et 

al. 2008) confirm the utility of social technologies to organizational innovation, collaboration and general 

knowledge sharing. Individual discussion threads and even small clusters of interactions on these 

platforms can be readily analyzed, but it is not easy or straightforward to do this on a much larger scale. 

As the field of Big Data reveals, an increase in the scale of social data available cannot be effectively 

managed by merely scaling up hardware and software, but creates new challenges which necessitate new 
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methods and, indeed, new areas of expertise (Kaisler, Armour et al. 2013). Our project is particularly 

interested in the study of virtual organizations mediated by social technologies. 

2.1 Virtual Organizations 

Virtual organizations (VOs) are organizations or enterprises not tied to a singular physical locality (i.e. a 

specific lab or work place), and are a product of changes in global economic, social, and political systems. 

A useful working definition of VOs is provided by Travica (1997) who views them as manifesting 

themselves as a “collection of geographically dispersed individuals, groups, organizational units - either 

belonging or not belonging to the same organization - or entire organizations that depend on electronic 

links in order to complete the production process.” The work of Travica (1997) and Mowshowitz (1997), 

though useful in defining elements of VOs and mapping their history, does not offer a general articulation 

of what constitutes a virtual organization. Indeed, VOs are conceptualized differently in different 

contexts. The VOs form, disband, and re-configure as required for the task. A VO in this context is a 

virtual collection of geographically disparate team members brought together to solve a particular 

problem/task or accomplish a specific goal. Ultimately, in global virtual teams, the ‘grid’ is distributed 

human resources connected together through collaborative new media technologies to work together as a 

VO. In this way, VOs share with offline organizations a purpose of organizing individuals towards a 

common cause. But, with the exponential increases in textual data being produced with larger VO size, 

time and the technological capabilities of modern society, it can often be difficult to see the ways in 

which that common cause is being achieved.  

Virtual organizations can be large and their data footprint is much larger. Indeed, in the two 

scientific platforms we studied, we not only observed virtual organizations of varying sizes, but witnessed 

a heterogeneity of interactions between the two. We used social network analysis (SNA) (Scott and 

Carrington 2011) to discern specific clusters, cliques, and other groupings within the two scientific 

platforms. A network-based approach was very useful in rendering visible networks of users and the ways 

in which they were connected. However, we discovered this was a very partial portrait. Specifically, it 
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prioritized particular types of users such as "leaders"/"brokers" within the network. It also did not speak to 

the role of topics within these network structures. Natural language processing presents an excellent 

means to resolve this dilemma.  

3. Latent Dirichlet Allocation  

Latent Dirichlet allocation (LDA) is a type of generative probabilistic model. As Cambria and White 

(2014) highlight, LDA is an endogenous NLP technique, which “involves the use of machine-learning 

techniques to perform semantic analysis of a corpus by building structures that approximate concepts 

from a large set of documents” without relying on external knowledge bases. LDA is a latent variable 

model in which each item in a collection (e.g., each text document in a corpus) is modeled as a finite 

mixture over an underlying set of topics. Each of these topics is characterized by a distribution over item 

properties (e.g., words). LDA assumes that these properties are exchangeable (i.e., ordering of words is 

ignored, as in many other “bag of words” approaches to text modeling), and that the properties of each 

document are observable (e.g., the words in each document are known). The word distribution for each 

topic and the topic distribution for each document are unobserved; they are learned from the data. The 

details of the model formulation and training procedure are described in the following subsection. 

Once a model has been learned from a corpus, the topic distribution associated with each 

document can be represented as a vector, which can be used to calculate a distance between documents 

that is informative of their similarity. That is, documents that are similar will have similar distributions 

over topics, and thus be closer together in this vector space. This vector representation and notion of 

distance can therefore provide a foundation to classify, group, and identify relationships between 

documents.  

LDA has proven useful for encapsulating and generating knowledge from large corpora, which in 

many cases were resistant or intractable to previous attempts to model the latent structure or relationships 

within the data (Blei, Ng et al. 2003). LDA has been applied to many types of problems, including 

modeling scientific digital library collections (Mann, Mimno et al. 2006), relationships between images 

and their captions (Blei & Jordan 2002) and topics within disasters from Twitter data (Kireyev, Palen et 
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al. 2009). It has been shown to perform as well or better than many other popular techniques for machine 

learning, data mining, and supervised and unsupervised classification of data. Indeed, LDA has been 

found to have a similar running time for processing as k-means (Wei and Croft 2006), a long-used 

approach for unsupervised clustering, which lacks LDA’s capability to associate documents with a 

distribution over topics rather than assignment of each document to a single, unique topic. Modifications, 

extensions, improvements, and additions to LDA are being developed and released at a rapid pace; some 

relevant extensions are discussed later in this article. 

 

3.1 LDA Topic Modeling 

LDA models the relationships between words, documents, and topics in a corpus via a generative 

probabilistic model. Within this model documents are modeled as mixtures over latent topics, and each 

topic is modeled as an unique distribution over the entire observed vocabulary of the corpus. LDA makes 

the assumption that documents were generated via the following generative process described by Blei 

(2012):  

1. For each Document randomly choose a distribution over topics. 

2. For each word in the document 

(a) Randomly choose a topic from the distribution over topics in step #1. 

(b) Randomly choose a word from the corresponding distribution over the vocabulary. 

 

Blei et al. (2003) provide the following detailed process: 

1. Choose N ~ Poisson(ξ). 

2. Choose θ ~ Dir(α).  

3. For each of the N words wn: 

(a) Choose a topic zn ~ Multinomial(θ). 

(b) Choose a word wn from p(wn | zn, β), a multinomial probability conditioned on the topic 

zn. 

 

Step 1 is not highly relevant to the process of determining the actual topic structures. Specifically, this 
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step involves imagining some random document of a length of words drawn from a Poisson distribution, 

but it does not figure in the actual reversal of the process. These process descriptions are describing an 

assumption for how a corpus of documents is formed (namely the ‘bag of words’ and topic mixture 

assumptions). The documents are in fact written by various authors, but it is the assumption of this 

generative process for some random θ (per-document topic distribution) and some random β (per topic 

word distribution) for the creation of documents that allows for the derivation of an equation to reverse 

the generative process given some provided evidence (the actual corpus of documents). 

Blei et al. (2003) detail the derivation given the above assumptions. Equation 1 is the equation for 

the Dirichlet distribution.  

 

Equation 1 from Blei et al. (2003) 

 

This leads to Equation 2 which is (for a specific document) the joint distribution of θ (the topic mixture), 

z (some set of topic distributions), and w (the N words in that document) given α and β.  

 

Equation 2 from Blei et al. (2003) 

 

Equation 3 shows the marginal distribution of a document or the probability of some set of words w 

appearing in a document theoretically created via the above process and defined by α and β. 
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Equation 3 from Blei et al. (2003) 

 

Equation 4 takes the product of the marginal distributions of each document to obtain an equation for the 

conditional probability of a corpus given α and β.  

 

 

Equation 4 from Blei et al. (2003) 

 

Theoretically, one could use Equation 4 and try all possible α and β to maximize the probability of a 

specific corpus (the one selected to be analyzed) given the specific evidence (words to document 

assignment existed in the provided corpus). It is this process which is intractable to compute. 

 

3.2 α and β hyperparameters 

α  parameter is simply a number > 0 which is used in Dirichlet distribution. Dirichlet distributions give a 

k-dimensional distribution. Basically, a Dirichlet distribution allows one to select a random distribution, 

but one which is characterized by α. An α close to 1 is almost uniform, though each selection from the 

Dirichlet will be a unique random distribution. At α close to 0, the distributions are very unbalanced, 

meaning most of the weight of the distribution will be assigned to very few of the topics (similar to an 

exponential distribution). In other words, α determines the level of topic mixtures. At α close to 1, the 

mixture would be fairly uniform. At an α close to 0, the mixtures would be very “topic-y”, meaning 

almost all of the probability would be concentrated in 1 or 2 of K topics. 
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β is a matrix of the probability of words to topics so the size is k-topics x length (vocabulary). The 

vocabulary is quite large for any corpus this is the part that is intractable to compute. There is no way to 

test every possible vocabulary to topic distribution to see which has the greatest probability given the 

provided corpus. Since p(D|α,β) of a corpus given α and β cannot be computed for every possible α and β 

to see which has the greatest probability given D (corpus of documents), it has to be estimated using 

Gibbs sampling (Geman and Geman 1984) or variation inference.  

 

3.3 Variational Inference 

The variational inference is the estimation of α and β given the evidence (provided corpus). The process is 

a two-step iterative process. In the first step (E(stimation)-step) for each document and some initial α and 

β, an optimization algorithm is solved to obtain a lower bound on the log-likelihood given the current α 

and β. The optimization problem yields two variational parameters, γ and φ, that give the tightest possible 

lower bound on the log-likelihood. The second step (M(aximization)-Step) attempts to maximize this 

lower bound with respect to α and β. Within this step, γ and φ are updated to maximize the lower bound 

on the log-likelihood. These two steps are repeated until the Kullback-Leibler divergence between the 

variational distribution and the “true” posterior distribution converge below some threshold. At this point, 

we can say we have approximated α and β (the “true posterior distribution”). 

This process can be understood as a graphical model represented with “plate” notation (Buntine 

1994), as shown in Figure 1. In this notation, a repeating group of model variables is drawn within a 

rectangular plate, and the number of repetitions is indicated on the plate. In Figure 1, the N plate is the 

collection of words in a given document and the collection of all topic vocabulary distribution and the D 

plate represents the collection of documents within the collection.  
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Figure 1: Graphical Model Representation of LDA (Blei 2012) 
 

In Figure 1, the words wdn are the only observable variables. Zdn is the topic assignment of a given 

word in a given document. The values of α and β are hyperparameters that are set manually, as is the 

value of K, the number of topics. The theoretical distribution space of possible vocabulary to topic 

assignments is represented by Ƞ. Other variables - each topic’s distribution over words, each document’s 

distribution over topics, and the topic membership of each word - must be inferred from the data. The 

process for inferring these values is derived from methods developed from generative probabilistic 

modeling. In such a system, the observed evidence (or words in documents) and the hidden variable or 

latent topic structure are used to develop a joint probability distribution over all model variables. This 

joint distribution is used to compute the conditional or posterior distribution for the variables given the 

observed documents. The goodness of fit of the model can be tuned in several ways, including adjustment 

of the hyperparameters or number of topics, as well as limiting the number of iterations to perform in the 

estimation.  

3.4 Utility 

The LDA model has a number of notable benefits. First, it technically need not be applied to language at 

all, but to any entities in a collection that are composed of a set of exchangeable observations. For 

example, LDA has been applied to estimation of genetic ancestries through collections of expressed genes 

in individuals (Pritchard, Stephens et al. 2000), as well as to digital image classification and organization, 

where images are treated as documents and local level pixel patterns or other exchangeable visual features 
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are treated as words (Fei-Fei and Perona 2005; Sivic, Russell et al. 2008; Li, Wang et al. 2010). Second, 

LDA is easily embeddable within other automated analysis and machine learning systems (i.e. the topic or 

document topic proportions could then be used as features in SVM or similar methods). Third, the topic 

mixture model is powerful compared to many other automated discovery systems which simply report a 

simple match or non-match to a group (here, a fine-grained topical “distance” between two entities can be 

calculated). This in turn lends itself well to many kinds of visualizations and representations of entities 

based on the relative strength of correlation between entity and topics, as well as numerous opportunities 

to use this data to identify networks of relations between entities and topics, entities and entities, and 

between the individual exchangeable properties. Further, extensions of this methodology are relatively 

easy to develop and can extend LDA to discover correlations between topics, how collections change over 

time, and supervised topic analysis, where the power of the Bayesian statistical model can be used to 

identify known groupings and then used as a fine grain predictor of mixtures over known taxonomies. 

LDA provides many opportunities to discover and model latent information and networks beyond 

the simple relational networks that are a common feature of modern virtual spaces. The technique retains 

this ability even for social data that do not implement relational functionality. In the subsequent section, 

we begin to outline and explore some of the potential opportunities available to model virtual 

organizations via LDA 

4. Other LDA Techniques 

The application of LDA techniques to help identify collective discursive behavior is an important and 

useful methodology to better understand topical organization in large sets of social data. Over the last few 

years, numerous flavors, reconfigurations, and embedded architectures have been developed around LDA. 

We considered each of these and their potential to study latent relationships and behavior within social 

media, social networking sites, and virtual organizations. Each of these techniques had their own  best fits 

and limitations.  
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4.1 Supervised LDA 

Supervised LDA (sLDA) is a form of LDA that can be entrained to a specific set of topics (Blei and 

McAuliffe 2010). In this methodology, each document is additionally associated with a value or word to 

indicate its group or value. The algorithm works largely the same as with traditional LDA, except it takes 

into the account this value while maximizing likelihoods. Topics end up maximally distributed between 

the range of input values. It sets the probability distribution based on the assigned values as opposed to 

regular LDA, which generatively determines some ideal ways of distributing probability in the case the 

algorithm uses generative analysis to determine the best distribution to account for the evidence. SLDA 

models can be used as an LDA-based classifier. Once trained with a body of data, the model can be used 

to predict the class or value of future, previously unseen documents. One example in our project is the 

case where one’s research may have developed and applied some metric for the measure of some attribute 

of a message (Blei and McAuliffe 2010). The classic example is training on 1-5 star movie reviews and 

then guessing star rating based on the text of the review (Ye, Zhang et al. 2009). Another example of such 

a metric might be an evaluation of the trust shared between users. A hypothesis is that the way this trust is 

communicated is through the language used with one another (this is a fair assumption when studying 

social media in which all communication is written). This data set can be paired with the documents to 

develop topic models, which best predict the observed differences in trust shared between users. This 

model could then be used to potentially predict trust shown in future previously unseen documents, based 

on the developed training set. It is important to note that for such predictions to be seen as useful these 

models would have to be cross validated on the known data as well as testing and evaluating predictions 

for accuracy. 

4.2 Hierarchical LDA 

Hierarchical LDA (hLDA) is a version of LDA that models a collection of documents into a latent 

hierarchy of topics (Griffiths, Jordan et al. 2004). In other words, the model provides a full hierarchy for 

the latent topics. This means that the latent topics discovered in the collection will also be modeled to fit a 

hierarchy where child topics are considered subtopics of their broader parent topics. In our case, this 
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latent hierarchy could be developed and compared to the site-defined hierarchy of discussions forums. 

This also provides another alternative to cLDA for seeing connections between topics. Latent taxonomies 

may be useful to understand how language is used within topics and whether there are identifiable 

subcategories of discourse within each topic. 

5. Modeling Virtual Organizations with LDA 

The assumption behind our research hypothesis is that opportunities exist, beyond standard quantitative 

approaches, to model and understand the behavior and discursive operation of a virtual organization 

(VO). As such, LDA provides a hybrid approach to exploring this behavior. LDA is itself a complex 

computational technique that generates a large amount of quantitative data on the applied corpus. But this 

data is often best understood when the approach is guided and informed by qualitative assessments of the 

results, as can be seen in recent work on Twitter, LDA, and sentiment analysis (Maas, Daly et al. 2011). 

Specifically, qualitative hypotheses can be rapidly tested with the data generated through the application 

of LDA techniques with a corpus derived from social technologies. Some of these mixed-method 

opportunities are discussed in the following section. 

5.1 Message-based configuration 

A standard base configuration for using LDA to model social data is to take public messages and 

communication as documents (Maas, Daly et al. 2011). The models can be evaluated at different scales. 

Taking messages from an entire social media or social networking platform will yield a topic model that 

reflects the latent semantic groupings of the entire site, a goal of SSN-LDA (Simple Social Network 

LDA) (Zhang, Baojun et al. 2007). It may also be of interest to develop topic models from individual 

sections like individual forums where there is already an assumption about a specific topic. Here, LDA-

based topic models can allow an even greater, fine-grained understanding of the topical groupings that 

defined communication in this partition. Carrying this out across multiple partitions allows researchers to 

develop their own hierarchical topic models where the base hierarchies are researcher defined and leaf 

groupings are the discovered latent semantic groupings derived from LDA. In the standard configuration, 
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the topic modeling can be seen as reflecting the latent topics of discussion within a site. It is of interest 

because it is independent of any platform-defined categories (e.g. threads on forums or blogs). It is also 

independent of group or shared interests that users might report membership in. The most accurate 

semantic patterns discovered reflect the patterns of language used throughout the entire virtual space and 

evaluation of these patterns may lead investigators to recognize latent, hidden patterns and similarity in 

use of language that is much different than the rigid organizational structures and topical intention 

suggested by architects and managers of the virtual space. For instance, a social networking site may be 

developed and intended for use as a discussion group for physicists to discuss topics related to their 

profession, but a LDA-based topic model might reveal that discussion tend to focus or evolve into a 

discussion of favorite films, mentors, and books without regard for the intended usage of various sub-

forums on the site.   

This perhaps indicates that people view the forum as possible home bases which reflect their 

identity, an identity which they ultimately seek to perform in the social group regardless off the actually 

chosen forum topic. This research into the level to activity in forums is a performance of identity or 

subject matter is a sociologically interesting and potentially rich subject for further investigation. 

5.2 Author-based configuration 

The author-based configuration suggested by Pantel and Penachiotti (2006) combines all discovered posts 

by a certain author into one document. The corpus then becomes the collection of all user-centric 

documents for all users of an SNS. In this configuration, the topic model fit to the data becomes like a set 

of attributes for each user classifying the user based on what topics they choose to post about. Here, the 

per-document topic proportions can be used to calculate and visualize the similarities between various 

users. This data can also be used to suggest the existence of various classes of users. The ways in which 

common types of language are used to discuss similar topics on the site can emerge. This data is 

independent of user-defined groupings, friends, or common group membership. Natural language analysis 

can be used to determine whether similar user types tend to communicate with each other or whether 
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these grouping define forum archetypes, where each sub-forum naturally attracts certain proportions of 

various user classes. 

5.3 Thread-based configuration 

In a thread-based configuration, all posts in a given thread would be combined to create thread-level 

documents. When fitted to the model, topics would likely represent latent similarities between various 

threads on a site. This configuration would provide results similar to the message-based configuration, 

except that the generated data would speak more to themes within the body of thread level discussions 

across the site as opposed to individual posts. 

6. Generated Data 

6.1 Topic models 

The main result generated by the LDA process is the topic model on the body of documents. Here, the 

topic represents a proposed yet unobserved set of relations and co-occurrence of properties. Each topic 

model is comprised of a full set of probabilities for each term in the corpus. This probability vector is 

drawn from the space of all possible probability vectors for terms and represents the possible probability 

vectors for terms most commonly discovered within the corpus and which best account for all of the 

observed terms. These possible vectors are discovered generatively. By itself, the topic model represents 

for each topic the likelihood of the occurrence of each term. By examining the most probable terms for 

each topic, one can qualitatively hypothesize about what aspects of the text documents an individual topic 

is reacting to. For example, a topic may be discovered to contain jargon and terminology from a specific 

domain with high probability. The yet un-named latent topic can be provisionally understood as relating 

to this domain. Topics can also sometimes be discovered based on language usage. For example, most 

emails contain some common opening and closing structure (e.g. Dear X, Sincerely yours, Best wishes, 

and Regards). These structures are often like templates, but the exact language, grammar or placement 

used in each may be different. Through the transitivity of different permutations around a common 
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document structure of a topic might be identified, many documents may be identified as containing this 

topic to some degree. 

6.2 Word-to-Topic distribution 

Performing an LDA analysis will also generate data by which individual words can be mapped to the 

discovered latent topics. Here, a probability vector can be derived for each term indicating the probability 

that the appearance of a word is related to each of the possible topics. Thus, for each term one can identify 

the topic that uses the word most often. This data helps develop the document to property distribution, but 

could also allow one to visualize which words in a document are related to which topics by coloring each 

word based on its most likely topic. 

6.3 Document-to-Topic distributions 

As previously discussed, once an LDA model has been fit to a given corpus, the model can then be used 

to calculate estimates of topic proportion from previously unseen documents. These topic vectors can also 

be visualized. These topic proportion vectors can be used to compute the similarity between documents 

using the Hellinger Distance formula, a ‘symmetric distance between distributions’ (Blei and Lafferty 

2007). By setting a threshold distance, one could create a network of all documents in a corpus based on 

their topical similarity. This is especially interesting when using an author-based document configuration 

for the LDA model as this would create a network of users based on similarity of topics used and 

language discussed. 

7. Methods for Modeling Topics in Social Platforms with Message-based LDA 

Because of the wide variety of topics being discussed in forums, blog posts, and profiles, a fundamental 

research objective was to obtain representations of semantic knowledge. In this section, we discuss our 

results derived from the application of LDA to the textual corpora of two different, but popular virtual 

scientific communities of practice which employ social media and social networking technologies. In 

addition to revealing the utility of LDA to this ‘Big Data’ project, we highlight some of the challenges 
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associated with the project as well. In order to run LDA analysis on social data, one must have or 

‘prepare’ a body of documents to be analyzed for latent topic categories. In our case, both life science 

platforms had online forums. We considered each message in a forum to be a document. We studied data 

from two different sites developed for use in the life sciences (labeled Site A and Site B). The following 

sub-sections describe what data from each site was selected for analysis, how the data was prepared, and 

what parameters were chosen in order to build the models. Support vector machine (SVM) was 

experimented with, but we quickly found, like others (Sujitha, Selvi et al. 2014), that LDA outperforms 

the term-based SVM model and topic-based SVM model significantly for our specific corpora.  

7.1 Sample Size 

Site A is a very large, active site featuring a wide array of discussions forums. Previous qualitative 

research was conducted by the authors of this paper (Anonymized) where we similarly explored the types 

of discussions, topics, and trust expressed within these forums and among active users of the site across 

forums.  But evaluating all posts on this site by hand was impractical, expensive, and excessively time 

consuming. However, we did undertake human investigation of 50 active topics to get a qualitative feel of 

the corpora. This was one impetus to explore other computational and quantitative methods to derive 

similar information. Site A is organized as a collection of forums, each of which contains many 

discussions topics or threads (born by an initial opening post). Any user can create a forum or topic within 

an existing forum. At the time we were collecting data, Site A contained 890 unique discussion forums 

(See Figure 2 for a breakdown). A cursory evaluation of this list revealed that a large portion of the 

forums were largely unused. In fact 278 of these forums contained no topics so there were no discussions 

to analyze in these instances. Another 262 forums contained one or more topics, but did not contain any 

topics with replies: again this leaves little to evaluate. In order to discern useful information, we needed to 

limit our scope to the forums that contained rich discussions for analysis. We therefore developed a 

methodology to define an active forum and to consider only posts from amongst these forums for 

analysis. An active forum was defined as a forum that contained at least 5 topics that had received at least 

3 responses each. Using this definition, there were 70 active topics on Site A. 
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Figure 2: Distribution of forums on Site A by activity 
 

In order to look at consistent sets of data and in the event that the topic and response pattern is 

indicative of some class of information, we selected 12 of these 70 forums, but sampled evenly 

throughout the range of active forums. Active forums were grouped into bins based on the amount of 

activity and one forum was randomly selected from each bin (see Table 1).  

 

Forum 
Active 
Topics 

Replies per 
Topic 

Total 
Posts 

Scientist Musicians 5 9.2 72 

Italian User Group 10 8.1 114 

New User Group 15 14.3333 278 

Population Genetics 20 15.25 290 

UK Science Policy 26 6.0385 542 

Blogging Conference 32 16.6875 580 

Women and Science 36 11.9444 395 

Bioinformatics 40 7.6 429 

News and Opinion 49 19.8571 884 

Ask the Editors 51 8.1765 567 

Bloggers 56 16.1964 986 

Protocol Discussion 62 6.2097 619 
 
Table 1: Breakdown of forums from Site A selected for analysis 
 
With Site B, we had access to the site’s complete database, which included all posts on the site to date. 

Site B also features discussion forums for life scientists in much the same way as Site A. There are 

forums that contain topics, which constitute threads of discussion. Site B has a higher-level hierarchy, 
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which categorizes forums into broad sections of site discussion, but otherwise the structure is almost 

identical. Because we were able to obtain a full set of the discussions on this site, we decided to develop a 

topic model covering all the data. This was done in part to see the topic model that would result from an 

unfiltered site, but it also serves as a model of comparison to the results from Site A to evaluate how 

selection of data influence a topic model. The data, which we analyzed from Site B, consisted of 38,222 

posts from 518 forums. Using the same methodology for defining active topics as previously used, Site B 

contains 139 active topics, and 104 combined topics with no posting activity (see Figure 3). As a fraction 

of total forums, Site B is much more likely to have forums with some level of posting activity than Site A, 

and also contains a higher percentage and greater total number of active forums. This difference in 

composition could have some effect on the topic models derived from each site. 

 

 
Figure 3: Distribution of forums on Site B by activity 

7.2 Data Preparation 

The literature on topic models suggests that they benefit from preprocessing the text of a document 

(Mierswa, Wurst et al. 2006). Among the most common considerations for preprocessing methods are 

word stemming, common and uncommon word removal, identifying specialized text entities, and the 

removal of non-important or non-word entities. Each method has its own pros, cons, and effect on the 

final results in large or subtle ways. Word stemming is a technique of processing a vocabulary of words to 

reduce its size by reducing all words to their root form. This process eliminates the consideration of 

plurals and various verb conjugations as unique words. This helps each word form carry maximum 

meaning (theoretically). The assumption is that keeping all of the stems of a rootable word does not 

contribute meaningfully when assigning topics. For example, Blei and Lafferty (2006) recommend word 
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stemming, though they warn that stemming software should be carefully chosen as some are overly 

aggressive. We agree that careful consideration of the corpus should be done before implementing a 

word-stemming algorithm prior to LDA analysis and we did not perform word stemming as a pre-

processing phase. 

Another data preparation issue is the organization of stop words. Some suggest removing “stop” 

words prior to performing analysis (Blei, Ng et al. 2003). Stop words are considered to be common 

words, which carry little semantic information. In terms of parts of speech, most articles, pronouns, 

prepositions, and conjunctions would be considered stop words. Very common nouns and verbs may also 

be considered stop words, but careful consideration should be given before any word is chosen to be 

removed from a corpus of documents under consideration. There are many lists of stop words available. 

They can range in size from dozens to thousands of words. To prepare data for our project, we used a 

standard list of 311 stop words. In early tests, LDA-based topics models were fit to data collected from 

both sites without removing any stop words. Stop words dominated the topic model. Another common 

methodology used to handle stop words is to not remove them prior to fitting the model, but to ignore 

them in the final topic model. 

Depending on the source of a body of text, it may contain various structures and entities which 

one may wish to remove or encapsulate. We refer to this process as text cleaning. The most common text 

cleaning operations are to remove punctuation and numbers. But one must determine whether there are 

any entities within the corpus that contain punctuation and/or numbers which should be preserved as they 

may carry important information from the dataset. Among these types of entities may be links, email 

addresses, emoticons, and phone numbers. Depending on your pre-evaluating of the text corpora, a user 

may decide to preserve these entities or remove them completely. This is an important process because it 

would be undesirable to simply remove punctuation as this may turn entities like links into a collection of 

words which carry little or no meaning to the analysis: words like www, com, org, etc. Our collected data 

sets for Site A and Site B contain HTML tags, so simply removing punctuation might result in adding a 

lot of words representing HTML tags to the documents like div, span, href, etc. If one wishes to remove 
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HTML and preserve references to links and email addresses, careful pre-processing must be done prior to 

analysis to prevent garbage words from entering the vocabulary. 

Taking all of these factors into consideration, the following preprocessing steps were conducted on 

the forum communications collected from Site A and Site B prior to fitting and LDA model to the 

respective corpora. 

1. Convert document to UTF-8. 
2. Correct broken HTML 
3. Remove all tags except links 
4. Convert links to entities representing only the link to domain but not individual pages 
5. Convert email addresses to entities 
6. Convert statements of form <letter>& <letter> to entities as in B&B(Bed and Breakfast) or R&D 

(Research and Development) 
7. Identify and preserve 28 kinds of  common emoticons representing smiles, frowns and hearts. 
8. Remove punctuation and HTML entities, taking into consideration various character encodings. 

Exception for dashes and underscores. 
9. Remove stop words  
10. Remove repeated dashes and orphan dashes and underscores (not attached to a word) 
11. Remove extra spaces. 
12. Convert to lowercase. 
13. Generate a vocabulary from the unique words remaining. 
14. Take each document to be a spare vector on the vocabulary containing the count of each of the 

unique word in a given document. 
 

The final vocabulary contained 32,767 words drawn from 5,703 documents for Site A and 95,803 words 

from 36,576 documents from Site B. This number is larger than it needs to be because of the inclusion of 

domain links.  

7.3 Models Generated and LDA Parameter Tuning  

Following Hazen (2010), models were generated to discover 40 latent topics within the data from Site A 

and Site B. In LDA, a good fit is one where the latent topics cover the actual range of different word 

occurrences. LDA allows one to suggest an original α and we set α to 1 (which causes a Dirichlet to 

output uniform distribution). The original β was randomly assigned. α and β were iteratively optimized to 

decrease the divergence of the estimates from the evidence (corpus). As we did not have an estimate of 

the mixing level, we did not provide a different α to 1. We used Blei et al.’s (2003) original code which 

implements the variational inference algorithm rather than Gibbs sampling.  
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8. Results 

8.1 Site A Results 

The data generated for each latent topic is a vector containing the probability of every word in the 

vocabulary. A common way to display a topic is to only list the highest probability words in each topic. 

For most topics, this is sufficient because often there are only a handful of words that are strongly 

indicative of belonging to a certain topic, with a steep drop-off in probability after that with the vast 

majority of words in the vocabulary having near nil probability for the topic. Table 2 illustrates the top ten 

most probable words for the first 20 topics of the topic model generated by from the sample of documents 

from site A. 

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 

opinion, surname, 
find, name, science, 

article, people, 
comment, see, 

married 

science, nature, 
protocols, 

scientific, religion, 
scientists, system, 
selection, natural, 

research 

science, people, 
space, libel, 

scientists, time, 
society, legal, see, 

public 

research, work, 
people, years, 

sharing, time, data, 
science, take, two 

drugs, cognitive, 
people, drug, 

authors, 
enhancement, 
taking, brain, 

enhancers, effects 

Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 

science, sessions, 
session, di, ideas, 

day, scientific, 
conference, 

unconference, 
animals 

research, scientific, 
government, 

science, policy, 
public, advice, 
consultation, 

federal, funding 

data, university, 
research, usa, 

biological, mining, 
new, 

bioinformatics, 
papers, students 

motif, evolutionary, 
print, file, russian, 

found, struggle, 
todes, new, theory 

blog, blogging, 
science, 

conference, blogs, 
people, network, 
posts, bloggers, 

nature 

Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 

science, research, 
cfse, mr, obama, 
first, committee, 

new, select, 
education 

people, time, 
technorati, seems, 

google, post, 
culture, 

determined, article, 
work 

research, data, 
people, 

misconduct, 
scientific, 

comment, studies, 
ref, new, barbie 

d, gst, 
differentiation, fst, 

population, 
populations, alleles, 

allele, measure, 
diversity 

perl, 
bioinformatics, 
work, program, 
scientists, assay, 

interesting, people, 
help, see 

Topic 15 Topic 16 Topic 17 Topic 18 Topic 19 
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free, science, 
determined, human, 

freedom, 
behaviour, people, 
question, decisions, 

random 

intelligence, iq, 
research, 

differences, race, 
science, genetic, 
human, people, 

rose 

human, genetic, 
diversity, 

possibility, 
intelligence, found, 

people, group, 
does, article 

vector, gel, dna, 
cells, using, pcr, 
ligation, u, tried, 

plasmid 

research, science, 
death, uk, two, 
funding, data, 

evidence, work, 
made 

 
Table 2: Top ten most probable words for 20 topics of the topic model generated from Site A 
 

Even from looking at a small fraction of the words generated for each topic, one quickly gets a sense of 

the topics discussed within Site A (and they are highly correlated with findings from qualitative work we 

have done). A cursory inspection might place these latent topics as beginning to agree with some of the 

known forum discussions (see Table 3). Of course, there is no one-to-one mapping. Rather, each 

document contains a mixture of words from perhaps many topics. 

Population Genetics 1,13,16,17 

UK Science Policy 2,6,10,19 

Blogging Conference 5,9 

Women and Science 0,12 

Bioinformatics 7,14 

News and Opinion 0,2,8,11,12, 

Bloggers 9 

Protocol Discussion 1,18 
 
Table 3: Some possible observed correlations between observed topics and known discussion 
forums 
 
Also of interest are topics like topic 40 which contains a list of pleasantries and words common in all 

forum communications like: good, idea, looking, see, great, find, :), say, best, and link. All documents 

likely contain some proportion of words from this topic. 

8.2 Site B Results 

The results from Site B are interesting because they represent the latent topics from an entire virtual 

scientific platform. The data includes information from every post in every category on the site. This 
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provides an opportunity to understand the types of communications taking place on the site without 

having to rely on the site’s own reported hierarchy of topics and threads. Many of these discussion boards 

are used very little so in terms of the site-reported hierarchy, they represent topics which are pre-approved 

by the site’s administration, but the LDA-based topic model reveals the topics people are using the site to 

discuss and which they are not. Table 4 illustrates the top ten words from the first 20 topics of the model. 

 
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 

research, 
experience, post, 

work, date, centre, 
project, closing, 

university, biology 

chemistry, 
chemical, 

materials, organic, 
engineering, 
university, 

structure, surface, 
synthesis, 
developed 

j, e_frown, s, m, p, 
k, r, c, morpholino, 

h 

science, new, 
scientists, research, 
world, technology, 
said, scientific, life, 

public 

nobel, university, 
prize, work, first, 
professor, years, 
born, chemistry, 

research 

Topic 5 Topic 6 Topic 7 Topic 8 Topic 9 

sample, method, 
standard, column, 

samples, using, 
water, analysis, 

phase, 
concentration 

ml, add, solution, 
cells, stock, plate, 

medium, volume, c, 
tube 

image, 
fluorescence, light, 
imaging, images, 

microscope, using, 
cells, fluorescent, 

microscopy 

rna, kit, tissue, 
protocol, dna, 

extraction, used, 
using, isolation, 

method 

protein, gel, 
proteins, buffer, 

membrane, sample, 
gels, using, bands, 

run 

Topic 10 Topic 11 Topic 12 Topic 13 Topic 14 

proteins, protein, 
molecules, amino, 

two, acid, structure, 
molecule, acids, 

form 

 glycine, non-polar, 
alanine, serine, 

cysteine, aspartic, 
acid, acidic, lysine 

find, site, link, 
information, forum, 

help, post, web, 
good, search, 

www.siteb.com* 

solution, water, 
staining, pbs, acid, 

minutes, wash, 
sections, sodium, 

tissue 

biology, molecular, 
cell, research, phd, 
techniques, project, 

biochemistry, 
cellular, position 

Topic 15 Topic 16 Topic 17 Topic 18 Topic 19 

problem, see, 
instrument, time, 

issue, system, 
check, pump, 
plasma, new 

good, time, lab, 
used, work, using, 

best, better, 
different, people 

cell, current, 
solution, patch, 

channels, pipette, 
channel, using, 
potential, seal 

cancer, clinical, 
disease, research, 

drug, therapy, 
medical, patients, 
treatment, months 

drug, activity, 
collagen, assay, 

protein, inhibitor, 
receptors, receptor, 

binding, kinase 
 
Table 4: Top ten most probable words for the first 20 topics of the topic model generated from Site 
B. (* This term reference links to pages on site B. the name of the site is anonymized) 
 

The topics in Table 4 reveal similarities and marked differences from the model for Site A. First, 

the topics are highly technical. Site B is known to be primarily focused on the sharing and discussion of 
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scientific protocols and procedures relating to various research methods in the life sciences, whereas Site 

A does not actively promote such discussions. Any similar topics only emerge organically. In Table 4, 

Topic 6 on procedures involved mixing solutions and volumes; Topic 7 on fluorescence microscopy; and 

Topic 8 on procedures for working with and isolating DNA. Other topics of note are Topic 2, which 

appears to be related to citations (the single letters were determined to be people’s initials). Topic 4 

appears to involve language for discussing biography or credentials. Topic 12 revolves around language 

directing people to information, often involving links to other pages within the site. A reasonably clear 

delineation between topics, which discuss a certain field of research within the life science and those that 

do not emerges. This is expected, because each scientific domain has its own vocabulary and argon 

separate from other types of language like that related to papers, or job postings. These distinctions seem 

to have been well delineated by the topic model in LDA natural language processing. 

9. Correlated LDA 

We also applied a similar topic model algorithm known as correlated LDA (CLDA), which creates a topic 

model that is different from standard LDA in the way it samples documents and records the per-document 

likelihood (Blei and Lafferty 2007). The way the data is structured allows another companion algorithm 

to compute relationships between topics within a user-defined threshold. The connections between topics 

represent instances where words from one topic occur that are correlated with the appearance and use of 

words from the second topic. Two topics can be related when they often occur together with significant 

proportion within observed documents. 

9.1 Methodology 

The methods used to prepare for the CLDA application are identical to those of standard LDA. We used 

the same methods described in the previous section to develop a correlated topic model. The algorithm 

that reports correlations between discovered topics involves setting a user-defined threshold. This defines 

the level of relationship between topics necessary for them to be considered related. The threshold can be 

between 1 and 0, with the latter resulting in no correlation reported and 1 reporting a fully connected topic 
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graph. The algorithm determines a value between 0 and 1, denoting the strength with which each pair of 

topics is correlated. This threshold serves as a cutoff to only show the pair that is more correlated than the 

chosen value. For both Site A and Site B, the threshold chosen was 0.33 after sampling a variety of 

thresholds to not over or under fit the data. 

9.2 Results 

The results of the cLDA analysis reveal how applying LDA techniques to a large social dataset provides 

important insights into the overall sets of topics across traditional virtual organizational structures (such 

as threads). These initial results indicate some known relationships between various types of discussion 

on each site. It also highlights potential concerns in understanding how to set analysis parameters. Most 

importantly, it also suggests relationships that were not known or observed prior to the analysis. These 

types of results would likely play the most important role in understanding the latent discourse in the 

virtual organizations we studied. More broadly, CLDA is particularly useful in discerning sets of topics in 

large online corpora. 

9.3 Site A Results 

A map of the relationships between discovered topics is shown in Figure 3. The topic model is not highly 

correlated. Of all the pairs of correlated topics meeting the threshold criteria, only 26/40 have any 

determined relationship with another topic. Also, there are 4 separate graphs that do not interact with each 

other. The main group is also weakly connected to the rest of the topic networks. 

 
 
Figure 4: Map of correlated topics discovered in Site A 
 

Evaluating the large main group in the center of Figure 4, there appears to be two highly 

connected topics. They both relate to blogging, the site, and keywords like “science.” Several of the 

sampled forums were about science blogging so this derived topic list is robust. The blogger forum has a 

large number of posts about blogging in general and a specific forum existed to organize a conference for 

science bloggers. These two categories are highly correlated, and both cover topics about conferences. 
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This main group also has a weak connection via a perl programming and bioinformatics topic to a group 

that is interested in cell and protein research. This group is weakly connected to a linear group of other 

topics. Furthermore, there is a correlation group that represents different topics related to the science 

policy forum. Two additional stranded pairs seem to correlate discussion of cognitive enhancement drugs 

to bioinformatics and a pair of topics both of which seems to contain different terminology within the 

field on population genetics, which was one of the sampled forums. This is in congruence with our 

earlier, published qualitative work done on Site A (Anonymized). 

These results signal that many of the sampled forums may have one or two distinct latent topics 

which do not overlap greatly with the other sampled forums. Many of the omitted topics probably contain 

highly forum-specific topics which contain terms which are not used within other topics or they could be 

topics which represent language which is common across all topics, but not highly correlated with the 

topics. We would expect the type of topics discovered that cover general language like the pleasantries 

topic mentioned previously. A topic model drawing from a more robust sample, yet still limited to 40 

topics might yield a more connected correlation chart as topic will be forced to combine language which 

in this small topic model can be represented as separate yet correlated topics. 

9.4 Site B Results 

The map of correlated topics from Site B (see Figure 5) is more connected than that of Site A. This is 

despite only connecting an identical 26/40 topics. In Site B, there is only one disconnected topic pair, 

which appears to be about application for either job or research opportunities. The other topics are more 

highly meshed. 
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Figure 5: Map of correlated topics discovered in Site B 
 

Also, the dynamics are different here. In Site B, the central node is about information with 

various topics connecting off from the main hub and associating with each other by individual topics. A 

comparison indicates that some of the topics we witnessed previously about very specific life science 

protocols are either not included in the map or are only weakly linked with other topics. This may indicate 

that the domains of science discussed on this site are so specific that there is little or no high level 

correlation between those domain-based topics. The most connected topic (degree of 6) covers databases 

and information and the second most connected topic (degree of 5) covers topics of publishing in open 

access. Importantly, the topic categories being considered for publication emerge as well (gene 

sequencing and cancer are prominent). In this specific case, LDA delivered robust results which were in 

congruence with our extensive qualitative work, which included interviewing and ethnographic 

participant observation. 

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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10. Conclusion 

NLP is not a static object of study. Cambria and White (2014) usefully speculate on the future of NLP 

based on 50-year eras. They argue that we are currently in an NLP of a ‘Bag-of-Words’ and it is a roughly 

100 year curve to move through ‘Bag-of-Concepts’ to ‘Bag-of-Narratives’. This article has argued that 

though we have not crossed into the ‘Bag-of-Concepts’ era, NLP continues to evolve. One of its 

evolutions has been the application of NLP outside of computer science and, in our case, in an 

interdisciplinary project in the social sciences, which sought to render visible topics and trends across a 

‘Big Data’ scale of text. NLP has tremendous promise across many disciplines. Without the 

implementation of natural language processing techniques (in our case, Latent Dirichlet Allocation 

(LDA)), it would not have been possible to understand and decipher some of the nuanced conversations 

that were occurring across a multitude of threads. Specifically, topics within these platforms and 

discussion threads and other social media spaces did not always accurately encapsulate the topics of 

conversation within the meta-thread. Additionally, topics, conversations, and discussions often digressed 

like in face-to-face conversation. By using natural language processing, we were able to decipher key 

topics by particular groupings of individuals or forums. This allowed us to get a much better 

understanding of the ways in which these scientific virtual organizations collaborated, innovated, and 

created knowledge. This has immense utility not only within the organizational context, but within natural 

language processing as an interdisciplinary field. 

As Blei (2012) notes, topics and topical decompositions are not in a sense ‘definitive.’ Fitting a 

model to any collection will yield patterns regardless of whether they exist in a true sense the corpus. But 

that is where LDA pairs so well with qualitative techniques. This presents new ways for natural language 

processing to assist and guide qualitative research and research design. In this case, LDA can help 

identify areas for further explorations as well suggest a variety of different possible groupings the 

combinations of which can help to best understand the nature and activities of contemporary social media, 

social networks, and virtual organizations – all of which have large data footprints. Another important 
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contribution of this article is that we found that LDA can move us beyond the state-of-the-art in 

conventional sociological techniques; in this case, Social Network Analysis techniques. 
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